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Comparing four different (ideal and viscous) hydrodynamic models for the evolution of the medium created
in 200A GeV Au-Au collisions, combined with two different models for the path-length dependence of parton
energy loss, we study the effects of jet quenching on the emission-angle dependence of the nuclear suppression
factor RAA(φ) and the away-side per-trigger yield IAA(φ). Each hydrodynamic model was tuned to provide a
reasonable description of the single-particle transverse momentum spectra for all collision centralities, and the
energy-loss models were adjusted to yield the same pion nuclear suppression factor in central Au-Au collisions.
We find that the experimentally measured in-plane versus out-of-plane spread in RAA(φ) is better reproduced by
models that shift the weight of the parton energy loss to later times along its path. Among the models studied here,
this is best achieved by energy-loss models that suppress energy loss at early times, combined with hydrodynamic
models that delay the dilution of the medium density due to hydrodynamic expansion by viscous heating. We
were unable to identify a clear tomographic benefit of a measurement of IAA(φ) over that of RAA(φ).
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I. INTRODUCTION

The expression “jet tomography” is often used to describe
the analysis of hard perturbative-QCD (pQCD) processes
taking place inside the soft medium created in an ultrarela-
tivistic heavy-ion collision, with the aim to study properties
of the medium. In particular, the focus is often on the nuclear
suppression of hard hadrons in A-A collisions compared
with the scaled expectation from p-p collisions, due to loss
of energy from the hard parton by interactions with the
soft medium (see e.g., [1–5]), expressed through the nuclear
suppression factor RAA.

In comparing theoretical calculations with experimental
data on RAA, there are two main unknown properties of
the medium: The nature of the parton-medium interaction,
being closely connected with microscopic properties of the
medium (such as the relevant degrees of freedom), and the
evolution of the medium density distribution, being connected
with macroscopic properties such as the thermodynamical
parameters in a fluid description of the medium. While
some attempts at systematic comparison of different models
for the parton-medium interactions using the same fluid-
dynamical model for the medium have been made in order
to assess the effect of assumptions in the parton-medium
interaction model [6,7], there is very little systematics available
for the effect of different hydrodynamical models on jet
quenching observables other than the overall suppression ratio
RAA(pT ) [8,9].

What may have slowed the insight that there is a need
to systematically understand the role of the medium-density
evolution is the fact that early comparisons with data were
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usually done on the basis of single-hadron suppression RAA

for central collisions only, and it took some time before it
was realized that this quantity is quite insensitive to model
assumptions [10], especially when (as usually done) a single
model parameter governing the strength of the parton-medium
interaction is fit to the data. The need for more differential
observables, such as RAA(φ), as a function of the angle of
the observed hadron with the reaction plane for different cen-
tralities [11] or the strength suppression IAA observed in hard
back-to-back correlations [8], to overcome this insensitivity,
was only realized later.

Such observables are primarily sensitive to the effective
path-length dependence of the energy loss. As one goes from
central to peripheral collisions, both the mean density of the
medium and the average path length needed for a hard parton to
traverse the medium decrease. Within a given centrality class,
RAA(φ) is dominated by the change in path length, modulated
by a weak directional dependence of the average density
probed by the parton. How precisely the path length and
density change with centrality depends, however, on details
of the hydrodynamical evolution.

The aim of this article is to investigate in some detail
the connection between high-pT observables and the bulk
medium evolution. In particular, we try to identify those
properties of a hydrodynamical model which have the strongest
influence on high-pT observables. We do so by presenting a
systematic study of the directional dependence of the nuclear
suppression factor RAA and the away-side yield in triggered
back-to-back correlations, IAA, for several parton-medium
interaction models with different path-length dependence
and a number of different hydrodynamical models for the
medium. The hope is to derive constraints for a combination
of both medium evolution and parton-medium interaction
models that can be used to eventually arrive at a detailed
understanding of the dynamics of ultrarelativistic heavy-ion
collisions.
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II. HYDRODYNAMICAL MODELS

We describe the medium probed by the hard parton as
a thermalized fluid. Its temperature and energy and particle
densities evolve in space and time, due to hydrodynamic
expansion driven by pressure gradients. In this work we
use both ideal and viscous hydrodynamics to generate these
density profiles.

A. Ideal hydrodynamics

In the ideal case, we solve the hydrodynamic equations

∂µT µν = 0, ∂µj
µ

B = 0, (1)

where T µν = (ε + P )uµuν − gµνP is the stress-energy
tensor, j

µ

B = nBuµ is the baryon number current, nB is the
net baryon number density, ε the energy density, and P the
pressure in the local rest frame, which moves with fluid
four-velocity uµ in the global frame. The equation of state
(EoS) P = P (ε, nB ), relating the pressure to the local energy
and net baryon number density, closes the set of dynamical
equations.

For testing parton energy loss, we have at our disposal
space-time profiles of ε, P , and temperature T from two
different ideal hydrodynamical models. The first of these [12]
solves Eqs. (1) in 3 + 1 dimensions [(3 + 1)-d], propagating
both T µν and j

µ

B . The second model [13] simplifies the
problem to 2 + 1 dimensions [(2 + 1)-d] by assuming lon-
gitudinal boost invariance (i.e., none of the physical quantities
depend on space-time rapidity η = 1

2 ln[(t+z)/(t−z)]) and
setting the net baryon density everywhere to zero (such
that only the energy-momentum tensor T µν needs to be
evolved, using a simplified form P (ε) for the EoS). These
approximations can be made since we are interested in
energy loss only at midrapidity where, at energies avail-
able at the BNL Relativistic Heavy Ion Collider (RHIC),
the net baryon density is very small. Both calculations
use lightcone coordinates (τ, x, y, η), where τ = √

t2−z2

is the longitudinal proper time and η is the space-time
rapidity.

Both models use smooth energy density distributions as
initial conditions, based on the densities of binary col-
lisions and wounded nucleons [14]. For details we refer
to the original publications describing the models [12,13].
The hydrodynamic evolution starts at initial time τ0 =
0.6 (0.17) fm/c in the (3 + 1)-d [(2 + 1)-d] model. The
(3 + 1)-d model uses a bag model EoS with a first-order
phase transition at Tc = 160 MeV [12] whereas the (2 + 1)-d
model [13] uses the EoS from Ref. [15]. Both equations
of state assume chemical equilibrium among the hadrons in
the dilute resonance gas phase below Tc. Thermal hadron
spectra are calculated using the conventional Cooper-Frye
method [16], where particle emission is calculated from a
constant-temperature surface. The freeze-out temperature is
Tdec = 130 (160) MeV for the (3 + 1)-d [(2 + 1)-d] model.
Strong and electromagnetic two- and three-particle decays of
unstable hadrons are taken into account before comparing with
experimental data.

