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Heavy quarkonium production: Nontrivial transition from pA to AA collisions
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Two novel QCD effects, double-color filtering and mutual boosting of the saturation scales in colliding nuclei,
affect the transparency of the nuclei for quark dipoles in comparison with proton-nucleus collisions. The former
effect increases the survival probability of the dipoles, since color filtering in one nucleus makes the other
one more transparent. The second effect acts in the opposite direction and is stronger; it makes the colliding
nuclei more opaque than in the case of pA collisions. As a result of parton saturation in nuclei the effective
scale is shifted upward, which leads to an increase of the gluon density at small x. This in turn leads to a
stronger transverse momentum broadening in AA compared with pA collisions, i.e., to an additional growth of
the saturation momentum. Such a mutual boosting leads to a system of reciprocity equations, which result in
a saturation scale, a few times higher in AA than in pA collisions at the energies of the large hadron collider
(LHC). Since the dipole cross section is proportional to the saturation momentum squared, the nuclei become
much more opaque for dipoles in AA than in pA collisions. For the same reason gluon shadowing turns out to be
boosted to a larger magnitude compared with the product of the gluon shadowing factors in each of the colliding
nuclei. All these effects make it more difficult to establish a baseline for anomalous J/� suppression in heavy
ion collisions at high energies.
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I. INTRODUCTION

Nuclear suppression of heavy quarkonia is usually con-
sidered as a sensitive hard probe for the properties of the
short-living medium produced in Heavy ions collisions [1–3].
The main challenge is to discriminate between initial state
interactions (ISI), usually identified as cold nuclear matter
effects, and final state interaction (FSI), which is related to
attenuation of the produced quarkonium in the dense matter
created in the nuclear collision. While the latter is the main
goal of the study, experimental information fully depends on
how well we understand the ISI contribution.

Naturally the ISI dynamics should be studied in a proton-
nucleus collision, where no dense matter is expected to be
produced. The next step, the extrapolation of the results to
nuclear collisions, is not that easy. Usually it is done in an
oversimplified manner, assuming that a c̄c pair is produced
momentarily inside the nucleus and then attenuates with an
unknown absorption cross section on the way out of the nu-
cleus. The c̄c breakup cross section is fitted to pA data and used
to predict the ISI effects in AA collisions. As we will show, the
breakup cross section is not constant but steeply rises with the
c̄c energy; in addition, it is well known from Hadron Elektron
Ring Anlage (HERA) data. The most appealing oversimplifi-
cation, especially at the high energies of the relativistic heavy
ion collider (RHIC) and large hadron collider (LHC), is the
instantaneous production of c̄c. In reality the production time
ranges from tens to thousands of fermis at these energies. The
long production time leads to shadowing, which is a high-twist
effect suppressed by the quark mass squared. Nevertheless, we
find that this shadowing effect is stronger than the leading twist
gluon shadowing, which produces a rather mild suppression
even at the LHC in the central rapidity region.

Even if the shadowing and breakup effects in pA collisions
are under control, one still cannot predict the cold nuclear

effects in AA collisions in a model-independent way. The two
major phenomena considered in this paper make this impos-
sible. The first one is double-color filtering of dipoles propa-
gating simultaneously through two nuclei. As we will demon-
strate, the survival probability of a dipole in AA collisions is
higher than the product of that in each of the colliding nuclei.

Another effect changing the properties of the cold nuclear
medium in AA collisions is the boosting of the saturation
scales in the nuclei due to mutual multiple interactions in
the nuclei. The effect is especially strong at the energies of
the LHC. The nuclear medium becomes several times more
opaque for dipoles compared with its transparency in pA

collisions. These two effects essentially modify the effects
of the ISI stage of heavy ion collisions, which is usually
considered to be the baseline for search for “anomalous”
nuclear suppression of heavy quarkonia.

All calculations in this paper are performed in so called
frozen approximation, neglecting the size fluctuations
of dipoles during their propagation through nuclei. This
approximation is accurate provided that the coherence length
for heavy quark production substantially exceeds the size of
the nuclei. This condition is satisfied at the energies of the
RHIC and above.

