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Symmetry energy effects on the mixed hadron-quark phase at high baryon density
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The phase transition of hadronic to quark matter at high baryon and isospin density is analyzed. Relativistic
mean-field models are used to describe hadronic matter, and the MIT bag model is adopted for quark matter.
The boundaries of the mixed phase and the related critical points for symmetric and asymmetric matter are
obtained. Due to the different symmetry term in the two phases, isospin effects appear to be rather significant.
With increasing isospin asymmetry the binodal transition line of the (T , ρB ) diagram is lowered to a region
accessible through heavy-ion collisions in the energy range of the new planned facilities (e.g., the FAIR/NICA
projects). Some observable effects are suggested, in particular an isospin distillation mechanism with a more
isospin asymmetric quark phase, to be seen in charged meson yield ratios, and an onset of quark number scaling
of the meson-baryon elliptic flows. The presented isospin effects on the mixed phase appear to be robust with
respect to even large variations of the poorly known symmetry term at high baryon density in the hadron phase.
The dependence of the results on a suitable treatment of isospin contributions in effective QCD Lagrangian
approaches, at the level of explicit isovector parts and/or quark condensates, is discussed.
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I. INTRODUCTION

Several suggestions are already present about the possibility
of interesting isospin effects on the transition to a mixed
hadron-quark phase at high baryon density [1–3]. This seems
to be a very appealing physics program for the new facilities
FAIR at GSI-Darmstadt [4] and NICA at JINR-Dubna [5],
where heavy-ion beams (even unstable, with large isospin
asymmetry) will be available with good intensities in the 1–30
A GeV energy region.

The weak point of those predictions is the lack of a reliable
equation of state (EoS) that can describe in a consistent way the
two phases, hadronic and deconfined, at high baryon density.
In particular none of the two-EoS models obviously can
reproduce continuous transitions, such as second-order phase
transitions or crossovers. However, they can be useful to check
if we can have a first-order transition at lower temperatures.
In the latter case, while we cannot localize the corresponding
critical end point, we can study with some confidence the
properties of the mixed-phase region if realistic effective
interactions in the two phases are used. Such discussion will
also lead to a strong motivation to work on more refined
effective theories for strong interacting matter. The aim of
our paper is to show our results, on the dependence on the
EoS choices in the two phases and on possible observables,
that would further stimulate the search in the field, in theory
as well as in experiment.

Isospin effects on the transition are ruled by the symmetry
term in the two phases. For the hadronic side in all the
two-EoS approaches, so far mostly applied to develop hybrid
models for neutron stars, a rather strong density dependence
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of the symmetry energy has been used [1–3,6–11]. This
point however is still open mainly due to the present lack
of good data for isospin effects on heavy-ion collisions at
intermediate energies, in particular on collective flows and
particle productions [12–17]. Here we extend our study also
to cases with a much softer hadronic symmetry term in order
to check the “robustness” of the expected isospin effects.

For the quark matter MIT bag [18], in Refs. [1–3,6–8], or
Nambu–Jona-Lasinio (NJL) [19,20], in Refs. [9–11], models
have been adopted, always without explicit isospin-dependent
contributions. Here we also mainly used standard MIT bag
models, but we also discuss the consequence of some isospin
effects in NJL approaches and possible indirect corrections
due to the color-pairing residual interaction [21].

We finally like to note that the isospin-dependence predic-
tions can also be used in the opposite way: If we see such
isospin effects on the sensitive observables suggested here we
can get more confidence on the reliability of the used equations
of state in the two phases.

This is the plan of the paper. In Sec. I we present a simple
motivation for a first-order transition with isospin effects. In
Sec. II the procedure to construct the “binodal surface” from
the Gibbs conditions is presented, with particular attention
to the physical interpretation of the observed end point.
Properties of the mixed phase are evaluated in Sec. III, using
different density-dependent symmetry terms for the hadron
sector. Section IV is devoted to the introduction of isospin
contributions in the quark effective EoS. Sensitive observables
in collisions of neutron-rich ions at intermediate energies are
suggested in Sec. V, with relative perspectives. Finally, we
present details of the effective hadron interactions used in
Appendix A and of the isospin-dependent extension of the
NJL model discussed in the paper in Appendix B.
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II. THE REASON FOR A FIRST-ORDER TRANSITION
WITH ISOSPIN EFFECTS

The main qualitative argument in favor of a first-order
hadron-quark transition at high density and low temperature,
with noticeable isospin effects, can be derived from Fig.1.
Here we compare typical equations of state for hadron
(nucleon) and quark matter, at zero temperature, for symmet-
ric [α ≡ (ρn − ρp)/ρB ≡ −ρ3/ρB = 0.0] and neutron matter
(α = 1.0), where ρn,p are the neutron and proton densities and
ρB = ρn + ρp is the total baryon density.

In this first simple calculation, a kind of “homework,” for
the hadron part we use a relativistic mean-field (RMF) EoS
( [12,22,23]) with nonlinear terms and an effective ρ-meson
coupling for the isovector part, largely used to study isospin
effects in relativistic heavy-ion collisions [3,12]. However, in
the paper we will probe several effective hadron interactions
to check the “robustness” of the observed symmetry energy
effects. In order to keep a smooth flow of the physics points
in the discussion, details about the adopted effective nucleon-
meson Lagrangians are presented in Appendix A.

The energy density and the pressure for the quark phase are
given by the MIT bag model [18] (two-flavor case) and read,
respectively,

ε = 3 × 2
∑

q=u,d

∫
d3k

(2π )3

√
k2 + m2

q(fq + f̄q) + B, (1)

P = 3 × 2

3

∑
q=u,d

∫
d3k

(2π )3

k2√
k2 + m2

q

(fq + f̄q) − B, (2)

where B denotes the bag constant (the bag pressure), taken
as a rather standard value from the hadron spectra (B =
85.7 MeV fm−3, with no density dependence), mq are the
quark masses (mu = md = 5.5 MeV), and fq and f̄q represent
the Fermi distribution functions for quarks and antiquarks. The
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FIG. 1. Zero-temperature EoS of symmetric neutron matter:
hadron (NLρ; solid lines) vs quark (MIT bag; dashed lines). αH,Q

represent the isospin asymmetry parameters of, respectively, hadron
and quark matter: αH,Q = 0, symmetric matter; αH,Q = 1, neutron
matter.