B. Viscous hydrodynamics

We also study parton energy loss in a medium whose space-
time evolution is computed from viscous hydrodynamics by
solving the second-order Israel-Stewart equations in 2 + 1
dimensions as described in Ref. [17], assuming longitudinal
boost invariance and zero net baryon density. Here, the
energy-momentum tensor of the fluid is decomposed as

T µν = (ε+P )uµuν − Pgµν + πµν, (2)

which differs from the ideal fluid decomposition in Sec. II A
by the appearance of the traceless and symmetric shear
viscous pressure tensor πµν satisfying uµπµν = 0. Effects
from bulk viscosity are neglected as small compared to
πµν [18]. The energy-momentum conservation equations
∂µT µν = 0 are supplemented by the Israel-Stewart [19,20]
evolution equations for the viscous pressure components πµν ,
see Ref. [17] for details.

The viscous hydrodynamic energy density profiles studied
here were obtained with the equation of state s95p-PCE
described in Ref. [21] and Appendix C of Ref. [22]. It matches
the latest lattice QCD data of the EoS at high temperatures
with a chemically frozen hadron resonance gas EoS at
low temperatures [21,22] that uses nonequilibrium chemical
potentials [23] to ensure preservation of the stable hadron
ratios at their chemical freeze-out values as the system cools
below the chemical decoupling temperature Tchem = 165 MeV
that has been experimentally established [24].

In the viscous simulations we start the hydrodynamic
evolution at τ0 = 0.4 fm/c and decouple the hadron mo-
mentum spectra at Tdec = 130 MeV. To compute the hadron
spectra from the hydrodynamical output along the freeze-out
surface we again use the Cooper-Frye prescription, but with
a modified expression for the distribution function, f (x, p) =
feq(x, p) + δf (x, p), where we add to the local equilibrium
distribution a small viscous correction δf that depends on
the viscous pressure components πµν(x) at freeze-out and
grows quadratically with pT (see [17,21] for details). The
specific shear viscosity is fixed at η/s = 0.2, independent of
temperature.

In addition to the Glauber model initial conditions used
in the ideal fluid-dynamical models, we also study a set of
viscous hydrodynamic evolution models based on Color Glass
(CGC-fKLN) initial conditions [25,26] which, for noncentral
collisions, feature somewhat larger initial eccentricities and
surface-density gradients than the Glauber model profiles
(see Fig. 1 in Ref. [21] for a comparison of these profiles)
and thus generate more radial and elliptic flow. We will
label viscous hydrodynamic simulations initiated with Glauber
model profiles as “vGlb,” and those initiated with CGC-fKLN
profiles as “vCGC.” We will discuss the consequences of
these differences on the directional dependence of energy loss
suffered by a parton propagating through these fireballs.

Neither the ideal nor the viscous fluid simulations studied
here account for event-by-event fluctuations of the initial shape
and orientation of the collision fireball. Such calculations
were recently reported both for ideal [27–29] and viscous
hydrodynamics [30]. Source eccentricities and anisotropic
flow are most strongly affected by these fluctuations at very
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FIG. 1. (Color online) Transverse momentum spectra of positively charged pions (a) and protons (b) from ideal and viscous (2 + 1)-d
models for 200A GeV Au-Au collisions at different centralities. Data from the PHENIX Collaboration [34] are shown without error bars since
errors are smaller than the symbol size.

small and very large impact parameters where the fireball
is either almost round or very small. Neither of these two
situations is of interest in our present study.

C. Spectra and elliptic flow from the hydrodynamic models

Whereas the directional dependence of the soft hadron spec-
tra (i.e., their elliptic flow) reflects the momentum anisotropy
of the hadron-emitting source at freeze-out, the emission-angle
dependence of parton energy loss probes more directly the
geometrical aspects of the fireball (i.e., its spatial deformation).
Still, it may matter whether the hard parton moves with or
against the collective flow as it propagates through the fireball,
so the hydrodynamical models need to be tuned to give a
reasonably accurate representation of the momentum-space
structure of the fireball, as reflected in the final hadron spectra,
before we test the influence of differences in their geometrical
features on parton energy loss.

In this subsection we demonstrate that all models provide a
reasonable description of the transverse momentum spectra
of pions and protons over the entire range of collision
centralities.1 Testing the spectra for both a very light and
a heavy hadron species, which react differently to radial
collective flow [33], ensures that the appropriate amount of
radial flow is generated in the evolution. The elliptic flow
coefficient tests whether we also have the correct amount of
flow anisotropy. Expressed in terms of velocity differences,
the flow anisotropy is a small effect superimposed on a much

1Note that our goal is not to achieve a perfect description of the
measured hadron spectra. It is unlikely [21] that such a description
can be obtained within a purely hydrodynamic approach; a fully
realistic dynamical model cannot avoid describing the late hadronic
freeze-out stage microscopically with kinetic theory [31,32].

larger radial flow velocity; although this anisotropy is crucial
in determining the transport coefficients (in particular the shear
viscosity) of the fireball fluid, it is not expected to lead to major
modifications of the directional dependence of parton energy
loss. It affects the latter mostly by influencing the evolution
of the spatial deformation of the fireball. As we will see, the
time dependence of the radius and shape of the fireball play
minor roles in the parton energy loss; hence, it is not a serious
problem for our analysis that the elliptic flow v2(pT ) is not
well reproduced by some of the hydrodynamical models we
have studied.

Figure 1 shows the pion and proton spectra for 200A GeV
Au-Au collisions at various centralities, as obtained from
the three different (2 + 1)-d hydrodynamical models. Table I
shows the impact parameters we have evaluated for a given
centrality class, based on a Glauber calculation. Except for the
peripheral bins, the viscous simulations give slightly steeper
pion pT distributions than the ideal-fluid simulations. This
is a consequence of the different chemical composition in
the hadronic phase, as described in the preceding subsection
[23,36]. The proton spectra are markedly better described by
viscous than by ideal hydrodynamics. Shear viscosity adds
to the effective transverse pressure, generating more radial
flow [17] and thus making the spectrum harder, as desired by
the experimental data.2 The somewhat steeper surface-density

2In Ref. [21] it was shown that larger radial flow can also be
generated by selecting lower freeze-out temperatures, with similar
effects on pion and proton pT -spectra (but not their elliptic flow) as
caused by larger viscosity (which matters most at early times where
the expansion rate is highest). This finding applies only, however,
if an equation of state with a chemically frozen hadron gas stage
(such as s95p-PCE [21,22]) is used [36]; for chemically equilibrated
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TABLE I. Centrality classes and the corresponding impact pa-
rameters and initial source eccentricities used in the hydrodynamical
model.

Centrality Impact Parameter εGl
x εCGC

x

0%–10% 3.16 fm 0.075 0.102
10%–20% 5.78 fm 0.206 0.250
20%–30% 7.49 fm 0.297 0.344
30%–40% 8.87 fm 0.366 0.407
40%–50% 10.1 fm 0.415 0.445
50%–60% 11.1 fm 0.439 0.455

gradients of the initial CGC energy density profile when
compared to the Glauber model adds an additional small
contribution to this effect.

