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We discuss low-mass dilepton rates (�1 GeV) from the deconfined phase of QCD using both perturbative
and nonperturbative models and compare them with those from lattice gauge theory and in-medium hadron gas.
Our analysis suggests that the rate at very low invariant mass (M � 200 MeV) using the nonperturbative gluon
condensate in a semiempirical way within the Green function approach dominates over the Born rate, independent
of any uncertainty associated with the choice of the strong coupling in perturbation theory. On the other hand,
the rate from ρ-q interaction in the deconfined phase is important at 200 MeV � M � 1 GeV as it is almost of
same order as the Born rate as well as the in-medium hadron gas rate. Also, the higher order perturbative rate,
leaving aside its various uncertainties, from the hard-thermal-loop approximation becomes reliable at M � 200
MeV and also becomes comparable with the Born rate and the lattice rate for M � 500 MeV, constraining on
the broad resonance structures in the dilepton rate at large invariant mass. We also discuss the lattice constraints
on the low-mass dilepton rate. Furthermore, we discuss a realistic way to advocate the quark-hadron duality
hypothesis based on the dilepton rates from quark-gluon plasma and hadron gas.
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I. INTRODUCTION

The prime intention for ultrarelativistic heavy-ion collisions
is to study the behavior of nuclear or hadronic matter
at extreme conditions such as very high temperatures and
energy densities. A particular goal lies in the identification
of a new state of matter formed in such collisions, the
quark-gluon plasma (QGP), where the quarks and gluons
are deconfined from the nucleons and move freely over an
extended space-time region. Various measurements taken at
CERN’s Super Proton Synchrotron (SPS) [1] and Brookhaven
National Laboratory’s Relativistic Heavy-Ion Collider (RHIC)
[2–7] do lead to circumstantial evidence for the formation of
QGP. Evidence is (and can only be) circumstantial because
only indirect diagnostic probes exist.

Electromagnetic probes, such as real photons and
dileptons, are a particular example, and accordingly
thermal dileptons have been theoretically proposed a
long time ago [8]. At SPS energies [9], there was
an indication for an enhancement of the dilepton
production at low invariant mass (0.2 � M (GeV) � 0.8)
compared to all known sources of electromagnetic decay
of the hadronic particles and the contribution of a radiating
simple hadronic fireball (for comprehensive reviews, see
Refs. [10–12]). One of the possible explanations of this is the
modification of the in-medium properties of the vector meson
(viz., ρ meson) by rescattering in a hadronic phase along with
only the lowest order perturbative rate, that is, qq̄ annihilation
from a QGP [10–13]. Also at RHIC energies [3], a substantial
excess of electron pairs was reported in the low-invariant-mass
region. Models taking into account in-medium properties
of hadrons with various ingredients (see Refs. [14,15] for
details) cannot explain the data from RHIC in the range
0.15 � M (GeV) � 0.5, whereas they fit the SPS data more
satisfactorily, indicating that a possible nonhadronic source
becomes important at RHIC.

On the other hand, the higher order perturbative calculations
[16] also are not very reliable at temperatures within the
reach of the heavy-ion collisions. Moreover, perturbative
calculations of the dilepton rate seem not to converge even
in a small coupling (g) limit. Nevertheless, the lowest order
perturbative qq̄ annihilation is the only dilepton rate from the
QGP phase that is extensively used in the literature. However,
this contribution should be dominant at large invariant mass but
not at low invariant mass, where nonperturbative effects should
play an important role. Unfortunately, the lattice data [17],
because of its limitations, also could not shed any light on the
low-mass dileptons. However, the lattice calculations [18–20]
provide evidence for the existence of nonperturbative effects
associated with the bulk properties of the deconfined phase, in
and around the deconfined temperature, Tc. Also, indications
have been found that the QGP at RHIC energies behaves more
as a strongly coupled liquid than as a weakly coupled gas [21].
Thus, a nonperturbative analysis of the dilepton rate from the
deconfined phase is essential.