quark number density is given by

ρi = 〈q+
i qi〉 = 3 × 2

∫
d3k

(2π )3
(fi − f̄i), i = u, d. (3)

The transition to the more repulsive quark matter will
appear around the crossing points of the two equations of state
We see that such crossing for symmetric matter (αH = αQ =
0.0) is located at rather high density, ρB � 7ρ0, while for pure
neutron matter (αH = αQ = 1.0) it decreases to about 3ρ0. Of
course Fig. 1 represents just a simple energetic argument to
support the hadron-quark transition to occur at lower baryon
densities for more isospin asymmetric matter. In the rest of
the paper we will rigorously consider the case of a first-order
phase transition in the Gibbs frame for a system with two
conserved charges (baryon and isospin), in order to derive
more detailed results. Since the first-order phase transition
presents a jump in energy, we can expect the mixed phase to
start at densities even before the crossing points of Fig. 1.
The lower boundary then can be predicted at relatively
low baryon densities for asymmetric matter, likely reached
in relativistic heavy-ion collisions. Moreover, this point is
certainly of interest for the structure of the crust and the
inner core of neutron stars (e.g., see Refs. [6–11] and
the review [24]). We remark that in Ref. [6] similar results
are obtained with rather different hadronic approaches, the
RMF and the nonrelativistic Brueckner-Hartree-Fock (BHF)
theory.

We finally note that these conclusions are rather indepen-
dent of the isoscalar part of the used hadron EoS at high density,
which is chosen to be rather soft, in agreement with collective
flow and kaon production data [25,26].

In the bag model used no residual gluon interactions, the αs

strong coupling parameter, are included. We remark that this in
fact would enhance the above effect, in the direction of overall
lower transition densities, since it represents an attractive
correction for a fixed B constant (see [27]). A reduction of the
bag constant with increasing baryon density, as suggested by
various models (see Ref. [6]) will also go in the direction of an
“earlier” (lower density) transition, as already seen in Ref. [2].
At variance, the presence of explicit isovector contributions in
the quark phase could play an important role, as shown in the
following also for other isospin properties inside the mixed
phase.

III. ISOSPIN EFFECTS ON THE MIXED PHASE

We can study in detail the isospin dependence of the
transition densities [1–3]. The structure of the mixed phase is
obtained by imposing the Gibbs conditions [28] for chemical
potentials and pressure and by requiring the conservation of
the total baryon and isospin densities:

µH
B

(
ρH

B , ρH
3 , T

) = µ
Q
B

(
ρ

Q
B , ρ

Q
3 , T

)
,

µH
3

(
ρH

B , ρH
3 , T

) = µ
Q
3

(
ρ

Q
B , ρ

Q
3 , T

)
,

P H (T )
(
ρH

B , ρH
3 , T

) = P Q(T )
(
ρ

Q
B , ρ

Q
3 , T

)
, (4)

ρB = (1 − χ )ρH
B + χρ

Q
B ,

ρ3 = (1 − χ )ρH
3 + χρ

Q
3 ,
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where χ is the fraction of quark matter in the mixed phase and
T is the temperature.

The consistent definitions for the densities and chemical
potentials in the two phases are given by

ρH
B = ρp + ρn, ρH

3 = ρp − ρn,
(5)

µH
B = µp + µn

2
, µH

3 = µp − µn

2
for the hadron phase and

ρ
Q
B = 1

3 (ρu + ρd ), ρ
Q
3 = ρu − ρd,

µ
Q
B = 3

2 (µu + µd ), µ
Q
3 = µu − µd

2
(6)

for the quark phase.
The related asymmetry parameters are

αH ≡ −ρH
3

ρH
B

= ρn − ρp

ρn + ρp

, αQ ≡ −ρ
Q
3

ρ
Q
B

= 3
ρd − ρu

ρd + ρu

. (7)

Nucleon and quark chemical potentials, as well as the pressures
in the two phases, are directly derived from the respective
equations of state.

In this way we get the binodal surface which gives the
phase coexistence region in (T , ρB, ρ3) space. For a fixed
value of the total asymmetry αT = −ρ3/ρB we will study
the boundaries of the mixed-phase region in the (T , ρB ) plane.
Since in general the charge chemical potential is related to
the symmetry term of the EoS [12], µ3 = 2Esym(ρB) ρ3

ρB
, we

expect critical and transition densities to be rather sensitive to
the isovector channel in the two phases.

In the hadron sector we will use nonlinear relativistic mean-
field models [3,12,23], with different structure of the isovector
part, already tested to describe the isospin dependence of
collective flows and meson production for heavy-ion collisions
at intermediate energies [29–31]. We will refer to these
different iso-Lagrangians as (i) NL, where no isovector meson
is included and the symmetry term is only given by the kinetic
Fermi contribution, (ii) NLρ when the interaction contribution
of an isovector-vector meson is considered, and (iii) NLρδ

where also the contribution of an isovector-scalar meson is
accounted for. See details in Appendix A1 and Refs. [3,12,23].

We will look at the effect on the hadron-quark transition of
the different stiffnesses of the symmetry term at high baryon
densities in the different parametrizations. As clearly shown in
Appendix A1, where a rather transparent form for the density
dependence of the symmetry energy in RMF approaches is
discussed, the potential part of the symmetry term will be
proportional to the baryon density in the NLρ choice and will
be even stiffer in the NLρδ case.

We are well aware that there are several uncertainties on
the stiffness of the symmetry energy at high baryon density,
mainly due to the lack of suitable data (see the reviews [12,14]).
Therefore in the next section we will also show results
with effective hadron interactions based on RMF models
with density-dependent meson-nucleon couplings (density-
dependent relativistic hadron forces; Appendix A2) that
present much softer symmetry terms at high baryon density. In
this way we can directly check the “stability” of the observed
isospin effects on the mixed phase.

As already mentioned, in the quark phase we use the MIT
bag model, where the symmetry term is given only by the Fermi
contribution. The bag parameter B is fixed for each baryon
density to a constant, rather standard, value B1/4 = 160 MeV,
corresponding to a bag pressure of 85.7 MeV fm−3.

In general for each effective interactive Lagrangian we can
simulate the solution of the highly nonlinear system of Eqs. (4)
via an iterative minimization procedure, in order to determine
the binodal boundaries.