The pT -dependent pion and proton elliptic flow from
minimum bias Au-Au collisions at

√
s = 200A GeV is shown

in Fig. 2. Here, the viscous calculations are seen to badly
underpredict the measured values, as a consequence of shear
viscous suppression of flow anisotropies [17,37,38]. The
disagreement is not quite as bad for the CGC initial conditions,
which have somewhat larger initial spatial eccentricity εx =
〈〈y2−x2〉〉
〈〈y2+x2〉〉 [39,40], where 〈〈· · ·〉〉 denotes an average over the
energy density in the transverse plane. But, even in this case,
the chosen value η/s = 0.2 yields too much suppression of
v2, in agreement with the findings in Ref. [39]. We found in
Ref. [21] that, for hydrodynamical models with smooth initial
conditions, quite generally the measured flatness of the proton

equations of state, late radial flow makes not only the proton but also
the pion spectrum harder, which is inconsistent with the measured
pion distribution.

pT spectra and the large elliptic flow v2(pT ) are in tension
with each other, the former preferring larger η/s whereas the
latter likes smaller viscosities.3 We chose here to optimize the
slope of the proton spectra (i.e., the magnitude of radial flow).

D. Geometry of the hydrodynamic fireballs

The different initial and final conditions, equations of
state, and viscosities assumed in the different hydrodynamical
fireball models lead to some differences in the space-time
evolution of the size and shape of the fireball which, weighted
with the corresponding density distributions, affect the parton
energy loss and its directional dependence. Figure 3 shows
the freeze-out surfaces for Au-Au collisions in the 20%–30%
centrality class (b = 7.49 fm) in the r-τ and x-y planes. The
different shapes of the freeze-out contours along the x and y

directions in Fig. 3(a) reflect the elliptical source deformation
in noncentral collisions. Figure 3(b) shows freeze-out contours
in the x-y plane at times τ = 2 fm/c (solid) and τ = 4 fm/c

(dashed), illustrating how the out-of-plane elongation of the
source decreases with time.4

The most striking feature of these contour plots is the
similarity of the freeze-out contours for the three (2 + 1)-d
models. Even though the starting time τ0 for the viscous
simulations (0.4 fm/c) is more than twice as large as that
used in the (2 + 1)-d ideal runs (0.17 fm/c), and the viscous
fluid is allowed to cool down to Tdec = 130 MeV [compared
to Tdec = 160 MeV for the (2 + 1)-d ideal runs], all three

3We do not know whether this statement remains true if fluctuating
initial conditions are taken into account.

4The freeze-out surfaces extracted from the hydrodynamic output
from the (3 + 1)-d simulations are wiggly due to numerical effects
related to the fact that these simulations were done in Lagrangian
coordinates.
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FIG. 2. (Color online) Elliptic flow of (a) charged pions and (b) protons in minimum-bias 200A GeV Au-Au collisions. Data from the
PHENIX Collaboration [35] are shown without error bars since errors are smaller than the symbol size.
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FIG. 3. (Color online) Freeze-out surfaces of the different hydrodynamic models in the (a) r-τ and (b) x-y planes for 200A GeV Au-Au
collisions in the 20%–30% centrality class. The two halves of panel (a) show cuts through the freeze-out surface along the in-plane (x) and
out-of-plane (y) directions, respectively. In panel (b), solid (dashed) lines represent cuts at τ = 2 fm/c (4 fm/c). The contours for the three
(2 + 1)-d hydrodynamic models are almost indistinguishable.

models complete their freeze-out almost at the same time
(≈7.2–7.5 fm/c for b = 7.49 fm). This is due to the additional
radial flow produced by shear viscous pressure and the use in
the viscous flow simulations of EoS s95p-PCE, which is stiffer
around the phase transition than the EoS used in the ideal fluid
simulations [21]. The combination of these two effects allows
the viscous fireball to cool faster during the late-evolution
stages and thus freeze-out sooner than an ideal fluid with the
same initial conditions [17].

During the early stages, on the other hand, viscous heating
delays the cooling process, so at early times (up to about
4 fm/c) the fireball center remains hotter and denser in the
viscous case than for the ideal fluid.5 The somewhat steeper
initial density gradients of the CGC-fKLN profile (see Fig. 1
in [21]) generate slightly larger radial flow in the vCGC model,
causing it to fully decouple a fraction of a fm/c earlier than
the vGlb model.

Compared to the (2 + 1)-d simulations, the space-time
volume covered by the ideal (3 + 1)-d fluid is much larger
(wiggly green lines in Fig. 3). This not a consequence
of dramatically different transverse expansion in (3 + 1)-d
and boost-invariant (2 + 1)-d evolution [near midrapidity the
longitudinal density profiles and expansion velocities in the
(2 + 1)-d and (3 + 1)-d simulations are very similar], nor is it
primarily due to starting the (3 + 1)-d simulation later (at τ0 =
0.6 fm/c). The main reason is that the (3 + 1)-d simulations
use a bag model EoS with a first-order phase transition that
produces a relatively long-lived mixed phase where the speed
of sound vanishes and the fluid stops accelerating.

5This information is not contained in Fig. 3 but can be verified by
consulting Ref. [17].

III. PARTON-MEDIUM INTERACTION MODELS

In this work, we use two different models for the
parton-medium interaction. The first is the Armesto-Salgado-
Wiedemann (ASW) model of medium-induced radiative
energy loss in pQCD, in the formulation of energy-loss
probability distributions, so-called “quenching weights” [41].
As characteristic for similar perturbative models of medium-
induced radiation, it leads to a quadratic dependence of mean
energy loss with the in-medium path length L in a constant
medium due to the Landau-Pomeranchuk-Migdal (LPM)
suppression of subsequent radiation processes. We have picked
this model among other formulations of radiative energy
loss since it shows the strongest path-length dependence for
RAA(φ) of all radiative energy-loss models tested in the same
hydrodynamical background [6].

Note that the connection between LPM suppression and L2

path length strictly appears in the limit of infinite parton energy
in which the ASW model is derived. For the experimental
kinematics, there is reason to expect that finite energy [42,43]
or finite size corrections [44] limit the L2 domain to early times.

The second model is based on strong-coupling ideas for
the medium. It is a hybrid model, in which the hard scales
in the process are treated perturbatively, as in the standard
pQCD radiative energy-loss calculations, while the interaction
with the plasma which involves strong-coupling dynamics
is modeled based on Anti-de Sitter/Conformal Field Theory
(AdS/CFT) considerations for the N = 4 super-Yang-Mills
(SYM) theory [45]. In a constant medium, this phenomeno-
logical approach suggests an L3 dependence of mean energy
loss [46]. In the following, we will refer to this approach by
the label “AdS.”
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We have refrained from testing a third class of models of
energy loss by elastic scattering of a hard parton with medium
constituents, which, as such scatterings are incoherent, would
result in a linear dependence on the path length L in a constant
medium. However, a large contribution of such processes to
the total energy loss can be ruled out already by the data for
RAA(φ) [47,48].