II. PROTON-NUCLEUS COLLISIONS

First, one should make sure that the nuclear effects for
heavy quarkonium production in pA collisions are understood,
as well as the absolute magnitude of the cross section. The
cross sections of χ and J/� production in pp collisions were
successfully reproduced in the color-singlet model in Refs. [4]
and [5], respectively. What has been missed in most of current
analyses of J/� production in pA collisions are the coherence
effects related to the long timescale of charm production,
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associated with propagation of a color-octet c̄c pair through
the nucleus prior the production of a colorless dipole [4,6].
This stage results in the heavy quark shadowing, which is
of the same order as the effect of breakup of the colorless
dipole. Although both are the high-twist effects, quantitatively
they are more important for currently available data than the
suppression caused by the leading twist gluon shadowing. The
latter is frequently miscalculated being based on some nuclear
gluon parton distribution function parton distribution function
(PDFs), which rely on either ad hoc or incorrect assumptions
(see discussion in Ref. [3]).

A. High-twist heavy quark shadowing

Although the proper time of charm production is short,
t∗c ∼ 1/(2mc), this time rises with J/� energy linearly in the
rest frame of the nucleus,

tc ∼ 2E

M2
J/�

. (1)

Thus, if the energy of the produced J/� is sufficiently
high, E ∼> 25( GeV) × L( fm), effects of coherence become
significant. At the energy of the RHIC,

√
s = 200 GeV, and

positive rapidities, tc > 12 fm. For ϒ production tc at the RHIC
is rather short but becomes much longer than the nuclear size
at the energies of the LHC. In what follows we assume the
coherence time to be much longer than the nuclear size, unless
otherwise specified.

The nuclear suppression caused by coherence can be
interpreted as high-twist shadowing in the process of c̄c pair
production by a projectile gluon. The c̄c is produced coherently
in multiple interactions of the projectile gluon with target
nucleons. If the J/� energy is sufficiently high, so that
tc � RA, one can neglect the dipole size fluctuations during
propagation through the nucleus; i.e., we treat the dipoles being
“frozen” by Lorentz time dilation.

Since the production amplitude is convoluted with the char-
monium wavefunction, one can assume with good accuracy an
equal sharing of the total longitudinal momentum between c

and c̄. In what follows we rely on the saturated parametrization
of the dipole cross section [7]

σc̄c(rT , x2) = σ0
(
1 − e−r2

T /r2
0 (x2)

)
, (2)

where σ0 = 23.03 mb, r0(x2) = 0.4 fm × (x2/x0)0.144, x0 =
3.04 × 10−4; x2 = e−y

√
〈M2

c̄c〉+〈p2
T 〉/√s. The c̄c invariant mass

distribution predicted by the color-singlet model leads to
〈M2

c̄c〉 = 2M2
J/� [2]. The measured 〈p2

T 〉 = 4 GeV2.
The amplitude of c̄c production at a point with impact

parameter b and longitudinal coordinate z inside the nucleus,
averaged over the dipole size reads [4]

SpA(b, z)

=
∫

d2rT Wc̄c(rT )

× exp

[
−1

2
σc̄cg(rT )T−(b, z) − 1

2
σc̄c(rT )T+(b, z)

]
. (3)

Here T−(b, z) = ∫ z

−∞ dz′ρA(b, z′), T+(b, z) = TA(b) −
T−(b, z), and TA(b) = T−(b,∞). According to Ref. [4]

shadowing for c̄c production over the nuclear thickness
T−(b, z) occurs with the shadowing cross section
corresponding to a three-body dipole, gluon, and
c̄c, which for equal momenta of c and c̄ equals to
σc̄cg(rT ) = 9

4σc̄c(rT /2) − 1
8σc̄c(rT ).

The survival probability amplitude (3) should be squared
and integrated over the coordinate of the production point.
Then the nuclear ratio reads

RpA = 1

A

∫
d2b

∫ ∞

−∞
dz |SpA(b, z)|2. (4)

We rely on the form of nuclear effects for production of the
P -wave charmonium χ2 derived in Ref. [4]. The mechanism of
J/� production is more complicated, but the general structure
of shadowing corrections should be similar because the overlap
of the initial narrow size distribution of the perturbatively
produced c̄c pair with the large-size wavefunction of the final
charmonium is dominated by the small initial size ∼ 1/mc,
whether the charmonium is χ or J/�. In addition, χ decays
contribute about 30% to J/� production.

In the regime of long tc � RA, the weight factor in Eq. (3)
has the form [4]

Wc̄c(rT ) ∝ K0(mcrT ) r2
T �J/�(rT ), (5)

where one factor rT comes from the amplitude of c̄c pro-
duction, and another one either from the amplitude of gluon
radiation in the case J/� production or from the radial
wave function of χ2. Further, we assume the wavefunction to
have the oscillatory form,�J/�(rT ) ∝ exp[−r2

T /2〈r2
J/�〉] with

〈r2
J/�〉 = 2/mcω, mc = 1.5 GeV, and ω = 300 MeV [8].
To simplify the calculations we use for �c

in(rT ) =
r2
T K0(rT mc) the parametrization proposed in Ref. [8],

�c
in(rT ) ≈ const. × [

e−r2
T /a2

c − e−r2
T /b2

c

]
, (6)

where ac = 0.496 fm, bc = 0.11 fm. The comparison of the
two functions Eq. (6) plotted in Fig. 1 demonstrates that the
approximation is rather accurate within the range of rT we are
interested in.