A relatively simple calculation can be performed at zero
temperature. The isospin effect (asymmetry dependence) on
the lower (χ = 0.0) and upper (χ = 1.0) transition densities
of the mixed phase are shown in Fig. 2 for various choices of the
hadron EoS. The effect of a larger repulsion of the symmetry
energy in the hadron sector, from NL to NLρ and to NLρδ, is
clearly evident on the lower boundary with a sharp decrease
of the transition density even at relatively low asymmetries.

Typical results for isospin effects on the whole binodal
“surface” are presented in Fig. 3 for symmetric and asymmetric
matter. For the hadron part we have started from an NLρ

effective Lagrangian very close to other widely used relativistic
effective models, e.g., see the GM3 model of Ref. [32] and the
NL3 interaction of Ring and collaborators [33], which has also
given good nuclear structure results, even for exotic nuclei.

As expected, the lower boundary of the mixed phase is
mostly affected by isospin effects. In spite of the relatively
small total asymmetry, α = 0.2, we clearly observe in Fig. 3 a
shift to the left of the first transition boundary, in particular at
low temperature.

In the symmetric matter case the mixed phase is evaluated
from the simpler Maxwell conditions. The results are shown
in Fig. 4 for the same hadron and quark equations of state
as in Fig. 3 at temperatures T = 0, 50, and 80 MeV. The
equal chemical potential densities (intersection of the dotted
line in the lower panel) must correspond to the equal pressure
densities of the upper panels. We see that at T = 0 MeV the
mixed phase is nicely centered around ρ/ρ0 � 7.0, exactly
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FIG. 3. (Color online) Binodal surface for symmetric (α = 0.0)
and asymmetric (α = 0.2) matter. Hadron EoS from NLρ interaction.
Quark EoS: MIT bag model with B1/4 = 160 MeV.

the α = 0 crossing point of Fig. 1, confirming our energetic
argument about the transition location. The two boundaries
are precisely at ρH/ρ0 = 6.2 and ρQ/ρ0 = 8.3 at a chemical
potential µ = 1597.0 MeV.

From Fig. 4 we also see that the size of the mixed phase is
shrinking with temperature; it is very narrow at T = 50 MeV
and finally at T = 80 MeV we no longer can have a first-order
transition. In fact a kind of critical end point is appearing at
Tc � 58 MeV, ρc/ρ0 � 3.8, Pc � 120 MeV/ fm3, and µc �
1090 MeV (see also Fig. 3). The result is dependent on the
choice of the bag constant, with an increase of the critical
temperature with the bag value due to the reduction of the
pressure in the quark phase, while the chemical potentials are
not affected.
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NLρ interaction; quark EoS (gray curves) from MIT bag model with
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FIG. 5. Phase transition line in the (T , µ) plane for symmetric
(α = 0.0) matter. Hadron and quark equations of state are as in Fig. 4.

However, as already noted in Sec. I, within the present
two-EoS approach it is impossible to discuss the nature of
the transition around this apparent critical end point. The fact
that we reach a point with equal densities in the two phases
is not implying the onset of a continuous transition. Indeed
from the coexistence conditions of a first-order transition we
can have a point with equal densities but with a gap in the
entropy densities. Since we can follow the transition in the
(T ,µ) plane, such a point will correspond to a zero of dT /dµ,
from the Clausius-Clapeyron equation.

We have checked this possibility for the transition discussed
before (see Fig. 4) of symmetric matter. In Fig. 5 we present
the calculated points of the phase diagram in the (T ,µ) plane.
We see that approaching the end point of the binodal surface
we come very close to the dT /dµ = 0 condition and so we
cannot deduce that we have reached a real critical end point of
the first-order transition.

We note that this result is not implying that the properties
of the mixed phase at lower temperatures discussed within
two-EoS models are meaningless. We can trust them if we are
using “realistic” effective interactions in the two phases. In
fact, this is the main point raised here, where the focus is on
the isospin dependence of the mixed phase at low temperature,
which can be probed in heavy-ion collisions at intermediate
energies.

IV. INSIDE THE MIXED PHASE OF ASYMMETRIC
MATTER

For α = 0.2 asymmetric matter, in Figs. 6 and 7 we show
also the (T , ρB) curves inside the mixed phase corresponding
to 20% and 50% presence of the quark component (χ =
0.2, 0.5), evaluated respectively with the two choices, NLρ

and NLρδ, of the symmetry interaction in the hadron sector.
We note, as also expected from Fig. 2, that in the more
repulsive NLρδ case the lower boundary is notably shifted
to the left. However, this effect is not so evident for the curve
corresponding to a 20% quark concentration, and it is almost
absent for the 50% case. The conclusion seems to be that for a
stiffer symmetry term in a heavy-ion collision at intermediate
energies during the compression stage we can have a greater
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EoS: NLρ effective interaction.

chance of probing the mixed phase, although in a region with
small weight of the quark component.

In fact, from the solution of the system (4) we get the
baryon densities ρH

B , ρ
Q
B in the two phases for any χ value.

In Figs. 8 and 9 we present the results for the same weights
(20% and 50%) of the quark phase of the previous figures. The
quark phase appears always with larger baryon density, even
for the lowest value of the concentration.

Can we expect some signatures related to the subsequent
hadronization in the following expansion?

An interesting possibility comes from the study of the
asymmetry αQ in the quark phase. In fact, since the symmetry
energy is rather different in the two phases we can expect
an isospin distillation (or fractionation), very similar to the
one observed in liquid-gas transition in dilute nuclear matter
[12,34,35], this time with the larger isospin content in the
higher density quark phase.
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FIG. 7. Same as in Fig. 6, but for the NLρδ effective interaction
in the hadron sector.
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(T , ρH
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B ) curves for various quark concentrations in the mixed
phase. Quark EoS: MIT bag model with B1/4 = 160 MeV; hadron
EoS: NLρ effective interaction.

