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Event-plane flow analysis without nonflow effects
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3Institut de Physique Théorique, CEA-Saclay, F-91191 Gif-sur-Yvette cedex, France
(Received 28 January 2008; revised manuscript received 3 November 2010; published 27 January 2011)

The event-plane method, which is widely used to analyze anisotropic flow in nucleus-nucleus collisions, is
known to be biased by nonflow effects, especially at high pt . Various methods (cumulants, Lee-Yang zeros)
have been proposed to eliminate nonflow effects, but their implementation is tedious, which has limited their
application so far. In this article, we show that the Lee-Yang-zeroes method can be recast in a form similar to
the standard event-plane analysis. Nonflow correlations are strongly suppressed by using the information from
the length of the flow vector, in addition to the event-plane angle. This opens the way to improved analyses of
elliptic flow and azimuthally sensitive observables at the Relativistic Heavy Ion Collider and the Large Hadron
Collider.
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I. INTRODUCTION

Studies of particle production at the BNL Relativistic
Heavy Ion Collider (RHIC) have revealed strong collective
effects: In particular, the azimuthal distribution transverse to
the direction of the colliding nuclei has sizable anisotropies,
a phenomenon called anisotropic flow. The main component
of this anisotropy, elliptic flow, has been extensively measured
for several beam energies and collision systems [1–3].

Anisotropic flow is most often analyzed using the event-
plane method [4]. This analysis technique is plagued by
systematic errors due to nonflow effects [5]. There are other
sources of systematic errors, such as fluctuations [6,7], but
nonflow effects are expected to be the dominant source of error
at high pt [8], where they are likely to originate from jetlike
(hard) correlations; they are expected to be even larger at the
Large Hadron Collider (LHC). The purpose of this article is to
show that nonflow effects can be suppressed at the expense of
a slight modification of the event-plane method.

Anisotropic flow of selected produced particles, in a given
part of phase space, is defined as their azimuthal correlation
with the reaction plane [9]

vn ≡ 〈cos(n(φ − �RP))〉, (1)

where n is an integer (v1 is directed flow and v2 is elliptic flow),
φ, �RP and angular brackets denote respectively the azimuth
of the particle under study, the azimuth of the reaction plane,
and an average over particles and events. Since �RP is not
known experimentally, vn cannot be measured directly.

The most commonly used method to estimate vn is the
event-plane method [4]. In each event, one constructs an
estimate of the reaction plane �RP, the “event plane” �EP [10].
The anisotropic flow coefficients are then estimated as

vn{EP} ≡ 1

R
〈cos(n(φ − �EP))〉, (2)

where R = 〈cos(n(�EP − �RP))〉 is the event-plane resolution,
which corrects for the difference between �EP and �RP. This

resolution is determined in each class of events through a
standard procedure [11].

The analogy between Eq. (2) and Eq. (1) makes the method
rather intuitive, but its practical implementation has a few
subtleties:

(i) One must remove autocorrelations: the particle under
study should not be used in defining the event plane,
otherwise there is a trivial correlation between φ and
�EP [10]. This means in practice that one must keep
track of which particles have been used in defining the
event plane to remove them if necessary.

(ii) More generally, there are sources of correlation, other
than flow, through which the particle under study
can be correlated with a particle used in defining the
event plane. Such correlations, called “nonflow effects,”
result in vn{EP} �= vn and must be suppressed. This
cannot be done in a systematic way, but rapidity gaps
are believed to reduce nonflow effects [3,12].

(iii) Event-plane flattening procedures must be imple-
mented to correct for azimuthal asymmetries of the
detector acceptance [4].

A systematic way of suppressing nonflow effects is to use
improved methods such as cumulants [13] or Lee-Yang zeros
[14]. Cumulants have been used at the CERN Super Proton
Synchrotron (SPS) [15] and RHIC [8,16]. Lee-Yang zeros have
been implemented at GSI Schwerionen Synchrotron (SIS) [17]
and at RHIC [18]. They are comparatively much less used than
the event-plane method, and one reason is that the event-plane
method is deemed more intuitive and handy.

In this paper, we show that the method of flow analysis
based on Lee-Yang zeros can be rewritten in a way which is
mathematically equivalent to the original formulation [14] but
formally analogous to the event-plane method, which makes it
more intuitive. The corresponding estimate of vn is defined as

vn{LYZ} ≡ 〈WR cos[n(φ − �EP)]〉, (3)

where �EP is the same as in Eq. (2) and WR is an event
weight as defined in this article. The formal analogy with the
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event-plane method, Eq. (2), is obvious. The advantage of
the improved event-plane method defined by Eq. (3) over the
standard event-plane method is that both autocorrelations and
nonflow effects are automatically suppressed.