0

0.2

0.4

0.6

0.8

1

0 0.25 0.5 0.75 1 1.25 1.5

charm

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5

beauty

rT

Ψ
in
 (

r T
)

FIG. 1. Comparison of the left-hand (solid curves) and right-hand
(dashed) sides of Eq. (6). The top and bottom panels are for charm
and beauty, respectively.
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Thus, we present the weight factor Wc̄c (5) in the form

Wc̄c(rT ) = 1

π
(
r2

1 − r2
2

)(
e−r2

T /r2
1 − e−r2

T /r2
2
)
, (7)

where r2
1 = a2

c /(1 + a2
c /2〈r2

J/�〉) and r2
2 = b2

c/(1 +
b2

c/2〈r2
J/�〉).

In a small-rT approximation the dipole-nucleon cross
sections in Eq. (3) have the simple form σc̄c(rT , x2) = C(x2) r2

T

and σc̄cg(rT , x2) = 7
16C(x2) r2

T . So the integration can be
performed analytically, and we arrive at

SpA(b) = 1

r2
1 − r2

2

[
r2

1 S
(1)
pA(b) − r2

2 S
(2)
pA(b)

]
, (8)

where for i = 1, 2,

S
(i)
pA(b) = {

1 + 1
2C r2

i

[
7

16T−(b, z) + T+(b, z)
]}−1

. (9)

Notice that due to color transparency the nuclear medium
is more transparent than in the Glauber model. Moreover,
the amplitude (9) does not decrease with nuclear thickness
exponentially, but as a power.

Finally, we integrate the attenuation factor (8) squared over
the coordinates of the production point and arrive at the nuclear
ratio, which has the form

RpA =
(

r2
1

r2
1 − r2

2

)2

R
(1)
pA +

(
r2

2

r2
1 − r2

2

)2

R
(2)
pA

− 2

(
r1r2

r2
1 − r2

2

)2

R
(12)
pA , (10)

where for i = 1, 2,

R
(i)
pA = 1

A

∫
d2b TA(b)

[
1 + r2

i

2
C TA(b)

]−1

×
[

1 + 7r2
i

32
C TA(b)

]−1

, (11)
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FIG. 2. (Color online) Dashed curve presents nuclear suppression
of J/� as function of rapidity in pA collisions. Solid curve is
corrected for gluon shadowing. Data are for dAu collisions at√

s = 200 GeV [10].

and

R
(12)
pA = 1

A

32

9C
(
r2

1 − r2
2

) ∫
d2b

× ln

{[
1 + r2

1
2 C TA(b)

][
1 + 7r2

2
32 C TA(b)

]
[
1 + r2

2
2 C TA(b)

][
1 + 7r2

1
32 C TA(b)

]
}

. (12)

With these equations we calculated the nuclear ratio
RA/p(y), Eq. (10). We rely on the realistic Woods-Saxon
parametrization for the nuclear density [9]. The results at√

s = 200 GeV are depicted as function of rapidity in Fig. 2
by dotted curve.

We see that the steep rise of the breakup cross section
σc̄c(rT , Ec̄c) with energy (it triples from y = 0 to y = 2)
explains well the observed rapidity dependence of nuclear sup-
pression. The calculations should not be continued far to nega-
tive rapidities, since the regime of long coherence length breaks
down there. In addition, additional mechanisms, which cause
a nuclear enhancement at negative rapidities, must be added.

We also tested how accurate is the result of analytic
integration (10) and performed numerical calculation using
the full equation (3) with the dipole cross section (2). The
results is plotted by dashed curve in Fig. 2. It is pretty close to
the previously calculated dotted curve. Both agree with data
within large errors and normalization uncertainty.

In Fig. 3 we present the impact parameter dependence of
nuclear suppression for J/� produced with different rapidities
in p-Au collisions at the RHIC. As expected, the strongest
dependence on rapidity comes from most central collisions.