A key quantity in both models is the quenching weight; that
is, the energy-loss probability distribution P (
E) given the
path of a parton through the medium. In both models this is ob-
tained by calculating the integrated virtuality transfer from the
medium to the hard parton Q2

s and the characteristic medium-
induced gluon energy ωc by line integrals along the hard
parton trajectory through the medium. Making use of a scaling
law [49], we use Qs and ωc with the numerical results of
[41] to obtain P (
E|ωc,Qs) ≡ P (
E)path. What is different
between the two models is the argument of the line integrals.

In the ASW model, the medium is characterized by a trans-
port coefficient q̂ which measures the ability of the medium to
transfer virtuality per unit path length. We assume that this can
be written as a function of the medium thermodynamic param-
eters and parton position along the trajectory ξ via the relation

q̂(ξ ) = 2Kε3/4(ξ )[cosh ρ(ξ ) − sinh ρ(ξ ) cos α(ξ )] (3)

between the local transport coefficient q̂(ξ ) (specifying the
quenching power of the medium), the energy density ε, and
the local flow rapidity ρ with angle α between flow and
parton trajectory [50,51]. We view the parameter K as a tool
to account for the uncertainty in the selection of the strong
coupling αs and possible nonperturbative effects increasing
the quenching power of the medium (see discussion in [52])
and adjust it such that the pionic RAA measured in central
Au-Au collisions is reproduced.

With this expression for q̂, we evaluate for each path
through the medium [given by the initial vertex position
r0 = (x0,y0) in the transverse plane and the angle φ of the
outgoing parton with the reaction plane] the line integrals

Qs(r0, φ) ≡ 〈q̂L〉 =
∫

dξ q̂(ξ ), (4)

ωc(r0, φ) =
∫

dξξ q̂(ξ ). (5)

In the AdS model, these expressions are changed into [45]

Qs(r0, φ) = K

∫
dξξT 4(ξ ), (6)

ωc(r0, φ) = K

∫
dξξ 2T 4(ξ ), (7)

where T (ξ ) is the local temperature of the medium and K is
again a (different) free parameter, to be adjusted such that the
pionic RAA for central Au-Au collisions is reproduced.

From the energy-loss distribution for a given single path we
can define the averaged energy-loss probability distribution for
a given angle φ as

〈P (
E)〉φ =
∫ ∞

−∞
dx0

∫ ∞

−∞
dy0P (x0, y0)P (
E)path, (8)

where, for a given impact parameter b, the probability density
of hard vertices in the transverse plane P (x0, y0) is given by
the product of the nuclear profile functions as

P (x0, y0) = TA(r0 + b/2)TA(r0 − b/2)

TAA(b)
, (9)

and the nuclear thickness function is given in terms of the
Woods-Saxon nuclear density ρA(r, z) as

TA(r) =
∫

dz ρA(r, z). (10)

We calculate the momentum spectrum of hard partons in
leading-order pQCD (LO pQCD) (explicit expressions are
given in [52] and references therein). The medium-modified
perturbative production of hadrons at angle φ can then be
computed from the expression

dσAA→h+X
med

dφ
=

∑
f

dσ
AA→f +X
vac

dφ
⊗ 〈P (
E)〉φ

⊗ Dvac
f →h

(
z, µ2

F

)
, (11)

with Dvac
f →h(z, µ2

F ) being the fragmentation function with
momentum fraction z at scale µ2

F [53]. From this we
compute the nuclear modification function RAA versus reaction
plane as

RAA(PT , y, φ) = dNh
AA/dPT dydφ

TAA(b)dσpp/dPT dydφ
. (12)

The suppression of back-to-back high-pT hadron correla-
tions is computed in a Monte Carlo (MC) framework [54].
We start from the expression for the production of two hard
partons k, l in LO pQCD, which is described by

dσAB→kl+X

dp2
T dy1dy2

=
∑
i,j

x1fi/A(x1,Q
2)x2fj/B(x2,Q

2)
dσ̂ ij→kl

dt̂
,

(13)

where A and B stand for the colliding objects (protons or
nuclei) and y1(2) is the rapidity of parton k(l). The distribution
function of a parton type i in A at a momentum fraction x1 and
a factorization scale Q ∼ pT is fi/A(x1,Q

2). The distribution
functions are different for free protons [55,56] and nucleons in
nuclei [57,58]. The fractional momenta of the colliding partons
i, j are given by x1,2 = (pT /

√
s)[exp(±y1) + exp(±y2)].

By sampling this expression, we generate events of back-
to-back parton pairs which are placed on a vertex sampled
according to Eq. (9) for given orientation φ with respect to
the reaction plane. Given (r0, φ), we compute P (
E) for both
partons according to the procedure outlined above and sample
the distribution to obtain the energy loss for the given event.

Finally, we convert the simulated partons into hadrons. Note
that this cannot be done using a fragmentation function as in
Eq. (11) since Dvac

f →h(z, µ2
F ) takes a hadronic energy scale

µF as argument and measures the inclusive hadron yield,
whereas we are interested in the yield of leading hadrons given
a partonic energy scale.

More precisely, in order to determine if there is a trigger
hadron above a given threshold, given a parton k with
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momentum pT , we need to sample Ak→h
1 (z1, pT ); that is, the

probability distribution to find a hadron h from the parton k

where h is the most energetic hadron of the shower and carries
the momentum PT = z1pT . In the following, we make the
assumption that the hadronization process itself, at least for the
leading hadrons of a shower, happens well outside the medium.
As a consequence, we neglect any interaction of formed
hadrons with the medium. The time scale for hadronization
of a hadron h in its rest frame can be estimated by the inverse
hadron mass, τh ∼ 1/mh; boosting this expression to the
laboratory frame one finds τh ∼ Eh/m2

h. Inserting a hard scale
of 6 GeV or more for the hadron energy and the pion mass
in the denominator (as pions constitute the bulk of hadron
production), this assumption seems well justified. We extract
A1(z1, pT ) and the conditional probability A2(z1, z2, pT ) to
find the second most energetic hadron at momentum fraction
z2 given that the most energetic hadron was found with fraction
z1 from HERWIG [59]. After hadronization, we check if
the most energetic hadron fulfills a given trigger condition
and, if yes, we count the yield in various momentum bins
of hadrons back-to-back with the trigger. Finally, we obtain
the suppression factor IAA(φ) for given trigger and associate
momentum windows by dividing by the per-trigger yields
found with nucleon parton distributions [55,56] in the absence
of a medium. The procedure is described in detail in [54].