The article is organized as follows. In Sec. II, we describe
the method for a detector with perfect azimuthal symmetry,
and we explain why it automatically removes autocorrelations
and nonflow correlations, in contrast to the standard event-
plane method. Readers interested in applying the method
should read the Appendix, which describes the recommended
practical implementation, taking into account anisotropies in
the detector acceptance. In Sec. III, we present results of
Monte Carlo simulations, where results obtained with the
Lee-Yang-zeros method are compared to those obtained with
two- and four-particle cumulants. Section IV concludes with
a discussion of where the method should be applicable, and of
its limitations.

II. DESCRIPTION OF THE METHOD

A. The flow vector

The first step of the flow analysis is to evaluate, for each
event, the flow vector of the event. It is a two-dimensional
vector Q = (Qx,Qy) defined as

Qx = Q cos(n�EP) ≡
M∑

j=1

wj cos(nφj )

(4)

Qy = Q sin(n�EP) ≡
M∑

j=1

wj sin(nφj ),

where the sum runs over all detected particles [19], M is the
observed multiplicity of the event, and φj are the azimuthal
angles of the particles measured with respect to a fixed
direction in the laboratory. The coefficients wj in Eq. (4)
are weights depending on transverse momentum, particle
mass, and rapidity. The best weight, which minimizes the
statistical error (or, equivalently, maximizes the resolution)
is vn itself, wj (pT , y) ∝ vn(pT , y) [20]. A reasonable choice
for elliptic flow measurements at RHIC (and probably LHC)
is w = pT .

If collective flow is present, the azimuthal angles φj and the
event plane �EP are correlated with the true reaction plane �RP,
and the goal of the flow analysis is to measure this correlation.
This is usually done within a set of events belonging to the
same centrality class. Integrated flow is defined as the average
value of the projection of Q onto the true reaction plane:

Vn ≡ 〈Q cos[n(�EP − �RP)]〉 (5)

where angular brackets denote an average over events in the
same centrality class. We use a capital letter for Vn because it
is in general a dimensionful quantity: it is the weighted sum of
the vn’s of individual particles, according to Eqs. (1) and (4).
The flow vector fluctuates around this average value because
the multiplicity is finite. These fluctuations can be modeled
using the central limit theorem. The resulting distribution of
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FIG. 1. (Color online) (Shaded area) Probability distribution of
Q, Eq. (6), with Vn = 0.0625. (Top) χ = 1.5, corresponding to a
resolution R = 0.86 in the standard analysis [see Eq. (2)]; (bottom)
χ = 1, corresponding to a resolution R = 0.71. This is the typical
value for a semicentral Au-Au collision at RHIC analyzed by the
STAR TPC [8]. (Solid curve) Weight WR defined by Eqs. (15)
and (16). (Open circles) Histograms of the distribution of Q obtained
in the Monte Carlo simulation of Sec. III, following the procedure
detailed in the Appendix. (Stars) Weights obtained in Sec. III.

Q is [5]:

dN

dQ
= 2χ2Q

V 2
n

exp

[
−χ2

(
Q2

V 2
n

+ 1

)]
I0

(
2χ2Q

Vn

)
, (6)

where χ is a dimensionless quantity called the resolution
parameter, which characterizes the relative magnitude of
collective flow and statistical fluctuations. The resolution R

in Eq. (2) increases from 0 to 1 as χ goes from 0 to +∞.
Figure 1 illustrates the distribution of Q for two values of
χ . For χ � 1, this distribution is a narrow peak centered at
Q = Vn.

Lee-Yang zeros use the projection of the flow vector onto
a fixed, arbitrary direction making an angle nθ with respect to
the x axis. We denote this projection by Qθ :

Qθ ≡ Qx cos nθ + Qy sin nθ = Q cos[n(�EP − θ )]. (7)

B. Integrated flow

We now explain how the integrated flow Vn, defined by
Eq. (5), is obtained. We define the complex-valued function:

Gθ (r) ≡ 〈eirQθ 〉 ≡ 1

Nevts

∑
events

eirQθ . (8)

If there is no collective flow, the probability distribution of Qθ

is a Gaussian due to the central limit theorem (if M � 1).
Its Fourier transform Gθ (r) is also a Gaussian. Collective
flow results in oscillations of Gθ (r) around zero: In the ideal
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case where the multiplicity is so large that fluctuations can be
neglected, �EP � �RP and Q � Vn. Inserting Eq. (7) into (8)
and averaging over �RP, one obtains

Gθ (r) � J0(rVn), (9)

where J0(x) denotes the Bessel function of the first kind
of order 0, which oscillates around 0. Finite multiplicity
fluctuations result in a Gaussian smearing of Gθ (r), but,
quite remarkably, the location of the zeros is unchanged,
up to statistical fluctuations due to the finite number of
events [21].

As a consequence, the modulus |Gθ (r)| has sharp minima
for positive r , which can be estimated numerically. The
position of the first minimum, rθ , is used to estimate Vn, using
Eq. (9):

Vn = j01

rθ

, (10)

where j01 � 2.40483 is the first zero of J0(x). One may also
check, as a consistency test, that |Gθ (rθ )| = 0 within statistical
errors [21].