We also performed calculations for nuclear effects in ϒ

production. The only difference with charmonium production
is the heavier quark mass, mb = 4.5 GeV, and new values
of parameters in the parametrization (6), ab = 0.162, bb =
0.037. How accurate is this parametrization for bottom quarks
is demonstrated in the bottom panel of Fig. 1. The results for
nuclear suppression of ϒ produced in lead at the energies of
the RHIC,

√
s = 200 GeV, and the LHC,

√
s = 5.5 TeV, as

function of rapidity are depicted in Fig. 4.
The upper solid and bottom dashed curves are calculated

at
√

s = 200 GeV and 5.5 TeV, respectively. Notice that in the
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FIG. 3. b dependence of the nuclear ratios for J/� produced
with rapidities y = 0, 1, 2, 3 in pAu collisions at

√
s = 200 GeV.
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FIG. 4. Nuclear suppression of ϒ production as function of
rapidity in pA collisions at

√
s = 200 GeV (upper curve, gold)

and
√

s = 5.5 TeV (two bottom curves, lead). The bottom dashed
curve includes only the effects of b̄b dipole breakup and high-twist
shadowing of beauty production; the solid curve is corrected for gluon
shadowing.

former case the “frozen” approximation is not well justified at
y = 0, where tc ∼ 4 fm.

B. Leading twist gluon shadowing

In terms of the Fock decomposition gluon shadowing for
c̄c production is associated with higher Fock states |c̄cg〉, etc.
First, one should evaluate the kinematic condition for gluon
shadowing, t

c̄cg
c ∼> RA, where t

c̄cg
c is the coherence time or the

lifetime of a c̄cg fluctuation in a gluon. This time can be related
to the Ioffe time as

t c̄cgc = Pg

xmN

, (13)

where the factor Pg ≈ 0.1 was evaluated in Ref. [11] and found
to be scale independent. Its smallness is caused by the large
intrinsic transverse momenta of gluons in hadrons, supported
by numerous evidences in data [12,13]. Thus, shadowing for
gluons onsets at x ∼< 0.01, which is a smaller x value than
for quarks. As the result, no gluon shadowing is possible
for charmonium production in any of fixed-target experiments
performed so far [3,14].

Even at the energy
√

s = 200 GeV the values of x2 defined
in Eq. (2) are too large for gluon shadowing, 0.024 > x2 >

0.0033, within the measured rapidity interval 0 < y < 2. We
rely upon the next to leading order (NLO) analysis [15]
of deeply inelastic scattering (DIS) data, which suggests a
very weak gluon shadowing, as is depicted in Fig. 6 in
Ref. [15]. Such a weak shadowing is in good agreement with
the theoretical predictions [12]. The nuclear ratio presented
by the dashed curve in Fig. 2 corrected for gluons shadowing
at Q2 = 10 GeV2 (see Fig. 6 in Ref. [15]), is depicted by
a solid curve. We see that the effect of gluon shadowing is
indeed vanishingly small. Even at the energy of the LHC,√

s = 5.5 TeV and y = 0, gluon shadowing according to Refs.
[12,15] is extremely small, only 3% at x2 = 5.5 × 10−3, and
will be neglected in what follows.

Apparently, for ϒ production gluon shadowing is weaker
than for charmonia. No gluon shadowing affects ϒ production
at the energies of the RHIC, as depicted by the upper curve
in Fig. 4, since the values of x2 are too large. The effect of
gluon shadowing at the energy of the LHC is visible, and the
full calculation is shown by the bottom solid curve. It was
calculated using the gluon parton distribution function (PDF)
of [15] at Q2 = 100 GeV2.

III. TRANSITION FROM pA to AA

At fist glance one might extrapolate the nuclear effects from
pA to AA collisions in a straightforward way: RAA(�b, �τ ) =
RpA(�τ ) × RpA(�b − �τ ), where �b is the impact parameter of
nuclear collisions and J/� is produced at impact parameter
�τ . Indeed, such a “data-driven” procedure was used in Refs.
[10,16] to predict the cold nuclear matter effects in nuclear
collisions based on the measurements of b dependence of
nuclear suppression in pA. There are several reasons, however,
that make such a transition model dependent.