IV. THE BULK FLUID MEDIUM EVOLUTION
“SEEN” THROUGH HARD PROBES

Hard partons undergoing energy loss do not probe the same
properties of the bulk medium as soft hadrons, or they probe
them in a different way. For example, while the coefficient
v2 in the soft sector measures pressure gradients translating
an initial spatial anisotropy in noncentral collisions into a
momentum-space anisotropy, the same coefficient for high-PT

hadrons measures directly the spatial anisotropy through the
different energy loss induced by different densities seen by
hard partons as a function of their angle with the reaction
plane. This difference in the underlying physics is the reason
why we prefer to present and discuss our results in terms of
RAA(φ) rather than in terms of the mean RAA and v2 at high
PT for a centrality class. While both choices contain the same
information, we feel that RAA(φ) emphasizes the underlying
suppression process.

To give a second example, while mT spectra of soft hadrons
are rather sensitive to the late-time hadronic evolution of the
medium and the amount of flow created during the hadronic
evolution, the medium modification of hard probes is not at all
sensitive to late time dynamics. The reason is that hard partons
propagate through the medium at the speed of light, and thus
typically escape from the medium at time scales of order of the
size of the overlap region. This is especially true for observed
hadrons, which have a bias to be produced relatively close to
the surface [52].

In the following, we discuss some features of hydrodynam-
ical models that are likely candidates to be probed by energy
loss.

A. Medium properties potentially probed by energy loss

As apparent from Eqs. (4) to (7), the medium is probed
by the energy-loss models through path-length-weighted line
integrals over the medium energy density ε or temperature T .
The value of these integrals thus depends on:

(i) The lower limit of the integral, corresponding to the
time at which secondary-particle production starts to
be important enough to induce energy loss. Usually,
the equilibration time τ0 of the hydrodynamical model
is used here, but there is no reason in principle why a
nonequilibrated medium, if sufficiently dense, could
not induce energy loss. However, the sensitivity to
the lower limit is expected to be comparatively weak,
as factors of ξ or ξ 2 in the ωc integrals suppress
this region. In a Bjorken model, q̂ would diverge
as 1/ξ for small times, thus canceling a factor ξ

of the suppression. However, prior to equilibration,
the density of particles in the medium off which the
hard parton can scatter, thereby inducing it to radiate
gluons, must generically be smaller than in thermal
equilibrium (which maximizes entropy and is thus a
state of maximum particle density for given energy
density), so this cancellation cannot be perfect, and
we expect (within reasonable limits) a weak sensitivity
to the choice of the initial time.

(ii) The upper limit of the integral, corresponding to the
time scale at which the hard parton is no longer
surrounded by a medium. This is usually assumed to
be given by the location of the Cooper-Frye surface in
a hydrodynamical model beyond which the medium is
no longer coupled but free-streaming. The Cooper-Frye
surface in turn is often defined to be an isothermal
surface. Since the Cooper-Frye prescription is clearly
an idealization of the real physics of the system
boundary, there is again no strong reason to identify
the upper integration boundary with this surface, as
there could be energy loss of a parton in a weakly
coupled hadronic halo. However, again in practice, the
sensitivity to the detailed choice of the parameter is
parametrically weak. While the factors ξor ξ 2 tend
to enhance late-time contributions to the integral, the
medium density at late times or large distances from
the center dilutes eventually like 1/ξ 3, due to both
longitudinal and transverse flow. Thus, beyond a point,
we do not expect that our results depend strongly on
the medium boundary choice.

(iii) The functional form of the integrand itself. Note that
what is probed by the parton is not the medium density
at any given proper time, but rather the medium density
along the lightcone. However, since interference effects
suppress early-time energy loss and the onset of trans-
verse flow suppresses late-time energy loss, effectively
the mean energy loss per unit time dE/dx reaches a
relatively sharp maximum around τpeak ∼ 3–4 fm/c
(cf. [60]). Thus, to first approximation, energy loss
probes the density distribution of the medium around
τpeak. In particular, this implies that there is a finite
time for processes like viscous entropy production or
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decay of the spatial deformation by pressure-generated
anisotropic flow to modify the state of the system before
it is probed by energy loss.

(iv) Finally, when comparing the distribution (9) of primary
production vertices with any transverse distribution
of matter in a hydrodynamical model, one will find
that there is always a nonzero probability to find a
hard vertex outside the medium and hence partons
which never experience energy loss. Since such “halo-
partons” never probe the medium, they show no
correlation with the reaction plane angle φ and hence
their presence will dilute any dependence of RAA on φ.
This effect scales with the size of the hydrodynamical
medium (i.e., with the assumed initial extent of the
Cooper-Frye surface). For very large media this “halo
effect” is suppressed, but for drastic assumptions
(such as energy loss only in the QGP) it is not
negligible.

In the following, we will discuss these points in more detail
in the context of different hydrodynamical models.

B. Viscous entropy production

In both ideal and viscous fluid dynamics, the entropy
of the final state is fixed by the observed multiplicity and
chemical composition of the emitted hadrons. But only in
ideal fluid dynamics does this final entropy agree with its
initial value. In viscous hydrodynamics, viscous heating causes
the entropy to increase with time, which implies that, for
the same final multiplicity, the viscous fluid starts at lower
entropy and parton density than the ideal fluid. The rate of
viscous entropy production grows with the expansion rate of
the fireball. A boost-invariant longitudinal expansion profile,
as initially assumed in all versions of the hydrodynamic model
studied here, leads to an expansion rate that diverges like 1/τ

at early times τ . Thus, most of the viscous entropy production
happens near the beginning of the expansion [17]. Viscous
heating causes the fireball density to decrease initially more
slowly with time than for an ideal fluid. This has implications
for the density profile seen by a hard parton propagating on
the lightcone.

We illustrate this effect in Fig. 4, where we show the
integrand of Eq. (5), ξ q̂(ξ ), as a function of ξ for a parton prop-
agating in-plane from the medium center in a hydrodynamical
background corresponding to Au-Au collisions at impact
parameter b = 7.49 fm for four different hydrodynamical
models.

While the ideal hydrodynamical models show a monotoni-
cal decrease for ξ q̂(ξ ), the viscous models show an initial rise
due to viscous entropy production, followed by a decrease due
to flow-driven density dilution. This means that, in viscous
hydrodynamical models, energy loss is generically somewhat
shifted to later times.

Note also that, due to the lower entropy in the initial state
in viscous hydrodynamics, if one wants to get the same RAA,
the factor K in Eqs. (3), (6), and (7) must be larger (by about
a factor 2 for the models presented here) than in an ideal fluid
model that leads to a similar final state.
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FIG. 4. (Color online) The integrand of Eq. (5) as a function of
parton distance ξ along the lightcone for four different hydrodynami-
cal models, shown for a parton propagating in-plane from the fireball
center.