In Fig. 10 we show the asymmetry αQ in the quark phase
as a function of the quark concentration χ for the case with
global asymmetry α = 0.2 (zero temperature). The calculation
is performed with the two choices of the symmetry term
in the hadron sector. We see an impressive increase of the
quark asymmetry when we approach the lower boundary
of the mixed phase, even to values larger than one, likely
just for numerical accuracy.1 Of course the quark asymmetry
recovers the global value 0.2 at the upper boundary χ = 1.
A simple algebraic calculation allows us to evaluate the
corresponding asymmetries of the hadron phase. In fact, from
charge conservation we have that for any χ mixture the global
asymmetry α is given by

α ≡ − ρ3

ρB

= (1 − χ )αH

(1 − χ ) + χ
ρ

Q
B

ρH
B

+ χαQ

(1 − χ ) ρH
B

ρ
Q
B

+ χ
. (8)

For any χ , from the calculated αQ of Fig. 10 and
the ρH

B and ρ
Q
B values of Figs. 8 and 9, we can get the

correspondent asymmetry of the hadron phase αH . For a 20%
quark concentration we have an αQ/αH ratio of around 5
for NLρ and around 20 for NLρδ, being more repulsive in
the isovector channel. It is also interesting to compare the
isospin content N/Z of the high-density region expected from
transport simulations without the hadron-quark transition and

1In principle there is nothing wrong with αQ > 1 evaluations
(although we note that for pure neutron matter the quark phase
asymmetry should be 1, since ρd = 2ρu). Indeed for low χ values,
χ < 0.1 (very small quark concentrations), we can get αQ values
slightly larger than 1. However, we are cautious about these results
since we can also expect some numerical problems. In fact, for very
small χ values the weight of the αQ contribution in the minimization
procedure is not expected to be too relevant, as we can clearly see
from Eq. (8). In any case the important point is that this is not affecting
the general discussion about the isospin distillation.

014911-5



DI TORO, LIU, GRECO, BARAN, COLONNA, AND PLUMARI PHYSICAL REVIEW C 83, 014911 (2011)

α α

χ
χ α
χ α

ρδ

T
 (

M
eV

)

ρ/ρ

FIG. 9. Same as in Fig. 8, but for the NLρδ effective interaction
in the hadron sector.

the effective N/Z of the quark phase in a 20% concentration.
In the case of Au + Au (initial N/Z = 1.5) central collisions
at 1 A GeV in pure hadronic simulations we get in the high-
density phase a reduced N/Z ∼ 1.2–1.25 (respectively, with
NLρδ-NLρ interactions) due to fast neutron emission [30,31].
The corresponding isospin content of the quark phases is
much larger, N/Z = 3.0 for NLρ and N/Z = 5.7 for NLρδ.
This is the neutron trapping effect discussed in Sec. V. We
would expect a signal of such large asymmetries, coupled to
a larger baryon density in the quark phase, in the subsequent
hadronization.

We finally remark that at higher temperature and smaller
baryon chemical potential (ultrarelativistic collisions) the
isospin effects discussed here are going to vanish [36], even if
other physics can enter the game and charge asymmetry effects
are predicted also at µB = 0 and T � 170 MeV [37,38].
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FIG. 10. Quark asymmetry in the mixed phase vs the quark
concentration for asymmetric matter with T = 0 and α = 0.2.
NLρ and NLρδ effective hadron interactions are considered. The
corresponding results with density-dependent couplings are also
shown. Quark EoS: MIT bag model with B1/4 = 160 MeV.
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FIG. 11. Density dependence of the symmetry energy for the
RMF hadron effective models used. NLρ and NLρδ represent
the nonlinear effective hadron interactions with constant couplings.
The corresponding results with density-dependent couplings are also
shown.

In order to account for the the present uncertainties on
our knowledge of the symmetry term of the hadron EoS at
high baryon density (see also [16]) we have performed a new
calculation using a RMF hadron interaction which gives a
much softer behavior of the symmetry energy at high densities.
In this way we can check the “robustness” of the expected
isospin effects on the mixed phase discussed before. We use a
density-dependent relativistic hadron (DDRH) field approach,
where an explicit density dependence of the meson-nucleon
couplings is introduced [39–41] (see details in Appendix A2).
As clearly shown in Fig. 11, the main difference with respect
to the previously presented results is that the symmetry energy
is now less repulsive at high density. This is because, following
some indications from Dirac-Brueckner calculations [42,43],

FIG. 12. Zero-temperature EoS of symmetric neutron matter:
hadron (DDRHρ; solid lines) vs quark (MIT bag; dashed lines).
αH,Q represent the isospin asymmetry parameters of, respectively,
the hadron and quark matter: αH,Q = 0, symmetric matter; αH,Q = 1,
neutron matter.
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FIG. 13. Binodal surface for symmetric (α = 0.0) and asymmet-
ric (α = 0.2) matter. Hadron EoS from DDRH interactions. Quark
EoS: MIT bag model with B1/4 = 160 MeV.

the isovector-meson couplings in the DDRHρ and DDRHρδ

cases show an increase for the attractive δ field and a decrease
for the repulsive ρ field (see Fig. 14 in Appendix A2).

Moreover, interesting rearrangement terms are now present
in the pressure and in the baryon chemical potentials, propor-
tional to the density slopes of the couplings (see Appendix A2)
and so particularly important at high densities, as also shown
in neutron star applications [44].

We present first some results on the shift to lower densities
of the onset of the mixed phase with increasing isospin
asymmetry. In Fig. 12 we have the result with DDRHρ

supporting the crossing argument of Fig. 1. Figure 13 shows
in more detail the shift to the left of the lower boundaries.
The curves should be compared to the corresponding lines
of the NL constant-coupling model: DDRH to the solid lines
of Fig. 3 (NL, α = 0.0), DDRHρ to the solid lines of Fig. 6
(NLρ, α = 0.2), and finally DDRHρδ to the solid lines of
Fig. 7 (NLρδ, α = 0.2). We see that the isospin effects of the
hadron-quark transition are still present, although with some
reduction.

Finally, the new isospin distillation effects are shown as the
DDRH results added in Fig. 10, about the isospin asymmetry
in the quark phase for different quark concentrations. We note
that for 20%–30% quark components we still see a noticeable
increase of the isospin asymmetry.

We can conclude that the revealed isospin asymmetry
effects on the hadron-quark mixed phase at high baryon density
appear to be rather robust’ with respect to relatively large
variations of the stiffness of the symmetry term.