A. Double-color filtering

As we have discussed, the survival probability of a c̄c dipole
propagating through a nucleus is subject to color transparency.
This effect in AA collisions turns out to be nonfactorizable.
This can be illustrated by the following example. Let a c̄c

dipole of transverse separation rT propagate through a slice
of nuclear medium of thickness TA with survival probability
SpA(rT ) = exp(−C r2

T TA). To clarify the appearance of the
effect we rely on the simplified size distribution function
W (rT ) ∝ exp[−r2

T /〈r2
T 〉] adjusted to the distribution (5) with

〈r2
T 〉 = 0.045 fm2. Then the nuclear attenuation factor takes

the form

SpA =
∫

d2rT W (rT ) SpA(rT ) = 1

1 + C
〈
r2
T

〉
TA

. (14)

Naively, one could expect SAA(b) = S2
pA. Such a factor-

ization is valid only in the dipole representation for a given
dipole size, SAA(rT ) = S2

pA(rT ) = exp(−2 × Cr2
T TA). Factor

2 is introduced because the dipole is simultaneously attenuated
by both nuclei. Now we can repeat our averaging over dipole
size and compare the result (left) with the conventional recipe
(right):

SAA = 1

1 + 2 C
〈
r2
T

〉
TA

⇔ 1[
1 + C

〈
r2
T

〉
TA

]2 . (15)

We see that the two absorption factors are quite different,
especially for C〈r2

T 〉TA ∼> 1. The source of the difference is
color filtering. Namely, the mean transverse size of a c̄c wave
packet propagating through a nucleus is getting smaller, since
large-size dipoles are filtered out (absorbed) with a larger
probability [17,18]. Such a dipole with a reduced mean size
penetrates more easily through the second colliding nucleus,
compared with a pA collision. The mutual color filtering
makes both nuclei more transparent.

Now we are in a position to perform realistic calculations
for the nuclear suppression factor in AB collisions. Provided
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that the c̄c production occurs in the long coherence length
regime for both nuclei, the nuclear suppression factor at impact
parameter b reads

RAB(b) = 1

TAB(b)

∫
d2τ

TA(τ )TB((�b − �τ )

(	+
A − 	−

A) (	+
B − 	−

B )

× ln

[
(1 + 	−

A + 	+
B ) (1 + 	+

A + 	−
B )

(1 + 	+
A + 	+

B ) (1 + 	−
A + 	−

B )

]
. (16)

where

	+
A =

〈
r2
T

〉
2

C
(
EA

c̄c

)
TA(τ ), (17)

	−
A = 7

〈
r2
T

〉
32

C
(
EA

c̄c

)
TA(τ ), (18)

	+
B =

〈
r2
T

〉
2

C
(
EB

c̄c

)
TB(�b − �τ ), (19)

	−
B = 7

〈
r2
T

〉
32

C
(
EB

c̄c

)
TB(�b − �τ ), (20)

and E
A,B
c̄c are the energies of the c̄c in the rest frames of the

nuclei A and B, respectively. The result of Eq. (16) is plotted
as the upper solid curve in Fig. 5.

For comparison, the result of conventional calculations
assuming simple multiplication of the suppression factors
in the two nuclei is depicted by the dashed curve. We see
that the mutual color filtering makes the nuclei considerably
more transparent. This effect should be more prominent for
production of � ′ and χ .

With Eq. (16) we can trace the y dependence of RAA.
It turns out to be rather weak at the energy of the RHIC,
due to the approximate linearity of y dependence in pA

depicted in Fig. 2, which leads to a compensation of the
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FIG. 5. (Color online) Effects of double-color filtering. J/�

suppression by ISI effects in Au-Au collisions at
√

s = 200 GeV
as a function of b. The upper and bottom pairs of curves (solid
and dashed) correspond to y = 0 and energies

√
s = 200 GeV and

5.5 TeV, respectively. Solid and dashed curves present the results at
y = 0 including and excluding the effect of double-color filtering,
respectively. The dotted curve demonstrates rapidity dependence of
the ISI effects at RHIC. It is calculated at y = 2 and is to be compared
with the upper solid curve at y = 0.

nuclear effects in the colliding nuclei. However, at sufficiently
large y, say, y = 2, the condition of long coherence length
breaks down in one of the nuclei. Then the c̄c dipole size
is not frozen by Lorentz time delation, and the filtering in
this particular nucleus is not effective any more. In this case
the conventional multiplicative procedure is applicable, but
the suppression factor in one nucleus (high Ec̄c) should be
calculated differently, for a short tc regime. The result of such
calculation is plotted by the bottom solid curve in Fig. 3. We
see that the nuclear suppression at y = 2 is stronger than at
y = 0. This happens due to disappearance of the double-color
filtering effect.