C. Line integral limits

As discussed above, there is no compelling reason why
the hydrodynamical thermalization time should be equal to
the initial time of energy loss, nor why the Cooper-Frye
decoupling surface for soft hadrons should coincide with the
boundary beyond which the hard parton no longer interacts
with the medium.

In order to test the sensitivity of our results to choices
of these parameters different from the hydrodynamical values,
without explicitly modeling the (rather complicated) dynamics
prior to thermalization or the perturbative scattering of hard
quarks or gluons with hadrons in the halo, we adopt the
following procedure: We probe the response of the system
to variations of the hydrodynamical starting time τ0 and of
the final temperature TF, with the understanding that these
parameters are not meant as physically reasonable choices
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FIG. 5. (Color online) The ratio of RAA(φ = 0)/RAA(φ = π

2 )
for various combinations of the initial energy-loss time τ0 and the
equivalent temperature TF of the medium edge, for the case of the
(2 + 1)-d ideal fluid model.
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FIG. 6. (Color online) The nuclear suppression factor RAA as a function of PT , shown in plane (solid) and out-of-plane (dashed). The
calculation was done with the ASW perturbative radiative energy-loss model for different hydrodynamical descriptions for the medium,
describing 200A GeV Au-Au collisions in four different centrality classes. PHENIX data [61] are shown for comparison.

within the hydrodynamical framework, but rather serve to
generate upper limits for the true conditions—certainly prior
to thermalization the actual energy density will be less than in
the hydrodynamical extrapolation to early times. In that sense,
the parameters τ0 and TF are to be understood in this subsection
as the initial energy-loss time and the equivalent temperature
corresponding to the edge of the medium that contributes to
energy loss.

In Fig. 5, we show the results of a variation of τ0 and TF on
the observable spread between the in-plane and out-of-plane
emission, for the case of the (2 + 1)-d ideal hydrodynamical
model. While the variation looks optically significant, it is
small on an absolute scale (note the suppressed zero!)—at most
15% from the mean. This is less than, for example, the variation
between different hydrodynamical models. This in itself is
certainly reassuring, as it quantifies the uncertainty in choosing
the proper line integral limits. It is also readily apparent that
the spread is typically maximized for “reasonable” choices
of the freeze-out temperature, thus there is no evidence for a
need to choose dramatically different last-scattering surfaces
for soft and hard particles.

Note that there is a systematic trend that large τ0 (i.e.,
delayed parton energy loss) leads to an increased in-plane
versus out-of-plane spread. This fits well into a pattern that

shifting the strength of the mean energy loss per unit length
dE/dx to later times leads to an increased ratio of out-of-plane
versus in-plane suppression. We will return to this issue in more
detail later.

V. RESULTS

In order to illustrate how the differences between the media
computed with different hydrodynamical models are probed by
energy loss, we show results for RAA for in-plane and out-of-
plane emission for various collision centralities, using both the
ASW and AdS energy-loss frameworks and comparing with
PHENIX data [61]. In all calculations, a single free parameter
K has been adjusted such that a good description of RAA

in 0%–10% most central collisions is achieved. We therefore
refrain from showing any results for central collisions, as they
are virtually identical for all models.6

In Fig. 6 we show results for the ASW energy-loss models
from midperipheral collisions in the 20%–30%, 30%–40%,

6This is related to the point made already in Ref. [10] that RAA

is practically insensitive to the functional form of the energy-loss
probability distribution P (
E) beyond its first moment.

014910-9



RENK, HOLOPAINEN, HEINZ, AND SHEN PHYSICAL REVIEW C 83, 014910 (2011)

5 6 7 8 9 10
p

T
 [GeV]

0

0.2

0.4

0.6

0.8

1

R
A

A

PHENIX in plane
PHENIX out of plane
2+1d ideal
2+1d vCGC
2+1d vGlb
3+1 d ideal

20 - 30 %, AdS

(a)

5 6 7 8 9 10
p

T
 [GeV]

0

0.2

0.4

0.6

0.8

1

1.2

R
A

A

PHENIX in plane
PHENIX out of plane
2+1d ideal
2+1d vCGC
2+1d vGlb

30 - 40 %, AdS

(b)

5 6 7 8 9 10
p

T
 [GeV]

0

0.2

0.4

0.6

0.8

1

1.2

R
A

A

PHENIX in plane
PHENIX out of plane
2+1d ideal
2+1d vCGC
2+1d vGlb

40 - 50%, AdS

(c)

5 6 7 8 9 10
p

T
 [GeV]

0

0.2

0.4

0.6

0.8

1

1.2

R
A

A

PHENIX in plane
PHENIX out of plane
2+1d ideal
2+1d vCGC
2+1d vGlb

50 - 60 %, AdS

(d)

FIG. 7. (Color online) Same as Fig. 6 except that the calculation was done with the AdS strong-coupling radiative energy-loss model.

40%–50%, and 50%–60% centrality classes. While all hydro-
dynamical models reproduce well the centrality dependence
of the angular averaged (mean) RAA value, showing very
weak PT dependence, the spread between in-plane and out-of-
plane emission appears generally too small [with the possible
exception of the (3 + 1)-d ideal fluid model]. This is especially
apparent in the 40%–50% centrality class. Note that the
successful description of the centrality dependence of the mean
RAA is not trivial, since this probes the path-length dependence
of energy loss: in an elastic energy-loss model with linear L

dependence, even the mean RAA does not correctly extrapolate
from central to peripheral collisions [48].

Figure 7 shows a similar comparison as Fig. 6 for the strong-
coupling AdS energy-loss model which features a stronger
L dependence than the ASW model (∼L3 instead of ∼L2).
Here, there is a tendency for the mean RAA to lie above the
more peripheral data, but the spread between in-plane and
out-of-plane emission is generically larger and agrees better
with the data.

Let us comment on some trends: In all cases, the in-plane
emission shows a stronger dependence on the underlying
hydrodynamical model than the out-of-plane emission. This
is to be expected, as the conditions for emission out-of-plane
(e.g., in terms of average in-medium path length) are always
more similar to the conditions in central collisions where, in
all models, K has been adjusted to describe the data, whereas

the conditions for emission in the reaction plane change more
strongly with centrality.

The relatively small difference between fireballs resulting
from CGC and Glauber initial states is rather remarkable.
Given the stronger spatial anisotropy of the CGC initial state,
one would expect to see this reflected in the anisotropy in
high-PT parton energy loss. The solution to this puzzle seems
to lie in the observation made earlier that energy loss probes the
system at a timescale of ∼3–4 fm; namely, after the stronger
pressure gradients of the CGC initial state already had some
time to reduce the fireball eccentricity.