The dilepton emission at low invariant mass from the
deconfined phase is still an unsettled issue in heavy-ion
collisions at SPS and RHIC energies and, in particular, would
be an important question for LHC energies, compact baryonic
matter formation in future Facilty for Antiproton and Ion
Research (FAIR) energies [22], and the quark-hadron duality
[10,11,23] that entails a reminiscence to a simple perturbative
lowest order qq̄ annihilation rate [24]. In this article, we
reconsider the dilepton production rates within the perturbative
QCD and nonperturbative models based on lattice inputs and
phenomenological ρ-q interaction in the deconfined phase.
The analysis suggests that the nonperturbative dilepton rates
are indeed important at the low-invariant-mass regime.

This article is organized in the following way. In Sec. II,
we discuss the dilepton production rate from the deconfined
phase based on both perturbative and nonperturbative models.
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In Sec. III, we compare the momentum integrated rates from
both QGP and hadron gas (HG). We discuss the quark-hadron
duality in Sec. IV and conclude in Sec. V.

II. DILEPTON RATE FROM DECONFINED PHASE

The dilepton production rate can be derived from the
imaginary part of the photon self-energy [8,25] as

dR

d4xd4P
= − α

12π4

1

eE/T − 1

Im�µ
µ(P )

M2
, (1)

where α = e2/4π , P is the four-momentum of the virtual pho-
ton, E is its energy, and we use the notation P ≡ (p0 = E, �p)
and p = |�p|. The square of the invariant mass of dilepton pair
is M2 = p2

0 − p2.

A. Born rate

To the lowest order, the dilepton rate follows from one-loop
photon self-energy containing bare quark propagators. This
rate corresponds to a dilepton production by the annihilation
of bare quarks and antiquarks of the QGP. Alternatively, this
so-called Born rate can also be obtained from the matrix
element of the basic annihilation process folded with the
thermal distribution functions of quarks. In the case of massless
lepton pairs in a QGP with two massless quark flavors with
chemical potential, one finds [24]

dR

d4xd4P
= 5α2

36π4

T

p

1

eE/T − 1

× ln
(x2 + exp[−(E + µ)/T ])(x1 + exp[−µ/T ])

(x1 + exp[−(E + µ)/T ])(x2 + exp[−µ/T ])
,

(2)

where x1 = exp[−(E + p)/2T ] and x2 = exp[−(E − p)/
2T ]. A finite quark mass can easily be included.

For µ = 0, the dilepton rate becomes

dR

d4xd4P
= 5α2

18π4

T

p

1

eE/T − 1
ln

(
cosh E+p

4T

cosh E−p

4T

)
, (3)

whereas that for total three-momentum �p = 0 is given as

dR

d4xd4P
= 5α2

36π4
n(E/2 − µ) n(E/2 + µ), (4)

with n(y) = [exp(y) + 1]−1, the Fermi-Dirac distribution
function.

B. Hard thermal loop perturbation theory (HTLpt) rate

To judge the reliability of the lowest order result, one
should consider higher order corrections. These corrections
involve quarks and gluons in the photon self-energy beyond
the one-loop approximation. Using bare propagators at finite
temperature, however, one encounters infrared singularities
and gauge-dependent results. These problems can be resolved,
at least partially, by adopting the hard-thermal-loop (HTL)
resummation scheme [26]. The key point of this method is the
distinction between the soft momentum scale (∼gT ) and the
hard one (∼T ), which is possible in the weak coupling limit

(g � 1). Resumming one-loop self-energies, in which the loop
momenta are hard (HTL approximation), effective propagators
and vertices are constructed, which are as important as bare
propagators if the momentum of the quark or gluon is soft. In
HTLpt, the bare N -point functions (propagator and vertices)
are replaced by those effective N -point HTL functions that
describe medium effects in the QGP such as the thermal masses
for quarks and gluons and Landau damping.

The importance of the medium and other higher order
effects on the dilepton rate depends crucially on the invariant
mass and the momenta of the virtual photon. Therefore, we
discuss now the different kinematical regimes:

1. Soft rate (M ∼ gT and p ∼ gT)

For soft invariant masses1 and momenta of order gT ,

one has to use HTL quark propagators and vertices in the
one-loop photon self-energy. These corrections are of the
same order as the Born term [28]. Physically, these corrections
correspond to two different processes. First, the poles of the
HTL resummed quark propagators describe quasiparticles in
the QGP with an effective thermal quark mass of the order
of gT . Hence, dileptons are generated by the annihilation of
collective quark modes instead of bare quarks. In particular, the
HTL quark dispersion contains a so-called plasmino branch,
which exhibits a minimum at finite momentum. This nontrivial
dispersion leads to sharp structures (van Hove singularities and
energy gap) in the dilepton production rate2 in contrast to the
smooth Born rate. Second, the imaginary part of the HTL quark
self-energy containing effective HTL N -point (propagators
and quark-photon vertex) functions corresponds to processes
involving the absorption or emission of thermal gluons.