The above procedure only makes use of the projection of the
flow vector onto an arbitrary direction θ . For a perfect detector,
azimuthal symmetry ensures that rθ is independent of θ , up
to statistical errors. In practice, however, it is recommended
to repeat the analysis for several values of θ (see the
Appendix).

C. Differential flow and event weight

We now derive the expression of the event weight in
Eq. (3), which is the crucial improvement of our article over
the standard event-plane method. The goal is to measure the
differential flow vn of selected produced particles. vn can be
obtained by shifting the weights wj of the selected particles
in Eq. (4) by an infinitesimal quantity ε, w′

j = wj + ε, and
computing the integrated flow V ′

n with the new weights. The
differential flow is then simply given by vn = δVn/ε, with
δVn = V ′

n − Vn. Differentiating Eq. (10),

vn{LYZ} = δVn

ε
= −Vn

ε

δrθ

rθ

, (11)

where δrθ denotes the shift of the zero. Differentiating the
condition 〈eirθ Qθ 〉 = 0, one obtains

δrθ 〈Qθe
irθ Qθ 〉 + rθ 〈δQθe

irθ Qθ 〉 = 0. (12)

For an event containing one selected particle, Eqs. (4) and (7)
give δQθ = ε cos[n(φ − θ )], where φ is the azimuth of the
selected particle. Equation (11) then gives

vn{LYZ} = Vn

〈cos[n(φ − θ )]eirθ Qθ 〉
〈Qθeirθ Qθ 〉 , (13)

where the average in the numerator is over selected particles
and the average in the denominator is over events. In this ex-
pression, θ is an arbitrary reference angle. Both the numerator
and the denominator are expected to be independent of θ ,
up to asymmetries in the detector acceptance, and statistical
fluctuations. In practice, we recommend to first take the ratio
and then average over θ , as explained under subsection 2 in the

Appendix. Here, we derive simple approximate expressions
by assuming that rθ is independent of θ and by averaging the
numerator and the denominator over θ before taking the ratio.
We thus obtain:

vn{LYZ} = Vn

〈cos(n(φ − �EP))J1(rθQ)〉
〈QJ1(rθQ)〉 , (14)

where J1(x) is the derivative of −J0(x). Identifying Eq. (14)
with Eq. (3), we obtain the event weight

WR ≡ 1

C
J1(rθQ), (15)

where C is a normalization constant which can be computed
using the distribution (6):

C = 1

Vn

〈QJ1(rθQ)〉 = exp

(
− j 2

01

4χ2

)
J1(j01). (16)

The difference with the standard event-plane analysis is that
each event is given a weight (15) which depends on the length
of the flow vector Q, a quantity which is not used in the
standard analysis. Equation (15) involves the integrated flow
Vn through rθ , which must be determined in a first pass through
the data.

Figure 1 displays the variation of WR with Q, for two
values of the resolution parameter. For χ � 1, the distribution
of Q is a narrow peak centered at Q = Vn. Therefore, the
weight defined by Eqs. (15) and (16) is close to 1 for all
events. If χ is smaller, the distribution of Q is wider and WR is
negative for some events. These negative weights are required
in order to subtract nonflow effects. On the other hand, they
also subtract part of the flow. In order to compensate for this
effect, the global normalization of the weight increases when
χ decreases (as illustrated in Fig. 1 by the fact that the am-
plitude of the curve showing the weight changes for different
values of χ ). This qualitatively explains the χ dependence
in Eq. (16).

The weight (15) vanishes linearly at Q = 0. This is
physically intuitive. Given that the flow vector is obtained by
summing over all particles, one increases the relative weight of
collective flow over individual, random motion of the particles.
If the flow vector is small in an event, it means that the random
motion hides the collective motion in this particular event,
which is therefore of little use for the flow analysis.

D. Nonflow effects and autocorrelations

We now explain why the method suppresses nonflow effects
and autocorrelations on the basis of two simple examples.

As a first example, we assume that each particle splits into
two particles with identical momenta, roughly imitating the
effect of resonance decays or track splitting in a detector. This
splitting does not change the anisotropic flow vn, defined by
Eq. (1), but it introduces nonflow correlations, which bias
standard analyses as will be shown in Sec. III. The splitting
leaves vn{LYZ} unchanged: it multiples both the flow vector,
Eq. (4), and the integrated flow Vn, Eq. (5), by 2. Therefore rθ

in Eq. (10) is divided by 2, and vn{LYZ} defined by Eq. (13)
is unchanged.
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As a second example, we consider the situation where there
is collective flow in the system, but the selected particles
have vn = 0. We further assume that the selected particles
are uncorrelated with the other particles. In the standard
event-plane method, one needs to subtract the selected particles
from the flow vector (4), otherwise autocorrelations yield
vn{EP} > 0. We now show that vn{LYZ} = 0, even if selected
particles are included in the flow vector.