With regard to the magnitude of the spread between in-plane
and out-of-plane emission, we observe that, consistently, the
(3 + 1)-d ideal hydro leads to the largest spread, followed
by the viscous hydro models with CGC and Glauber initial
conditions, while the (2 + 1)-d ideal fluid medium results in
the smallest spread. We stress at this point that this observation
cannot be directly linked to explicit modeling of the dynamics
in z direction or to viscosity. We will discuss the causes for
this ordering in the next section.

In Fig. 8 we show the suppression factor IAA for the
away-side yield in triggered back-to-back correlations with
a trigger momentum range of 4–7 GeV by using the ASW
model. Note that the trigger range is not yet in a region where
hadron production is dominated by the fragmentation of hard
partons. It has been chosen to match with the range of an
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FIG. 8. (Color online) The suppression factor IAA of the away-side per-trigger yield, calculated in the ASW perturbative radiative energy-loss
model for 4–7 GeV trigger momentum and shown as a function of the away-side momentum PT . Squares show IAA(φ = 0) (in-plane) and
circles show IAA(φ = π

2 ) (out-of-plane). Calculations are done for four hydrodynamical models for 200A GeV Au-Au collisions for two
different centralities.

ongoing experimental analysis, keeping the mentioned caveat
in mind.

For 20%–30% centrality, our statistics are not good enough
to even cleanly separate in-plane from out-of-plane emission.
In the 50%–60% centrality class, however, we essentially
recover the ordering between models in the in-plane versus
out-of-plane spread observed before.

Going to the AdS model in Fig. 9, the overall magnitude
of IAA is somewhat different but, qualitatively, the picture
of the relative ordering of the spread between the different
models remains unchanged. Given that computations of IAA(φ)
are rather involved and suffer from limited statistics, it
is not clear that IAA offers any real tomographic benefit
over RAA.

In order to illustrate more clearly how the energy loss
probes the medium density evolution, we show in Figs. 10 and
11 the conditional probability density to have the production
vertex of the hard parton at position (x,y), given that a

hard hadron was observed. We show calculations for the
20%–30% centrality class using the ASW energy-loss model;
the qualitative features and differences between different
hydrodynamical models seen in these plots repeat themselves
in other centrality classes and are slightly enhanced for the
AdS energy-loss model, which we do not show here.

In the absence of a medium, this production vertex density
distribution is given by the binary collision distribution Eq. (9).
The medium biases the distribution in a characteristic way
toward the surface, as partons produced in the dense medium
core are unlikely to escape with a significant fraction of their
momentum left. The plots have been obtained by binning
the distribution of triggered events in the MC code for the
computation of back-to-back hadron correlations, but the
same conditional P (x,y) for the trigger distribution is also
underlying the single hadron suppression RAA.

As expected, the degree of surface bias is much larger
for out-of-plane than for in-plane emission, reflecting the
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FIG. 9. (Color online) Same as Fig. 8 but for the AdS strong-coupling radiative energy-loss model.
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FIG. 10. Probability density of finding a parton production vertex at (x,y) in the transverse plane, given an observed hard hadron with
4 GeV < PT < 7 GeV. Calculations using the ASW energy-loss model are shown for the (3 + 1)-d (top row) and (2 + 1)-d ideal hydrodynamical
models (see text). In the case of in-plane emission (left panels), the hadron propagates to the −x direction and we use y ↔ −y symmetrization
for the plot. In the case of out-of-plane emission, the hadron propagates to the +y direction and we used x ↔ −x symmetrization. Contours
are at linear intervals.

larger degree of suppression seen out-of-plane. Comparing
the y position of the maximal out-of-plane emissivity, a
stronger degree of surface bias in the (2 + 1)-d ideal versus
the (3 + 1)-d ideal hydrodynamics is readily apparent. The
two viscous models reflect their different density evolutions
in a less straightforward way; for example, in the different
shape of the emissivity maximum or in the distortion of the
outer contour lines. As previously observed in Ref. [52],
there is no evidence for strictly surface-biased emission or
a corresponding tangential bias. In all models, a significant
fraction of observed hadrons originates from the medium
core.

VI. INTERPRETATION OF THE RESULTS

Arguably the most important question in light of the
magnitude of the measured spread between in-plane and out-
of-plane emission is whether the data require a strong-coupling
description of energy loss along the lines of the AdS model or
if, given a suitable description of the medium, pQCD is able
to account for the data. A related issue of similar importance
is what constraints for hydrodynamical models can be derived
from measurements of hard probes that cannot also be gained
from bulk matter data.

Let us discuss these questions in view of our findings.
It is a fortunate accident that the Cooper-Frye surfaces (see
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FIG. 11. Same as Fig. 10 but for the viscous hydrodynamical models with CGC-fKLN (top row) and Glauber (bottom row) initial conditions
(see text).

Fig. 3) of all (2 + 1)-d models studied here are almost
identical. Since we can easily test how RAA(φ) is changed
when we make τ0 (here denoting the starting time for energy
loss) equal in these runs (cf. Fig. 5), we have practically
eliminated any effect of different in-medium path lengths
and can ascribe any differences in the resulting suppression
patterns to the density distributions probed along the hard
parton path.

We note that the (2 + 1)-d ideal and vGlb hydrodynamics
both share (to good approximation) the same shape of
the initial state whereas the vCGC hydrodynamics has a
different initial state. This enables us to disentangle different
contributions to the in-plane versus out-of-plane spread: about
50% of the difference in spread between the (2 + 1)-d ideal
and vCGC hydrodynamics shown in Fig. 6 can be ascribed

to the difference in the initial time τ0 (Fig. 5 indicates
that a small τ0 is strongly disfavored), about 35% of the
difference results from viscosity, and the remaining 15% are
caused by the difference between CGC and Glauber initial
profiles.

Turning to the (much larger) spread observed in the
(3 + 1)-d hydrodynamics, we can surmise that most of the
increase must arise from the different size of the freeze-out
hypersurface as caused by the bag model EoS (and the resulting
different distribution of in-medium path lengths and densities,
which in this case is different from a readjustment of TF ). This
in turn implies that, once the parameter K has been adjusted to
yield the same mean RAA as in the other models, the numerical
value of q̂ at each space-time point is much smaller in the
(3 + 1)-d ideal hydro model than in the other models (see
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Fig. 4). Another way to state this is that in the (3 + 1)-d
model partons travel, on average, a larger distance before
they acquire the same amount of virtuality transfer from the
medium.

The common theme in all these findings is that the spread
between in-plane and out-of-plane emission is increased
whenever energy loss is shifted to later times. This may occur
due to viscous heating during expansion, or in response to
the choice of a large τ0, or as the result of an L3 path length
weighting as in the AdS model—although the details differ,
the net result is qualitatively the same in each of these cases.
We note that this agrees qualitatively with the conclusions
in Ref. [62] whose authors achieve a large in-plane versus
out-of-plane spread by requiring the hard parton to suffer the
largest energy-loss rate in a relatively thin shell of matter whose
temperature is close to Tc.