In Fig. 1, the one-loop dilepton rate for zero momentum,
containing such processes, is displayed as a function of
the scaled invariant mass with the thermal quark mass
and is also compared with the Born rate. In the left panel
[Fig. 1(a)], the van Hove singularities due to the nontrivial
dispersion of quarks in a medium are evident in pole-pole
contributions, whereas the pole-cut and cut-cut contributions3

are smooth, representing absorption and emission of gluons
in the medium. The right panel [Fig. 1(b)] displays the total
one-loop contribution for a set of values of g, where the energy
gaps are smoothed by the pole-cut and cut-cut contributions.
Also, the structures due to the van Hove singularities become
also less prominent in the total contributions. The HTL rate,
in particular, due to the cut contributions, is also singular at
M → 0 because the HTL quark-photon vertex is inversely
proportional to photon energy.

However, these corrections are not sufficient, and two-loop
diagrams within the HTL perturbation scheme contribute to the

1Note that for ultrasoft M ∼ g2T and arbitrary momentum, the rate
is nonperturbative and cannot be calculated even within the HTL
improved perturbation theory. This observation holds in particular
for real hard photons [27].

2For a discussion of van Hove singularities in the QGP, see
Refs. [28–30] for �p = 0 and Ref. [31] for �p �= 0.

3These are due to the spacelike (k2 > k2
0) part of the N -point HTL

functions that acquire a cut contribution from below the light cone.
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FIG. 1. (Color online) Left panel (a): One-loop dilepton rate for small invariant masses M ∼ gT at zero momentum and Born rate (dashed
line) vs the scaled invariant photon mass M/mq for g = 1. The van Hove peaks and energy gap are evident in the one-loop rate. Right panel (b):
Total one-loop rate for various g values.

same order and are even larger than the one-loop results [16].
The total one- and two-loop rate at �p = 0 and M � T in the
leading logarithm, that is, ln(1/g) approximation reads [16,32]

dR

d4xd4P
= 5α2

9π6

m2
q

M2

[
π2m2

q

4M2
ln

T 2

m2
q

+ 3m2
q

M2
ln

T 2

m2
g

+ π2

4
ln

(
MT

M2 + m2
q

)
+ 2 ln

(
MT

M2 + m2
g

)]
,

(5)

where the thermal gluon mass is given by m2
g = 8m2

q/3 with

mq = gT /
√

6. Note that this expression is of the same order
in g as the Born term for soft M ∼ gT . Now, the Born term
for �p = 0 and M � T is simply given by

dR

d4xd4P
= 5α2

144π4
= 1.90 × 10−8. (6)

In Fig. 2, the Born rate and the complete two-loop rate for
a set of values of g are compared. It is evident from Fig. 2 that
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FIG. 2. (Color online) Complete two-loop dilepton rate for small
invariant masses M ∼ gT at zero momentum and Born rate (dashed
line) vs the scaled invariant photon mass M/mq with the thermal
quark mass mq .

the two-loop rate dominates in the perturbative regime (g � 1)
over the Born term for a low-mass domain, M/mq � 2.
However, the van Hove singularities contained in one loop
do not appear, because they are washed out as a result of the
leading logarithm approximation within the two-loop HTLpt.

2. Semihard rate (M ∼ T and p � T)

For M of the order of T and hard momenta (p � T ), the
αs correction to the Born rate has been calculated [33] within
the HTLpt method as

dR

d4xd4P
= 5α2αs

27π3

T 2

M2
e−E/T

(
ln

T (mq + k∗)

m2
q

+ C

)
, (7)

where k∗ ≈ |Em2
q/M

2 − m2
q/(4E)| < (E + p)/2 and C ≈

−0.5 depends weakly on M . In Ref. [34], it has been shown
that further corrections to the rate (7) are necessary. However,
numerical results showed only a slight modification.