V. ISOSPIN IN EFFECTIVE QUARK MODELS

All these results will also be sensitive to the explicit inclu-
sion of isovector interactions in effective nonperturbative QCD
models at high baryon chemical potentials. Unfortunately, few
attempts have been worked out for two main reasons: (i) the
difficulties of lattice-QCD calculations at high baryon densities
and (ii) the main interest on the QGP phase transition at high

temperature and small baryon chemical potentials, as probed in
the expanding fireball of ultrarelativistic heavy-ion collisions.
A first approach can be supplied by a two-flavor NJL model
[19], which in fact describes the chiral restoration but not
the deconfinement dynamics. The isospin asymmetry can be
included in a flavor-mixing picture [20,45], corresponding to
different couplings to the (u, d) quark-antiquark condensates.
As a consequence we can have now a dependence of the
constituent mass of a given flavor to both quark condensates.
We devote Appendix B to a detailed study of these isospin
effects in the NJL chiral dynamics.

Due to the scalar nature of the interacting part of the
corresponding Lagrangians only the quark effective mass
dynamics will be affected. In the “realistic” small-mixing case
(see also [45,46]), we get definite M∗

u > M∗
d splitting at high

baryon density (before the chiral restoration).
Taken together, these results can indicate a more funda-

mental confirmation of the m∗
p > m∗

n splitting in the hadron
phase, as suggested by the effective QHD model with the
isovector scalar δ coupling (see [12,23]). However, such
isospin mixing effect results in a very small variation of the
symmetry energy in the quark phase, related only to the Fermi
kinetic contribution. Moreover, recall that confinement is still
missing in this NJL mean-field approach. In any case there
are extensive suggestions about a favored chiral symmetry
restoration in systems with large neutron excess [48].

More generally, starting from the QCD Lagrangian one can
arrive to an effective color current-current interaction where
an expansion in various components can provide isovector
contributions, [49].

In this respect we remark on another interesting indirect
isospin effect, i.e., not directly coming from isovector terms in
the effective Lagrangian, but related to the presence of quark
condensates due to the attractive gluon interaction. We note
that just a color-pairing mechanism in the two-flavor system
(the 2SC phase [50]) would imply a stiffer symmetry energy
in the quark EoS since we have a larger attraction when the
densities of up and down quarks are equal. An initial study of
the high-density hadron-quark transition including such gluon
correlations in the bag model has been presented very recently
[21]. Now the symmetry energy difference between hadron and
quark phases is partially reduced, at least at low temperatures,
and consequently also the isospin effects discussed in detail in
this work will be weaker, although still present. An interesting
point is that in any case the quark phase is more bound due
to the attractive gluon contribution. Hence the transition to the
mixed phase will still appear at relatively low baryon densities,
now for an “isoscalar” mechanism, within the reach of “low-
energy” heavy-ion collisions, i.e., in the range of few A GeV.
As an intuitive picture we can refer again to Fig. 1. Essentially
the difference between the αQ = 0.0 and αQ = 1 curves is
increasing but meanwhile both are decreasing.

With increasing temperature the color pairing effect will
be in general reduced, as confirmed in [51] in an extended
NJL calculation, and so isospin effects, as discussed before,
will be more relevant. All this is naturally related to the
chosen value of the superconducting gap, opening new
stimulating perspectives. In this sense new experiments on
mixed phase properties observed with isospin asymmetric
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heavy-ion collisions, as suggested in the final section, will
be extremely important.

VI. PERSPECTIVES AND SUGGESTED OBSERVABLES

Based on the qualitative argument of Sec. I and on more
detailed calculations in a first-order phase transition scheme,
we have predicted rather robust isospin effects on the hadron-
quark transition at high baryon densities: these effects do not
depend on details of the EoS parametrizations in the hadron
and quark phases.

Our results seem to indicate a specific region where
the onset of the mixed phase should be mainly located:
2 < ρB/ρ0 < 4, T � 50–60 MeV, for realistic asymmetries
α ∼ 0.2–0.3. A key question is whether such a region of phase
space can be explored by means of heavy-ion collisions. In
Refs. [2,3] it is shown that even collisions of stable nuclei
at intermediate energies (E/A ∼ 1–2 GeV) make available
the pertinent (T , ρB, α) region where the phase transition is
expected to occur.

In this respect we can refer to the reaction 238U + 238U
(average isospin asymmetry α = 0.22) at 1 A GeV that has
been investigated in Ref. [2], using a consistent relativistic
mean-field approach with the same interactions, for a semi-
central impact parameter b = 7 fm, chosen just to increase
the neutron excess in the interacting region. The evolution of
momentum distribution and baryon and isospin densities in
a space cell located in the center of mass of the system has
also been studied. After about 10 fm/c a local equilibration
is achieved still in the compressed phase, before the fast
expansion. We have a unique Fermi distribution and from
a simple fit the “local” temperature can be evaluated. A
rather exotic nuclear matter is formed in a transient time of
the order of 10–20 fm/c, with baryon density around 3–4ρ0,
temperature 50–60 MeV, and isospin asymmetry between 0.2
and 0.3, likely inside the estimated mixed phase region.

Of course a relatively higher beam energy will allow
entrance more deeply into the mixed phase. Such energies
will however be available in the near future. In particular we
notice that high-intensity 238U beams in this energy range
would be delivered in the first stage of the FAIR facility [4,52]
and also at JINR-Dubna in the Nuclotron first step of the NICA
project [36].

Which are the observable effects to look at if we enter
and/or cross the mixed phase?

As already stressed, a first expectation will be the isospin
distillation effect, a kind of neutron trapping in the quark
phase, supported by statistical fluctuations [2] as well as by a
symmetry energy difference in the two phases, as discussed in
Sec. III. In fact, while in pure hadron matter (neutron-rich) at
high density we have a large neutron potential repulsion (in
both NLρ and NLρδ as well as in the corresponding DDRH
cases), in the quark phase the d quarks see a smaller symmetry
repulsion essentially only due to the kinetic contribution
from the Fermi gas. As a consequence, while in a pure
hadronic phase neutrons are quickly emitted or “transformed”
in protons by inelastic collisions [31], when the mixed phase
starts forming, neutrons are kept in the interacting system,
in the quark phase, where they can even thermalize, up

to the subsequent hadronization in the expansion stage [3].
Observables related to such neutron “trapping” could be the
following:

(i) an inversion in the trend of emission of fast neutron-rich
clusters with increasing beam energy, to be seen in the
n/p and3H/3He ratios at high kinetic energies;

(ii) an enhancement of the production of isospin-rich
nucleon resonances and subsequent decays, which can
be evaluated via equilibrium statistical approaches [53];
and

(iii) an increase of π−/π+ and K0/K+ yield ratios for
mesons coming from high-density regions, to be
selected via large transverse momenta, corresponding
to a large radial flow.