B. Boosting the saturation scale in AA collisions

Another mechanism that violates the conventional multi-
plicative procedure for the transition from pA to AA collisions
is the mutual boosting of the saturation scale in the colliding
nuclei. It is controlled by the following reciprocity equations
[19]:

Q̃2
sB(xB) = 3π2

2
αs

(
Q̃2

sA+Q2
0

)
xBgN

(
xB, Q̃2

sA+Q2
0

)
TB, (21)

Q̃2
sA(xA) = 3π2

2
αs

(
Q̃2

sB+Q2
0

)
xAgN

(
xA, Q̃2

sB+Q2
0

)
TA, (22)

where we consider a collision of two rows of nucleons TA

and TB , and production of a heavy quark pair with fractional
momenta xA and xB relative to the colliding nucleons. In what
follows we consider heavy quarkonium production at forward
rapidities relative to the momentum direction of nucleus A,
which we call the beam. Correspondingly, the target nucleus
is B. The values of xA(B) in Eqs. (21) and (22) for charmonium
production with positive rapidity y are calculated as

xA(B) =
√

M2
J/� + 〈

p2
T

〉
√

s
e±y. (23)

The mean transverse momentum squared of J/� produced in
pp collisions at the energies of RHIC and LHC are 〈p2

T 〉 ≈
4 GeV2 and 7 GeV2, respectively.

The gluon distribution function gN (x,Q2) contains the
parameter Q0 needed to regularize the infrared behavior
adjusting the saturation momentum in a pA collision to the
known value [20]:

Q2
sA(b,EQ̄Q) = �∇2

rT
σdip(rT , EQ̄Q)|rT =0 TA(b)

= 2C(EQ̄Q) TA(b), (24)

where parameter C(EQ̄Q) introduced in Eq. (3) is well fixed
by HERA data. Solution of Eq. (24) leads to the infrared
cutoff parameter Q2

0 ≈ 1.7 GeV2, which is nearly independent
of energy.

Solution of Eqs. (21) and (22) shows that the modified
saturation scales Q̃2

sA(B) in AB collisions considerably exceed
the conventional scales (24) relevant for pA collisions. The
essential point of this consideration is that the boosted satura-
tion scale leads to an increase of the breakup cross section
of a dipole, because the saturation momentum is directly
related to the factor C(E) in the dipole cross section (24).
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FIG. 6. (Color online) The boosting factors KA(xA) (solid curves)
and KB (xB ) (dashed curves) defined in Eq. (26) and calculated with
the reciprocity equations (21) and (22) for

√
s = 5.5 TeV with xA(B)

defined in Eq. (23). Each pair of curves is marked by the rapidity for
which it is calculated.

Thus, the breakup cross section σdip(rT ) for a dipole propagat-
ing through the nucleus B modifies as

σdip(rT ) ⇒ σ̃ B
dip(rT ) = KA σdip(rT ), (25)

where

KA = Q̃2
sA

Q2
sA

. (26)

This boosting factor for the dipole absorption cross section in
the nucleus B is controlled by the boosted saturation scale of
the nucleus A, which implicitly depends on TA, TB , xA, and
xB in accordance with Eqs. (21) and (22). Correspondingly
the boosted breakup cross section of the c̄c dipole propagating
through the nucleus A is given by σ̃ A

dip(rT ) = KB σdip(rT ).
We calculated the factors KA and KB solving the reciprocity

equations (21) and (22) supplied with the MSTW2008 code
[21] for the gluon distributions. The results at

√
s = 5.5 TeV

are plotted in Fig. 6 as a function of TA = TB (central AA

collision) for different rapidities of the produced charmonium.
Solid and dashed curves present KA and KB , respectively.

We see that the boosting factors are maximal at y = 0,
where KA ≡ KB . At forward rapidities xA rises, while xB

decreases. As a result, the boosting factors KA and KB remain
similar, and both are falling with rapidity. Eventually, at large
rapidity y = 6 the projectile xA becomes so large that the
shift of the scale does not lead to an increase of the gluons
density in A but makes it smaller [22]. Therefore the effect
of boosting turns into a suppression, i.e., the nucleus A in
this case becomes more transparent, rather than opaque, for
J/�. Similar calculations at

√
s = 200 GeV depicted in Fig. 7

demonstrate different behavior.
Surprisingly, while KB is falling with rapidity, as expected,

KA is rising. This rise of the boosting factor is related to a
steep drop at forward rapidities of the saturation momentum
in the projectile nucleus A, the denominator of Eq. (26). In
fact, the very existence of a saturation regime at such large xQ

is questionable.
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FIG. 7. (Color online) The same as in Fig. 6, but at
√

s = 200 GeV.

We see that the boosting effect significantly increases the
saturation scales in colliding heavy nuclei, especially at the
midrapiditiy and high energies. The rapidity dependence of
the boosting factor is more complicated and is related to
different variation with scale of the gluon distribution function
at different values of Bjorken x. It is worth remembering that
what is plotted in Figs. 6 and 7 are the ratios. The absolute
value of the saturation momentum in the nucleus B (A) is
steeply rising (falling) with rapidity.