We separate the flow vector, Eq. (4), into the contribution
of selected particles, Qsel., and other particles Qothers.

Q = Qsel. + Qothers. (17)

Our estimate of vn is defined by Eq. (13). Since the flow
vector appears in an exponential, the contributions of selected
particles and other particles can be written as a product of two
independent factors:

vn = Vn

〈cos(n(φ − θ ))eirθ (Qsel.)θ 〉〈eirθ (Qothers)θ 〉
〈Qθeirθ Qθ 〉 , (18)

Let us define Gothers,θ (r) by replacing Qθ with Qothers,θ in
Eq. (8). Following the same reasoning as in Sec. II B, the first
zero of Gothers,θ depends on the integrated flow Vn,others of other
particles. We have assumed that vn = 0 for selected particles,
therefore Vn,others = Vn, and

〈eirθ (Qothers)θ 〉 = 〈eirθ Qθ 〉 = 0. (19)

Inserting into Eq. (18), we find

vn{LYZ} = 0, (20)

up to statistical fluctuations. This proof can easily be general-
ized to the situation where each selected particle is correlated
with a few additional particles (e.g., within a jet) which are
not correlated with the bulk of particles producing collective
flow.

We have constructed two simple examples where Lee-Yang
zeros are able to eliminate nonflow effects and autocorrela-
tions. In actual experiments, however, flow and nonflow effects
are likely to be mingled, and detailed simulations must be
carried out to determine to what extent the suppression is
effective.

III. SIMULATIONS

To check the validity of the procedure described in this
article and to compare it with other analysis methods N =
28 000 events were simulated with a Monte Carlo program
dubbed GEVSIM [22]. In GEVSIM the v2 and the particle
yield as function of transverse momentum and pseudorapidity
are generated according to a user-defined parametrization.
For these simulations events were generated using a linear
dependence of v2(pt ) in the range 0–2 GeV/c, and above
2 GeV/c the v2(pt ) was set constant. The average elliptic
flow is 〈v2〉 = 0.0625. We then reconstructed v2(pt ) from the
simulated events using several methods: the Lee-Yang-zeroes
method described in the Appendix, as well as two- and
four-particle cumulants [13]. The corresponding estimates of
v2 are denoted by v2{LYZ}, v2{2}, and v2{4}, respectively.
v2{2} is generally close to v2 from the traditional event-plane
method; both are biased by nonflow effects. On the other hand,
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FIG. 2. (Color online) Differential elliptic flow v2(pt ) recon-
structed using different methods; in the upper panel from events
where no nonflow was included; in the lower panel from events with
nonflow. The line in both panels is the input v2.

v2{4} is expected to be close to v2{LYZ}, with the bias from
nonflow effects suppressed. The weight wj in Eq. (4) was
chosen identically 1/M for all particles, with M the event
multiplicity, so the integrated flow Vn defined by Eq. (1)
coincides with the average elliptic flow, i.e., Vn = 0.0625.
The analysis was repeated twice by varying the multiplicity
M used in the flow analysis: the values 256 and 576 were used
to achieve a resolution of χ =1 and 1.5. [23].

Figure 2 shows the generated (input) v2(pt ) together with
the reconstructed v2(pt ) using cumulants and Lee-Yang zeros
for χ = 1. The upper panel shows the results in the case where
all correlations are due to flow. In this case, all three methods
yield the correct v2(pt ) and 〈v2〉 within statistical uncertainties
(see Table I), which are twice larger for v2{4} and v2{LYZ}
than for v2{2} (see subsection 3 in the Appendix).

In the lower panel, simulations are shown which include
nonflow effects. Because GEVSIM generates no nonflow,
nonflow correlations are introduced by using each input track
twice, as in Sec. II D. Experiments at RHIC have shown [8]
that nonflow effects are larger at high pt (probably due to
jet-like correlations), and a realistic simulation of nonflow
effects should take into account this pt dependence. Our

TABLE I. Value of the average elliptic flow 〈v2〉 reconstructed,
using different methods, from simulated data with and without
nonflow effects. The input value is 〈v2〉 = 0.0625.

Method Flow only Flow + nonflow

v2{2} 0.0626 ± 0.0003 0.0764 ± 0.0004
v2{4} 0.0624 ± 0.0005 0.0627 ± 0.0007
v2{LYZ} 0.0626 ± 0.0005 0.0629 ± 0.0007
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simplified implementation, which does not, is not realistic.
It is merely an illustration of the impact of nonflow effects
on the flow analysis. Figure 2 shows that due to nonflow
effects, the method based on two-particle cumulants (v2{2})
overestimates the average elliptic flow 〈v2〉. The error on the
average elliptic flow is larger than 20% (see Table I, right
column). The transverse-momentum dependence of v2(pt )
is also not correct, with an excess at low pt by 0.03. By
contrast, the results from four-particle cumulants (v2{4}) and
Lee-Yang zeros (v2{LYZ}) are, within statistical uncertainties,
in agreement with the true generated flow distribution. This
shows that the method presented in this article is able to remove
nonflow effects.