This observed connection between the time dependence
of energy loss and the in-plane versus out-of-plane spread
requires an explanation, especially in light of the fact that
elliptic flow decreases the initial spatial anisotropy of the
system over time. The key to understanding this phenomenon
lies in the realization that the spatial anisotropy exists on a
scale of the order of the spatial size of the transverse overlap
region (i.e., several fm). It is thus a global property of the
medium. If energy loss were significant only at very early
times τ � 1 fm/c (as approximately true for elastic energy
loss), it could not resolve any phenomenon on a distance scale
d � 1 fm and would thus probe the medium properties only
locally. In other words, in such a model most high-pT partons
would be blind to the spatial anisotropy (see discussion in [47])
and, consequently, the observed spread would be very small.

While the above argument is strictly true only for a
homogeneous medium, it still holds qualitatively for an
inhomogeneous and hydrodynamically evolving medium: The
spread between in-plane and out-of-plane emission increases
not because energy loss is shifted to late times, but because the
typical time scale over which energy loss is strong approaches
the global spatial scales of the medium, and hence the partons
are increasingly able to probe the medium globally.

Unfortunately, this finding does not translate into straight-
forward constraints for the medium evolution model. Rather
than being dominated by a single large effect, RAA(φ) appears
to be sensitive to a number of effects of roughly equal
importance. However, while some constraints are qualitatively
similar to what was found in the soft sector (for example, a
CGC initial profile causes both a larger v2 in the soft sector
and a larger azimuthal variation of RAA in the hard sector),
others are qualitatively different and potentially more valuable
[viscosity causes smaller v2 for the bulk matter but a larger
azimuthal variation of RAA(φ)].

Given that our results do not exhaust the parameter space
of hydrodynamical evolutions compatible with bulk data, it
is entirely conceivable that an evolution can be found for
which both the magnitude and spread of RAA(φ) are described
within pQCD dynamics. Presumably, viscous (3 + 1)-d
hydrodynamics with a CGC initial state, late thermalization,
and low freeze-out temperature would be a good candidate. At
this point, we see no reason to conclude that the data require a
strong-coupling model.

VII. SUMMARY

The goal of this article was to develop a better understanding
of the tomographic power of parton energy-loss measurements
in relativistic heavy-ion collisions as probes of the medium
created in these collisions and/or of the mechanism by which
hard partons lose energy in such a medium. To this end we
presented a study of the dependence on the angle with the
reaction plane φ of the nuclear suppression ratio RAA(φ) and
the away-side per-trigger yield IAA(φ) in triggered back-to-
back correlations for four different hydrodynamic models of
the fireball evolution and two different models for the path-
length dependence of parton energy loss. The models were
tightly constrained by ensuring that parameters were chosen
such that the soft-hadron transverse momentum spectra are
well described for all collision centralities, and that all models
yield the same nuclear suppression factor RAA for pions in
central Au-Au collisions. We then studied differences in the
dependence of RAA and IAA on collision centrality, transverse
momentum PT , and azimuthal emission angle φ relative to the
reaction plane.

We found that, after tuning the models to reproduce
the correct pion RAA in central collisions, they all gave
approximately identical results for the collision centrality
dependence of the azimuthally averaged RAA(PT ), featuring
weak PT -dependence and yielding good qualitative agreement
with experimental data. The tomographic power of this
azimuthally averaged quantity for distinguishing between
different (realistic) medium models is therefore low. A stronger
path-length dependence of the energy loss (∼L3 instead of
∼L2) produces a slightly stronger impact-parameter depen-
dence of the φ-averaged RAA, but small differences between
the different hydrodynamic models for the medium interfere
with this tendency, making it difficult to disentangle these
effects. The centrality dependence of the azimuthally averaged
IAA is a priori a bit more promising since it was found to react
more strongly to changes in the path-length dependence of the
energy loss. On the other hand, to measure this quantity with
good statistical precision is much more difficult. Furthermore,
it is not obvious from our studies that such a measurement will
contribute any useful information about the medium that would
help distinguish between different hydrodynamic evolution
models. The azimuthally averaged RAA is found to provide
practically no such discriminating power.

The measurement of the in-plane versus out-of-plane
variation of RAA(φ) provides much better discrimination.7

We confirm earlier findings showing that it is not easy to
reproduce the relatively large oscillation amplitude of RAA(φ)
found by the PHENIX experiment. We identified several
mechanisms that help to increase the in-plane versus out-of-
plane spread of RAA and, in combination, may be able to

7Whether the same holds true for the azimuthal variation of IAA

depends on how large an oscillation amplitude will be found in
experiment. If the azimuthal variation remains within the limited
range found in our calculations even in a fragmentation-dominated
momentum range, its discriminating power will be low, due to
statistical uncertainties; a much larger oscillation signal could,
however, eliminate all of the models studied in this work.
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explain the data: (i) A stronger path-length dependence of
parton energy loss, combined with (ii) a delayed beginning
of the energy-loss action, caused by the need for allowing
the scattering centers in the medium that induce the hard
parton to radiate energy to decohere from the initial-state wave
function of the colliding nuclei, (iii) a delay of the flow-induced
dilution of the medium density by viscous heating, and (iv) a
larger fireball eccentricity by initializing the hydrodynamic
evolution with CGC-fKLN initial conditions rather than the
less-deformed Glauber model initial density profile. We found
that the combination of effects (i) and (ii) accounts for
about 50% of the azimuthal spread found in our calculations,
viscous heating contributes another 35% of the effect, with
the remaining 15% arising from different initial fireball
eccentricities.

Analyzing the reasons why the mechanisms (i)–(iii) cause
a larger in-plane versus out-of-plane spread of RAA, we found
that they all shift the weight of the energy loss toward later
times along the path of the parton. This allows the parton
energy loss to probe the spatial anisotropy of the medium
(which is a global fireball property) on a global length scale,
rather than probing the properties of the medium locally in
the vicinity of the production vertex only. If the global spatial
anisotropy of the medium can be probed by a parton, the
connection between spatial medium anisotropy and final-state
hard parton momentum anisotropy is strongest.

We would like to point specifically to the role of viscosity
in this context: We are beginning to see significant roles
played by the (necessarily nonzero) shear viscosity of the
quark-gluon plasma even though its absolute value [expressed
through the dimensionless ratio η

s
= O(1–3) × 1

4π
] is almost

as small as theoretically possible [63]. In Ref. [21] we found
that η

s
≈ (2–3) × 1

4π
gives the best fit to the pion and proton

momentum spectra in 200A GeV Au-Au collisions, and here
we found that a similar value contributes significantly to the
in-plane versus out-of-plane spread of RAA for pions. We hope
and expect that a combined analysis of all RHIC data on soft
hadron production and hard parton medium modification will
eventually lead to an accurate determination of the quark-gluon
plasma viscosity.
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