The transparency of the nuclear medium for heavy-quark
dipoles in the case of nuclear collisions is different from what
is measured in pA collisions. The simplified prescription of
Refs. [2,10,16] for the transition pA to AA may be quite
incorrect.

In Fig. 8 we demonstrate the strength of the boosting effect
on the production rate of J/� in the central (b = 0) Au-Au

collision as a function of impact parameter τ .

10
-2

10
-1

1

0 2 4 6 8 10

RHIC

LHC

b=0

τ (fm)

R
A

A
(τ

)

FIG. 8. (Color online) Effect of the boosted saturation scale on
the nuclear ratio for J/� production in central (b = 0) Au-Au

collisions at y = 0 as a function of impact parameter τ . The upper
and bottom dashed curves correspond to

√
s = 200 GeV and 5.5 TeV,

respectively. They are calculated in the same way as the solid curves in
Fig. 5. The solid curves here are calculated with the boosted saturation
scale, which makes the nuclei more opaque for heavy dipoles.
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The dashed curves include the double-color filtering effect
but exclude the saturation scale boosting, which is added
to produce the solid curves. The solid curves include the
effect of boosted saturation scale. The upper and bottom
pairs of curves correspond to the energies of the RHIC
and LHC, respectively. We conclude that J/� should be
significantly stronger suppressed in AA collisions, more than
usually expected extrapolating from pA, and one should not
misinterpret this suppression as an anomalous effect related to
FSI with the dense medium. Notice that a stronger suppression
of J/� in the ISI stage of the collision compared to the one
used in Ref. [2] should result in an even smaller transport
coefficient of the dense medium extracted from RHIC data on
J/� production.

C. Boosted gluon shadowing

As we have already mentioned, in terms of the Fock
decomposition gluon shadowing corresponds to multiple
interactions of higher Fock states, containing gluons. One may
wonder if the double-color filtering effect can affect the amount
of gluon shadowing in nuclear collisions. The answer is no.
The lifetime of such a fluctuation produced by a nucleon in
the nucleus A may be sufficiently long only relative to the
nucleus B but is very short relative to the parent nucleus
A. Therefore no gluonic fluctuations undergo double-color
filtering. In terms of Gribov inelastic shadowing this means
that the diffractive excitation of the nucleons of A propagate
through B independently of the excitations of B propagating
through A.

Thus, the gluon shadowing factors factorize in AB

collisions:

RAB
g (�b, �τ ) = RA

g (τ ) RB
g (�b − �τ ). (27)

Even if gluon shadowing for heavy quarkonium production
in pA collision is known, say, from analyses of DIS data [15],
it is integrated over the impact parameter, while in Eq. (27)
one needs to know its impact parameter dependence in order to
predict gluon shadowing in heavy ion collisions. This problem
is already a serious obstacle for extrapolation from pA to AA.

Aside from the ad hoc parametrizations of the b depen-
dence existing in the literature, one has to rely on a fully
developed theoretical model for gluon shadowing to predict
its b dependence. Unfortunately, no satisfactory theoretical
description, which would work at all kinematic regimes,
has been developed so far. The most rigorous quantum-
mechanical treatment of gluon shadowing within the path-
integral technique [12,23] is the lowest order calculation,
which might be a reasonable approximation only for light
nuclei, or for the onset of shadowing. Contribution of higher
Fock components is still a challenge. This problem has been
solved only in the limit of long coherence lengths for all
radiated gluons, in the form known as the Balitsky-Kovchegov
equation (BK) [24,25]. Numerical solution of this equation
is quite complicated and includes a lot of modeling [26]. A
simpler equation, which employs only a modeled shape of the
saturated gluon distribution, was derived in Ref. [22]. It leads

to a gluon distribution in nuclei, which satisfies the unitarity
bound [27], and is quite similar to the numerical solutions of
the BK equation. The equation reads [22]

Rg = 1 − R2
g n2

0 neff

(1 + Rg n0)2(1 + neff)
, (28)

where

n0(Ec̄c, b) = 9 C(Ec̄c)

2 Q2
qN (Ec̄c)

TA(b),

(29)
neff(Ec̄c, b) = 9

4
C(Ec̄c) r2

0 TA(b).

The energy-dependent factor C(Ec̄c) was introduced in Eq. (3).
The mean size of a gluonic dipole, r0 ≈ 0.3 fm, is dictated by
data [12,13]. We rely on the saturated shape of the dipole-
nucleon cross section with the saturation scale QqN (Ec̄c) =
0.19 GeV × (Ec̄c/1GeV )0.14, fitted to DIS data [12,22]. One
can switch from energy to Bjorken x dependence in these
equations, using the relation (23) and replacing s ⇒ 2Ec̄cmN .