IV. DISCUSSION

Two effects limit the accuracy of flow analyses at high
energy: nonflow effects and eccentricity fluctuations [6,7].
The method presented in this article is an improved event-
plane method, which strongly suppresses the first source of
uncertainty, nonflow effects. It has been argued [24] that
cumulants (and therefore Lee-Yang zeros, which corresponds
to the limit of large-order cumulants) also eliminate eccentric-
ity fluctuations [6,7]. However, a detailed study [25] shows
that even with cumulants, there may remain large effects of
fluctuations in central collisions and/or small systems. This
issue deserves more detailed investigation.

Letting aside the question of fluctuations, we now discuss
which method of flow analysis should be used, depending
on the situation. There are three main classes of methods: the
standard event-plane method [4], four-particle cumulants [13],
and the Lee-Yang-zeroes method presented in this article.
When the standard event-plane method is used, nonflow effects
and eccentricity fluctuations are generally the main sources of
uncertainty on vn, and they dominate over statistical errors.
The magnitude of this uncertainty is at least 10% at RHIC
in semicentral collisions; it is larger for more central or
more peripheral collisions and also larger at high pt . Unless
statistical errors are of comparable magnitude as errors from
nonflow effects, cumulants or Lee-Yang zeros should be
preferred over the standard method.

The main advantage of Lee-Yang zeros, compared to
cumulants, is that the method involves an event-plane angle.
This is useful in particular for studying azimuthally depen-
dent correlations [26,27]. Such studies cannot be done with
cumulants, but they are straightforward with Lee-Yang zeros.
The only complication is that the azimuthal distribution of
particle pairs generally involves sine terms [28], in addition to
the cosine terms of Eq. (1). These terms are simply obtained
by replacing cos with sin in Eq. (3).

When studying anisotropic flow of individual particles, both
cumulants and Lee-Yang zeros can be applied. The cumulant
method has been recently improved by directly calculating the
cumulants [29]. With these improvements, both methods are
expected to be essentially equivalent. The slight advantages
of Lee-Yang zeros are (i) they are easier to implement, (ii)
they further reduce the error from nonflow effects, and (iii) the
statistical error is slightly smaller if the resolution parameter
χ > 1. For χ = 0.8, the error is only 35% larger with

Lee-Yang zeros than with four-particle cumulants (and 4 times
larger than with the event-plane method).

Our recommendation is that Lee-Yang zeros should be used
as soon as χ > 0.8. For small values of χ , typically χ < 0.6,
statistical errors on Lee-Yang zeros blow up exponentially,
which rules out the method; the statistical error on four-particle
cumulants also increases but more mildly, and their validity
extends down to lower values of the resolution if very large
event statistics is available.

A limitation of the present method is that it does not apply
to mixed harmonics: this means that it cannot be used to
measure v1 and v4 at RHIC and LHC using the event plane from
elliptic flow [30]. Note that v1 can in principle be measured
using Lee-Yang zeros [31] using the “product”-generating
function, but this method cannot be recast in the form of an
improved event-plane method. Higher harmonics such as v4

also have a sensitivity to autocorrelations and nonflow effects,
which is significantly reduced by using the product-generating
function [13].

In conclusion, we have presented an improved event-plane
method for the flow analysis, which automatically corrects
for autocorrelations and nonflow effects. As in the standard
method, each event has its event plane �EP, an estimate of the
reaction plane, which is the same as for the standard method,
except for technical details in the practical implementation.
The trick which removes autocorrelations and nonflow effects
is that there is in addition an event weight. Anisotropic flow vn

is then estimated as a weighted average of cos[n(φ − �EP)].
A straightforward application of this method would be to
measure jet production with respect to the reaction plane
at LHC. With the traditional event-plane method, such a
measurement would require to subtract particles belonging
to the jet from the event plane; in addition, strong nonflow
correlations are expected within a jet, which would bias the
analysis.
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APPENDIX: PRACTICAL IMPLEMENTATION

Before we describe the implementation of the method, let us
mention that there are in fact two Lee-Yang-zeroes methods,
depending on how the generating function is defined: The
“sum-generating function” makes explicit use of the flow
vector [21], whereas the “product-generating function” [32] is
constructed using the azimuthal angles of individual particles
and cannot be expressed simply in terms of the flow vector.
Cumulants also exist in both versions, the “sum” [20] and
the “product” [13]. For Lee-Yang zeros, both the sum and
the product give essentially the same result for the lowest
harmonic [17]: The difference between results from the two
methods is significantly smaller than the statistical error. On
the other hand, the product-generating function is significantly
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better than the sum-generating function if one analyzes v4

or v1 [31] using mixed harmonics. The method described
below is strictly equivalent to the sum-generating function,
although expressed in different terms. On the other hand, the
product-generating function cannot be recast in a form similar
to the event-plane method and will not be used here.