If such kinetic selection of particles from the mixed phase
can really be successful other potential signatures would also
become available. One is related to the general softening of
the matter, due to the contribution of more degrees of freedom
that should show up in the damping of collective flows [54].

Azimuthal distributions (elliptic flows) will be particularly
affected since particles mostly retain their high transverse
momenta, escaping along directions orthogonal to the reaction
plane without suffering much rescattering. Thus a further
signature could be the observation, for the selected particles,
of the onset of a quark-number scaling of the elliptic flow: a
property of hadronization by quark coalescence that has been
predicted and observed at RHIC energies, i.e., for the transition
at µB = 0 [55].

We note that all these results, on the binodal boundaries of
the mixed phase and on the isospin distillation, are sensitive
to the symmetry term in the hadron sector, although the main
isospin effects are present for all the parametrizations of the
isovector interaction. At variance, for the quark sector the lack
of explicit isovector terms could strongly affect the location
of the phase transition in asymmetric matter and the related
expected observables.

In conclusion the aim of this work is twofold:

(i) to stimulate new experiments on isospin effects in
heavy-ion collisions at intermediate energies (in a few
A GeV range) with attention to the isospin content of
produced particles and to elliptic flow properties, in
particular for high-pt selections, and

(ii) to stimulate more refined models of effective La-
grangians for nonperturbative QCD, where isovector
channels are consistently accounted for and/or gluon
correlations, leading to diquark condensates, can induce
symmetry energy effects.
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APPENDIX A: EQUATION OF STATE FOR
HADRONIC MATTER

1. Nonlinear relativistic mean-field model
with constant couplings

A Lagrangian density with “minimal” meson channels and
nonlinear terms is used. The nuclear interaction is mediated
by two isoscalar, the scalar σ and the vector ω, and two
isovector, the scalar δ and the vector ρ, mesons. Nonlinear
terms are considered only for the σ contribution to account
for the correct compressibility around saturation. Constant
nucleon-meson couplings are used, chosen to reproduce the
saturation properties and to represent a reasonable average
of the density dependence predicted by relativistic Dirac-
Brueckner-Hartree-Fock (DBHF) calculations [42,43] (see
details in Refs. [12,23]):

L = ψ̄[iγµ∂µ − (M − gσσ − gδ �τ · �δ) − gωγµωµ

−gργ
µ�τ · �bµ]ψ + 1

2

(
∂µσ∂µσ − m2

σ σ 2
) − U (σ )

+ 1
2m2

ωωµωµ + 1
2m2

ρ
�bµ · �bµ + 1

2

(
∂µ

�δ · ∂µ�δ − m2
δ
�δ2
)

− 1
4FµνF

µν − 1
4

�Gµν
�Gµν, (A1)

where Fµν ≡ ∂µων − ∂νωµ, �Gµν ≡ ∂µ
�bν − ∂ν

�bµ, and the
U (σ ) is the nonlinear potential of the σ meson: U (σ ) =
1
3aσ 3 + 1

4bσ 4.
The EoS for nuclear matter at finite temperature in the

mean-field approximation (RMF) is given by the energy
density

ε = 2
∑
i=n,p

∫
d3k

(2π )3
E∗

i (k)[fi(k) + f̄i(k)] + 1

2
m2

σ σ 2 + U (σ )

+ 1

2

g2
ω

m2
ω

ρ2
B + 1

2

g2
ρ

m2
ρ

ρ2
3 + 1

2

g2
δ

m2
δ

ρ2
s3 (A2)

and pressure

p = 2

3

∑
i=n,p

∫
d3k

(2π )3

k2

E∗
i (k)

[fi(k) + f̄i(k)] − 1

2
m2

σφ2 − U (φ)

+ 1

2

g2
ω

m2
ω

ρ2
B + 1

2

g2
ρ

m2
ρ

ρ2
3 + 1

2

g2
δ

m2
δ

ρ2
s3, (A3)

where E∗
i = √

k2 + M∗2
i . The nucleon effective masses are

defined as

M∗
i = M − gσσ ∓ gδδ3 (− for protons and + for neutrons).

(A4)

The field equations in the RMF approach are

σ = − a

m2
σ

σ 2 − b

m2
σ

σ 3 + gσ

m2
σ

(ρsp + ρsn), (A5)

ω0 = gω

m2
ω

ρ, (A6)

b0 = gρ

m2
ρ

ρ3, (A7)

δ3 = gδ

m2
δ

(ρsp − ρsn), (A8)

where the baryon density ρ ≡ ρH
B = ρp + ρn and ρH

3 = ρp −
ρn, and ρsp and ρsn are the scalar densities for the proton and
the neutron, respectively. The fi(k) and f̄i(k) in Eqs. (A2) and
(A3) are the fermion and antifermion distribution functions for
protons and neutrons (i = p, n):

fi(k) = 1

1 + exp{(E∗
i (k) − µ∗

i )/T } , (A9)

f̄i(k) = 1

1 + exp{(E∗
i (k) + µ∗

i )/T } , (A10)

where the effective chemical potentials µ∗
i are determined by

the nucleon densities

ρi = 2
∫

d3k

(2π )3
[fi(k) − f̄i(k)], (A11)

while the scalar densities ρs,i , which give the coupling to the
scalar fields, are given by

ρs,i = 2
∫

d3k

(2π )3

M∗
i

E∗
i

[fi(k) + f̄i(k)]. (A12)

(Note the M∗
i /E∗

i quenching factor at high baryon density.)
Clearly at zero temperature the µ∗

i reduce to the in-medium
Fermi energies Ei

∗ = √
k2 + M∗2

i .
The µ∗

i are related to the chemical potentials µi = ∂ε/∂ρi

in terms of the vector meson mean fields by the equation

µi = µ∗
i + g2

ω

m2
ω

ρ ∓ g2
ρ

m2
ρ

ρ3

(i = n, p : − for neutrons and + for protons) (A13)

The baryon and isospin chemical potentials in the hadron phase
can be expressed in terms of the (p, n) ones as

µH
B = µp + µn

2
, µH

3 = µp − µn

2
. (A14)

In the presence of the coupling to the two isovector
ρ- and δ-meson fields, the expression for the symmetry energy
has a simple transparent form (see [12,23,56]):

Esym(ρ) = 1

6

k2
F

E∗
F

+ 1

2

[
fρ − fδ

(
M∗

E∗
F

)2]
ρ, (A15)

where M∗ = M − gσσ and E∗
F =

√
k2
F + M∗2.