Notice that Eq. (28) does not contain any hard scale, but only
a semihard one controlled by r0 [13]. Therefore its solution
should be treated as the starting gluon distribution at the
semihard scale (Q2 ≈ 4/r2

0 ≈ Q)2, where Q0 was introduced
in Eqs. (21) and (22). Shadowing for heavy quarkonium
production should be Dokshitzer-Gribov-Lipatov-Altarelli-
Parisi (DGLAP) evolved up to an appropriate hard scale.

The effect of boosted saturation scale leads to a modification
of the factor C(Ec̄c), which is different for nuclei A and B:

C(Ec̄c) ⇒ C̃A(B)(Ec̄c) = KA(B) C(Ec̄c). (30)

Solving Eq. (28) with such a boosted saturation scale, one
arrives at a modified nuclear ratio for gluons in nuclei A and
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0 0.5 1 1.5 2 2.5 3
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TA (fm-2)

R
g

FIG. 9. Gluon nuclear ratio Rg as function of nuclear thickness
TA calculated with Eq. (28) at the semihard scale Q0. The dashed
curve presents gluon shadowing corresponding to hadron-nucleus
collisions. The solid curve includes the boosting effects specific
for central nucleus-nucleus collisions (TA = TB ). Shadowing is
calculated at the starting scale Q0 and should be evolved up to a
higher scale.
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B, R̃A(B)
g (Ec̄c, b), for which the factorized relation (27) can be

used:

R̃AB
g (�b, �τ ) = R̃A

g (τ ) R̃B
g (�b − �τ ). (31)

A numerical example for the boosting effect on gluon
shadowing is depicted in Fig. 9.

The dashed and solid curves show the solutions of Eq. (28)
without and with inclusion of the boosting effects, calculated
for J/� produced with y = 0 at

√
s = 5500 GeV. We see

that the boosting effect is considerable. As was mentioned,
shadowing is calculated at the starting scale Q0 and should be
evolved up to a proper higher scale.

IV. SUMMARY AND PROSPECTIVES

The dipole formalism based in the universal dipole cross
section well fitted to HERA data successfully describes the
propagation of heavy quark dipoles through cold nuclear
matter. Our parameter-free calculation presented in Fig. 2
agrees well with data from the RHIC for J/� production
in d-Au collisions. We do all calculations within the “frozen”
approximation, assuming that the dipole size does not fluctuate
during propagation through the nucleus. This condition is
satisfied provided that the coherence time is long, tc � RA,
which is well justified at the energies of the RHIC and LHC.

We identify the main source of the observed nuclear
suppression as a combined effect of breakup of the produced
c̄c dipole in nuclear medium and charm quark shadowing.
Although both are the high twist effects, their contribution
to the observed nuclear suppression considerably exceeds the
effect of leading twist gluon shadowing. The latter is expected
to be rather weak, basing on either theoretical predictions [12]
or the NLO analysis [15] of DIS data.

Even if the nuclear effects for heavy quarkonium production
are understood, the transition to AA collisions is rather
complicated. Several new phenomena, specific for nuclear

collisions, make such a transition model dependent. The first,
double-color filtering, makes the nuclei more transparent for
quark dipoles than in pA collisions. The second is the mutual
boosting of the saturation scales in the colliding nuclei, which
makes the nuclei more opaque for quark dipoles. Although
these two effects act in opposite directions, the latter is much
stronger, as can be seen in Fig. 8.

Another direct consequence of the increased saturation
scale in nuclear collisions is the boosting of gluon shadowing,
which violates the factorized relation, Eq. (27).

A direct way to access the saturation scale experimentally
is to measure transverse momentum broadening of charmonia
produced on nuclei. Then the boosting effect should show up as
an increase of broadening of J/� produced in AA compared
to pA collisions. Indeed, such an effect was clearly observed
in the NA60 and NA50 experiments at Elab = 158 GeV [28].
The broadening in nuclear collisions was found to be twice
as large as in pA measurements with the same path length
in the nuclear medium. Within the rather good statistical
and systematic accuracy, the effect is quite certain. The
magnitude of the observed boosting is larger than is predicted
by Eqs. (21) and (22) at this energy, so this problem needs
further study, and the data are to be confirmed by independent
measurements.

Although we considered here only the high-energy limit
of “frozen” dipoles, the pA to AA transition is not trivial at
medium high energies, say, at SPS, either [3]. This case will
be also investigated and published elsewhere.
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