The method a priori requires two passes through the data,
which are described in subsections 1 and 2 in this Appendix.

1. First pass: locating the zeroes

As with other flow analyses, one must first select events in
some centrality class. The whole procedure described below
must be carried out independently for each centrality class.

The flow vector (Qx,Qy) is defined by Eq. (4). In contrast
to the standard event-plane method, no flattening procedure is
required to make the distribution of Q isotropic. Corrections
for azimuthal anisotropies in the acceptance, which do not vary
significantly in the event sample used, are handled using the
procedure described below. We do not define the event plane
�EP as the azimuthal angle of the flow vector, as in Eq. (4).
The procedure below defines both the event weight and the
event plane.

The analysis uses the projection of the flow vector onto
an arbitrary direction; see Eq. (7). In practice, the first
pass should be repeated for several equally spaced values
of nθ between 0 and π . This reduces the statistical error
as is clear from Eq. (A5). For more than 5 values of θ

the reduction is no longer significant, so this number is
recommended. For elliptic flow, for instance, θ takes the values
θ = 0, π/10, 2π/10, 3π/10, 4π/10.

One first computes the modulus |Gθ (r)|, with Gθ defined
by Eq. (8), as a function of r for positive r . One determines
numerically the first minimum of this function. This is the
Lee-Yang zero. We denote its value by rθ . It must be stored for
each θ .

2. Second pass: determining the event weight, wR, and the
event plane, �EP

In the second pass, one computes and stores, for each θ , the
following complex number:

Dθ ≡ 1

j01Nevts

∑
events

rθQθe
irθ Qθ , (A1)

where j01 � 2.40483. Except for statistical fluctuations and
asymmetries in the detector acceptance, Dθ should be purely
imaginary.

For each event, the event weight and the event plane are
defined by

WR cos n�EP ≡
〈
Re

(
eirθ Qθ

Dθ

)
cos nθ

〉
θ (A2)

WR sin n�EP ≡
〈
Re

(
eirθ Qθ

Dθ

)
sin nθ

〉
θ

,

where Re denotes the real part and angular brackets denote
averages over the values of θ defined in subsection 1. Our
estimate of vn, denoted by vn{LYZ}, is then defined by Eq. (3).

 [rad]LYZψ-EPψ
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co
u

n
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 = 1.5χ
 = 1.χ

FIG. 3. (Color online) Distribution of the relative angle between
the event plane �EP defined by Eq. (A2), with WR > 0, and the
standard event plane, for the reconstruction shown in Fig. 2.

We now discuss how the angle �EP defined by Eq. (A2)
compares with the event plane from the standard analysis. First,
we note that Eqs. (A2) uniquely determine the angle n�EP

(modulo 2π ) only if the sign of WR is known. The simplest
convention is WR > 0. In the simplified implementation
described in Sec. II, however, where �EP coincides with the
standard event plane, WR defined by Eq. (15) can be negative,
because the Bessel function changes sign (see Fig. 1). The
convention WR > 0 then leads to a value of n�EP which differs
from the standard event plane by π , since changing the sign
of WR amounts to shifting n�EP by π in Eqs. (A2). This
is illustrated in Fig. 3, which shows the distribution of the
relative angle between �EP and the standard event plane in the
simulation of v2 at LHC described in Sec. III. The distribution
has two sharp peaks at 0 and π/2. The sign ambiguity produces
the peak at π/2. The width of the peaks results from statistical
fluctuations. The final result vn{LYZ}, given by Eq. (3), does
not depend on the sign chosen for WR .

If one wishes to have an event plane as close as possible
to the standard event plane, one may choose the following
convention. Denoting by �std

EP the standard event plane, one
computes the following quantity:

S ≡ WR cos n�EP cos n�std
EP + WR sin n�EP sin n�std

EP, (A3)

where WR cos n�EP and WR sin n�EP are defined by Eq. (A2).
The sign of WR is then chosen as the sign of S, which ensures
that n�EP − n�std

EP lies between −π/2 and π/2.
The procedure described in this Appendix differs from

the procedure described in Sec. II only in the case of
nonuniform acceptance. This agreement can be seen in Fig. 1,
which displays a comparison between the two. The solid
line corresponds to the weight defined in Sec. II [Eqs. (15)
and (16)], while the stars corresponds to the weight defined
by Eq. (A2), as implemented in the Monte Carlo simulation
presented in Sec. III. The agreement is very good. This
agreement can also be seen directly from the equations. If
the detector has perfect azimuthal symmetry, rθ and Dθ in
Eq. (A2) are independent of θ , up to statistical fluctuations.
Neglecting these fluctuations, replacing Qθ with Eq. (7) and
integrating over θ , one easily recovers Eq. (15). If there are
azimuthal asymmetries in the detector acceptance, on the other
hand, they are automatically taken care of by Eq. (A2). The
fact that one first projects the flow vector onto a fixed direction
θ is essential (for a related discussion, see [33]).