Now we easily see that in the NLρδ choice we have a large
increase of the symmetry energy at high baryon densities.
The potential symmetry term is given by the combination
[fρ − fδ(M∗/E∗

F )2] of the repulsive vector ρ and attractive
scalar δ isovector couplings. Thus, when the δ coupling
is included we have to increase the ρ-meson coupling in
order to reproduce the same asymmetry parameter a4 at
saturation. The net effect will be a stiffer symmetry energy
at higher baryon densities due to the M∗/E∗

F quenching of
the attractive part. Of course this mechanism can be largely
modified if some density dependence is explicitly included in
the meson-nucleon couplings, as we will see in the DDRH
forces (Appendix A2), also used in this paper.

The coupling constants are fixed from good saturation
properties and from averaged Dirac-Brueckner-Hartree-Fock
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TABLE I. Parameter sets.

Parameter set NLρ NLρδ

fσ (fm2) 10.32 924 10.32 924
fω (fm2) 5.42 341 5.42 341
fρ (fm2) 0.94 999 3.1500
fδ (fm2) 0.000 2.500
A (fm−1) 0.03 302 0.03 302
B −0.00 483 −0.00 483

estimations (see the detailed discussions in Refs. [12,23,56]).
DBHF indications of a density dependence of the meson-
nucleon couplings at high baryon densities will be accounted
for in the DDRH forces of Sec. A2.

The isoscalar part of the EoS is chosen to be rather soft at
high densities (see [57]) in order to satisfy the experimental
constraints from collective flows and kaon production in
intermediate-energy heavy-ion collisions [25,26].

The coupling constants fi ≡ g2
i /m2

i , i = σ, ω, ρ, δ, and the
two parameters of the σ self-interacting terms, A ≡ a/g3

σ and
B ≡ b/g4

σ , are reported in Table I. The σ mass is fixed at
550 MeV. The corresponding properties of nuclear matter are
listed in Table II. Here the binding energy is defined as E/A =
ε/ρ − M .

We finally note that these Lagrangians have already been
used for flow [29], pion production [30], isospin tracer [58],
and kaon production [31] calculations for relativistic heavy-ion
collisions with an overall good agreement to data.

2. DDRH forces: Relativistic mean-field model with
density-dependent couplings

The “minimal” Lagrangian density has the same form
of Eq. (A1), now with density-dependent couplings and of
course without nonlinear terms [the U (σ ) potential]. Apart
from the effect of an explicit variation of the meson-nucleon
couplings with baryon density we will expect new terms
in the variational derivative of the Lagrangian density, the
rearrangement terms �R

µ that will affect the nucleon field
equation, as well as the energy-momentum tensor, and so the
EoS and the nucleon chemical potentials (see [39,40,44]).
The nucleon field equation in a mean-field approximation
(RMF) is

[
iγµ∂µ − (M − gσσ − gδτ3δ3) − gωγ 0ω0

− gργ
0τ3b0 + γ 0�R

0

]
ψ = 0 (A16)

TABLE II. Saturation properties of
nuclear matter.

ρ0 (fm−3) 0.16
E/A (MeV) −16.0
K (MeV) 240.0
Esym (MeV) 31.3
M∗/M 0.75

with

σ = gσ

m2
σ

ρs = gσ

m2
σ

(ρsp + ρsn),

ω0 = gω

m2
ω

〈ψ̄γ 0ψ〉 = gω

m2
ω

ρ = gω

m2
ω

(ρp + ρn),

b0 = gρ

m2
ρ

〈ψ̄γ 0τ3ψ〉 = gρ

m2
ρ

ρ3,

δ3 = gδ

m2
δ

〈ψ̄τ3ψ〉 = gδ

m2
δ

ρs3 (A17)

and the rearrangement term

�R
0 =

(
∂gσ

∂ρ

)
gσ

m2
σ

ρs +
(

∂gδ

∂ρ

)
gδ

m2
δ

ρ2
s3

−
(

∂gω

∂ρ

)
gω

m2
ω

ρ2 −
(

∂gρ

∂ρ

)
gρ

m2
ρ

ρ2
3 , (A18)

where ρ3 = ρp − ρn and ρs3 = ρsp − ρsn, with ρi , ρsi (i =
n, p) the nucleon and the scalar densities (see Sec. A1).

Neglecting the derivatives of meson fields, we have that the
energy-momentum tensor in RMF approximation is given by

Tµν = iψ̄γµ∂νψ + [
1
2m2

σ σ 2 − 1
2m2

ωωλω
λ

− 1
2m2

ρ
�bλ

�bλ + 1
2m2

δ
�δ2 + ψ̄�R

λ γ λψ
]
gµν. (A19)

The equation of state for nuclear matter at finite temperature
can be obtained from the thermodynamic potential. Using the
meson field equations (A17), the energy density has the form

ε =
∑
i=n,p

2
∫

d3k

(2π )3
E∗

i (k)[fi(k) + f̄i(k)] + 1

2

g2
σ

m2
σ

ρ2
s

+ 1

2

g2
ω

m2
ω

ρ2 + 1

2

g2
ρ

m2
ρ

ρ2
3 + 1

2

g2
δ

m2
δ

ρ2
s3, (A20)

and the pressure is

p =
∑
i=n,p

2

3

∫
d3k

(2π )3

k2

E∗
i (k)

⌈
fi(k) + f̄i(k)

⌉ − 1

2

g2
σ

m2
σ

ρ2
s

+ 1

2

g2
ω

m2
ω

ρ2 + 1

2

g2
ρ

m2
ρ

ρ2
3 − 1

2

g2
δ

m2
δ

ρ2
s3 − �R

o ρ. (A21)

The nucleon chemical potentials µi are given in terms of
the vector meson mean fields as in the constant-coupling case
[Eq. (A13)] apart the new rearrangement term

µi = µ∗
i + g2

ω

m2
ω

ρ ∓ g2
ρ

m2
ρ

ρ3 − �R
o

(i = n, p : − for neutrons and + for protons) (A22)

with the effective masses related to the scalar fields as before:

M∗
i = M − g2

σ

m2
σ

ρ2
s ∓ g2

δ

m2
δ

ρ2
s3

(i = n, p : + for neutrons and − for protons). (A23)

A general form of parametrization for the density depen-
dence of the meson-nucleon couplings can be given by

gi(ρ) = gi(ρ0)fi(x), for i = σ, ω, ρ, δ, (A24)
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TABLE III. DDRH parameters.