014909-6



EVENT-PLANE FLOW ANALYSIS WITHOUT NONFLOW EFFECTS PHYSICAL REVIEW C 83, 014909 (2011)

3. Statistical errors

The statistical error strongly depends on the resolution
parameter [11] χ , which is closely related to the reaction plane
resolution in the event-plane analysis. It is given by

χ = Vn√〈
Q2

x + Q2
y

〉 − 〈Qx〉2 − 〈Qy〉2 − V 2
n

. (A4)

In this equation, Vn is given by Eq. (10), averaged over θ

to minimize the statistical dispersion. The average values
〈Qx〉, 〈Qy〉, 〈Q2

x〉, and 〈Q2
y〉 must be computed in the first

pass through the data. Note that 〈Qx〉 and 〈Qy〉 vanish for a
symmetric detector: they are acceptance corrections.

The price to pay for the elimination of nonflow effects is
an increased statistical error. This increase is very modest if χ

is larger than 1: If χ = 1.5, the error is only 25% larger than
with the standard event-plane method. If χ = 1, it is larger
by a factor 2. If χ = 0.6, it is 20 times larger. This prevents
the application of Lee-Yang zeros in practice for χ smaller
than 0.6.

We now recall the formulas [14] which determine the
statistical error δvstat

n on vn{LYZ}:
(
δvstat

n

)2 = 1

4N ′J1(j01)2p

p−1∑
k=0

cos

(
kπ

p

)

×
{

exp

[
j 2

01

2χ2
cos

(
kπ

p

)]
J0

[
2j01 sin

(
kπ

2p

)]

−exp

[
− j 2

01

2χ2
cos

(
kπ

p

)]
J0

[
2j01 cos

(
kπ

2p

)]}
(A5)

where N ′ denotes the number of objects one correlates to
the event plane, whatever they are (jets, individual particles)
and p is the number of equally spaced values of θ used
in the analysis (see above). The larger the p, the smaller
the error. The recommended value is p = 5, because larger
values do not significantly reduce the error. This equation
shows that the statistical error diverges exponentially when χ

is small.

[1] K. H. Ackermann et al. (STAR Collaboration), Phys. Rev. Lett.
86, 402 (2001).

[2] B. B. Back et al. (PHOBOS Collaboration), Phys. Rev. Lett. 89,
222301 (2002).

[3] S. S. Adler et al. (PHENIX Collaboration), Phys. Rev. Lett. 91,
182301 (2003).

[4] A. M. Poskanzer and S. A. Voloshin, Phys. Rev. C 58, 1671
(1998).

[5] J. Y. Ollitrault, Nucl. Phys. A 590, 561C (1995).
[6] M. Miller and R. Snellings, arXiv:nucl-ex/0312008.
[7] B. Alver et al. (PHOBOS Collaboration), Phys. Rev. Lett. 98,

242302 (2007).
[8] J. Adams et al. (STAR Collaboration), Phys. Rev. C 72, 014904

(2005).
[9] S. Voloshin and Y. Zhang, Z. Phys. C 70, 665 (1996).

[10] P. Danielewicz and G. Odyniec, Phys. Lett. B 157, 146 (1985).
[11] J. Y. Ollitrault, arXiv:nucl-ex/9711003.
[12] S. A. Voloshin (STAR Collaboration), AIP Conf. Proc. 870, 691

(2006).
[13] N. Borghini, P. M. Dinh, and J. Y. Ollitrault, Phys. Rev. C 64,

054901 (2001).
[14] R. S. Bhalerao, N. Borghini, and J. Y. Ollitrault, Nucl. Phys. A

727, 373 (2003).
[15] C. Alt et al. (NA49 Collaboration), Phys. Rev. C 68, 034903

(2003).
[16] C. Adler et al. (STAR Collaboration), Phys. Rev. C 66, 034904

(2002).
[17] N. Bastid et al. (FOPI Collaboration), Phys. Rev. C 72, 011901

(2005).
[18] B. I. Abelev et al. (STAR Collaboration), Phys. Rev. C 77,

054901 (2008).
[19] In the event-plane method, the sum runs over a selected

subset of detected particles, not over all particles, in order to

suppress nonflow correlations. With the present method, nonflow
correlations are not an issue. On the other hand, the method can
only be applied if the resolution is large enough, as will be
discussed in Sec. IV. In order to maximize the resolution, one
must use all detected particles.

[20] N. Borghini, P. M. Dinh, and J. Y. Ollitrault, Phys. Rev. C 63,
054906 (2001).

[21] R. S. Bhalerao, N. Borghini, and J. Y. Ollitrault, Phys. Lett. B
580, 157 (2004).

[22] S. Radomski and Y. Foka, ALICE NOTE 2002-31;
[http://www.gsi.de/forschung/kp/kp1/gevsim.html]

[23] χ depends on the average elliptic flow 〈v2〉, and on the event
multiplicity M . If there are no nonflow effects, and if the weights
in Eq. (4) are identical for all particles, χ = 〈v2〉

√
M .

[24] S. A. Voloshin, A. M. Poskanzer, A. Tang, and G. Wang, Phys.
Lett. B 659, 537 (2008).

[25] B. Alver et al., Phys. Rev. C 77, 014906 (2008).
[26] J. Adams et al. (STAR Collaboration), Phys. Rev. Lett. 93,

252301 (2004).
[27] J. Bielcikova, S. Esumi, K. Filimonov, S. Voloshin, and J. P.

Wurm, Phys. Rev. C 69, 021901 (2004).
[28] N. Borghini and J. Y. Ollitrault, Phys. Rev. C 70, 064905

(2004).
[29] A. Bilandzic, R. Snellings, and S. Voloshin, arXiv:1010.0233

[nucl-ex].
[30] J. Adams et al. (STAR Collaboration), Phys. Rev. Lett. 92,

062301 (2004).
[31] N. Borghini and J. Y. Ollitrault, Nucl. Phys. A 742, 130

(2004).
[32] N. Borghini, R. S. Bhalerao, and J. Y. Ollitrault, J. Phys. G 30,

S1213 (2004).
[33] I. Selyuzhenkov and S. Voloshin, Phys. Rev. C 77, 034904

(2008).

014909-7

http://dx.doi.org/10.1103/PhysRevLett.86.402
http://dx.doi.org/10.1103/PhysRevLett.86.402
http://dx.doi.org/10.1103/PhysRevLett.89.222301
http://dx.doi.org/10.1103/PhysRevLett.89.222301
http://dx.doi.org/10.1103/PhysRevLett.91.182301
http://dx.doi.org/10.1103/PhysRevLett.91.182301
http://dx.doi.org/10.1103/PhysRevC.58.1671
http://dx.doi.org/10.1103/PhysRevC.58.1671
http://dx.doi.org/10.1016/0375-9474(95)00278-9
http://arXiv.org/abs/arXiv:nucl-ex/0312008
http://dx.doi.org/10.1103/PhysRevLett.98.242302
http://dx.doi.org/10.1103/PhysRevLett.98.242302
http://dx.doi.org/10.1103/PhysRevC.72.014904
http://dx.doi.org/10.1103/PhysRevC.72.014904
http://dx.doi.org/10.1007/s002880050141
http://dx.doi.org/10.1016/0370-2693(85)91535-7
http://arXiv.org/abs/arXiv:nucl-ex/9711003
http://dx.doi.org/10.1063/1.2402731
http://dx.doi.org/10.1063/1.2402731
http://dx.doi.org/10.1103/PhysRevC.64.054901
http://dx.doi.org/10.1103/PhysRevC.64.054901
http://dx.doi.org/10.1016/j.nuclphysa.2003.08.007
http://dx.doi.org/10.1016/j.nuclphysa.2003.08.007
http://dx.doi.org/10.1103/PhysRevC.68.034903
http://dx.doi.org/10.1103/PhysRevC.68.034903
http://dx.doi.org/10.1103/PhysRevC.66.034904
http://dx.doi.org/10.1103/PhysRevC.66.034904
http://dx.doi.org/10.1103/PhysRevC.72.011901
http://dx.doi.org/10.1103/PhysRevC.72.011901
http://dx.doi.org/10.1103/PhysRevC.77.054901
http://dx.doi.org/10.1103/PhysRevC.77.054901
http://dx.doi.org/10.1103/PhysRevC.63.054906
http://dx.doi.org/10.1103/PhysRevC.63.054906
http://dx.doi.org/10.1016/j.physletb.2003.11.056
http://dx.doi.org/10.1016/j.physletb.2003.11.056
http://www.gsi.de/forschung/kp/kp1/gevsim.html
http://dx.doi.org/10.1016/j.physletb.2007.11.043
http://dx.doi.org/10.1016/j.physletb.2007.11.043
http://dx.doi.org/10.1103/PhysRevC.77.014906
http://dx.doi.org/10.1103/PhysRevLett.93.252301
http://dx.doi.org/10.1103/PhysRevLett.93.252301
http://dx.doi.org/10.1103/PhysRevC.69.021901
http://dx.doi.org/10.1103/PhysRevC.70.064905
http://dx.doi.org/10.1103/PhysRevC.70.064905
http://arXiv.org/abs/arXiv:1010.0233
http://dx.doi.org/10.1103/PhysRevLett.92.062301
http://dx.doi.org/10.1103/PhysRevLett.92.062301
http://dx.doi.org/10.1016/j.nuclphysa.2004.06.015
http://dx.doi.org/10.1016/j.nuclphysa.2004.06.015
http://dx.doi.org/10.1088/0954-3899/30/8/092
http://dx.doi.org/10.1088/0954-3899/30/8/092
http://dx.doi.org/10.1103/PhysRevC.77.034904
http://dx.doi.org/10.1103/PhysRevC.77.034904