Model DDRH DDRHρ DDRHρδ

σ ω ρ ρ δ

mi (MeV) 550 783 770 770 980
gi (ρ0) 10.73 13.29 3.59 6.48 7.59
ai 1.37 1.40 0.095 0.095 0.02
bi 0.23 0.17 2.17 2.17 3.47
ci 0.41 0.34 0.05 0.05 −0.09
di 0.90 0.98 17.84 17.84 −9.81

with x = ρ/ρ0 and ρ0 the saturation density. As already
mentioned the fi(x) are chosen in order to reproduce the den-
sity dependence of the couplings deduced from microscopic
DBHF calculations. For symmetric matter this analysis has
been performed in Ref. [40] using for the isoscalar mesons a
functional of the form

fi(x) = ai

1 + bi(x + di)2

1 + ci(x + di)2
, for i = σ, ω, (A25)

In the case of asymmetric matter the following parametriza-
tion has been proposed for the isovector couplings [41]:

fi(x) = ai exp[−bi(x − 1)] − ci(x − di), for i = ρ, δ.

(A26)

In this way it easier to reproduce the important difference of
the δ and ρ couplings at high density.

The parametrization form and parameters of our DDRH
forces are taken from Ref. [40] for σ and ω mesons and from
Ref. [41] for ρ and δ mesons, respectively. All parameters
are listed in Table III. The density-dependent couplings as a
function of baryon density are displayed in Fig. 14.

The choice of the gi(ρ0) couplings at saturation is performed
in order to have the same normal nuclear matter properties of
the nonlinear RMF models (Table II) of Sec. A1. The EoS of
symmetric matter at high density is also not affected, as we

FIG. 14. Density dependence of the meson-nucleon couplings
in the DDRH interactions used. The gρ dotted line at the bottom
corresponds to the DDRHρ case, without the δ meson.

can see by comparing the binodal surfaces for zero asymmetry
of Figs. 3 and 13 (solid lines).

At variance, the different behaviors of the isovector
couplings at high density, increase of gδ and decrease of gρ ,
will contribute to get a much softer symmetry energy at high
baryon densities (Fig. 11). It is easy to check that in this way
in nucleonic models of neutron stars the proton fraction limit
for the onset of direct URCA processes is hardly reached (see
the analysis of Ref. [59]). For the purpose of the present paper
the use of DDRH interactions is important in order to show
that the expected isospin effects on the mixed phase are
present even with much softer symmetry terms at high baryon
densities.

APPENDIX B: NAMBU–JONA-LASINIO MODEL FOR
ASYMMETRIC MATTER

From the previous discussion it appears (extremely)
important to include the isospin degree of freedom in any
effective QCD dynamics. A first approach can be supplied by
a two-flavor Nambu–Jona-Lasinio model where the isospin
asymmetry can be included in a flavor-mixing picture [20,45].
The Lagrangian is given by

L = L0 + L1 + L2, (B1)

with L0 the free part,

L0 = ψ̄(i 
∂ − m)ψ,

and the two different interaction parts given by

L1 = G1{(ψ̄ψ)2 + (ψ̄ �τψ)2 + (ψ̄iγ5ψ)2 + (ψ̄iγ5 �τψ)2},
L2 = G2{(ψ̄ψ)2 − (ψ̄ �τψ)2 − (ψ̄iγ5ψ)2 + (ψ̄iγ5 �τψ)2}.

(B2)

In the mean-field approximation the new gap equations are
Mi = mi − 4G1�i − 4G2�j , i 
= j, (u, d), where the �u,d =
〈ūu〉, 〈d̄d〉 are the two (negative) condensates, which are given
by

�f =−2Nc

∫
d3p

(2π )3

Mf

Ep,f

{1 − f −(T ,µf ) − f +(T ,µf )},
(B3)

and mu,d = m are the (equal) current masses.
Introducing explicitly a flavor mixing, i.e., the dependence

of the constituent mass of a given flavor to both condensate, via
G1 = (1 − β)G0,G2 = βG0, we have the coupled equations

Mu = m − 4G0�u + 4βG0(�u − �d ),
(B4)

Md = m − 4G0�u + 4(1 − β)G0(�u − �d ).

For β = 1/2 we get the usual NJL (Mu = Md ), while small
or large mixing is for β ⇒ 0 or β ⇒ 1, respectively. The
value of β has a consequence on the structure of the phase
diagram in the region of low temperatures and high chemical
potential. In fact, as shown in [20,45], for β = 0 there are
two distinct phase transitions for the up quarks and for the
down quarks, but for this value the interaction is symmetric
under UA(1) transformations and it is unrealistic. While for
β � 0.1 the UA(1) symmetry becomes explicitly broken and
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there is only a single first-order phase transition. Realistic
estimations of β fitting the physical η-meson mass give a value
of β ≈ 0.11 [45,46].

In neutron-rich matter |�d | decreases more rapidly due
to the larger ρd and so (�u − �d ) < 0. In the “realistic”
small-mixing case we will get a definite Mu > Md split-
ting at high baryon density (before the chiral restoration).
This expectation is confirmed by a full calculation of the
coupled gap equations with standard parameters [3,47]. All
this can indicate a more fundamental confirmation of the

m∗
p > m∗

n splitting in the hadron phase, as suggested by the
effective QHD model with the isovector scalar δ coupling
(see [12,23]).

However, such an isospin mixing effect results in a very
small variation of the symmetry energy in the quark phase,
still related only to the Fermi kinetic contribution. In fact,
this represents just a very first step toward a more complete
treatment of isovector contributions in effective quark models,
of large interest for the discussion of the phase transition at
high densities.
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