Assuming typical values of the strong coupling constant
and temperature, T = 200 MeV, these corrections dominate
over the Born term for invariant masses below 300 MeV as
shown in Fig. 3. Similar results have been obtained using bare
quark propagators [35]. However, the calculation within naive
perturbation theory [36] resulted in αs corrections that are of
similar size as the Born rate in the regime M and p of the order
of T .

3. Hard rate (M � T)

For M � T , naive perturbation theory using bare prop-
agators and vertices is sufficient. This is in contrast to
the production of real photons, where one encounters an
infrared singularity from bare quark propagator [37]. For
finite M , however, this singularity cancels [38]. Bare two-
loop calculations [36,38] showed that the αs corrections are
negligible in this regime. However, a recent calculation of the
αs corrections [39] for large invariant mass M � T and small
momenta p � T yielded important corrections to the Born
rate for invariant masses below (2 − 3)T . However, this work
has also been criticized [40].
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FIG. 3. (Color online) The αs correction to the dilepton rate and
Born rate (dashed line) vs the invariant photon mass M scaled with
the thermal quark mass for T = 200 MeV and E = 1 GeV.

The main problem in applying the perturbative results
discussed previously to realistic situations is the fact that g

is not small; rather we have g ∼ 1.5–2.5. Close to the critical
temperature, Tc, even g could be as high as 6 [41]. Hence, the
different momentum scales are not distinctly separated in the
real sense and, even if one still believes in perturbative results
(see Figs. 1, 2, and 3) at least qualitatively, it is not clear which
of these rates applies to heavy-ion collisions. However, in all
cases, there are substantial corrections to the Born rate. The
perturbative rates within their uncertainties in various regime
probably suggest that the Born rate may not be sufficient for
describing the low-mass dilepton spectrum.

C. Nonperturbative rate

Considering the uncertainty of thermal perturbation theory
for QCD, a nonperturbative approach to the dilepton rate would
be desirable. In this subsection, we describe nonperturbative
dilepton production rates in a deconfined phase in phenomeno-
logical models and in a first-principle calculation, viz., within
the lattice gauge theory.

1. Rate using gluon condensate within the Green function

An important issue in understanding the phase structure of
QCD is to understand the various condensates, which serve
as order parameters of the broken symmetry phase. These
condensates are nonperturbative in nature, and lattice provides
a connection with bulk properties of QCD matter. However,
the quark condensate has a rather small impact on the bulk
properties (e.g., on the equation of state of QCD matter)
compared to the gluon condensate [18]. The relation of the
gluon condensate to the bulk properties such as equation of
states, in principle, can be tested through hydrodynamic or
transport properties sensitive to the equation of states, but this
is a nontrivial task.

A semiempirical way to consider nonperturbative aspects
(e.g., gluon condensate) has been suggested by combining
lattice results with the Green function in momentum space
[42,43]. In this approach, the effective N -point functions
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FIG. 4. (Color online) Van Hove singularities in the dilepton rate
in the presence of gluon condensate as a function of invariant mass
scaled with Tc for a set of momenta at T = 2Tc. The dashed curve is
for the Born rate at zero momentum.

[42,43] have been constructed, which contain the gluon
condensate in the deconfined phase, measured in lattice
QCD [18]. The resulting quark dispersion relation with a
mass mq ∼ 1.15Tc [42] in the medium shows qualitatively
the same behavior as the HTL dispersion, leading again
to sharp structures (van Hove singularities, energy gap)
in the dilepton production rates [44], indicating that this
features are universal in relativistic plasmas independent of
the approximation used [29]. In Fig. 4, the dilepton production
rate using gluon condensate is displayed for various values of
momentum at T = 2Tc and also compared with the Born rate.
At very low invariant mass (M/Tc � 2; for Tc ∼ 165 MeV,
M � 330 MeV) with realistic momentum, the dilepton rate
with gluon condensate dominates over the Born rate. This
rate will be important at very low invariant mass as it has
nonperturbative input from lattice QCD that describes the bulk
properties of the deconfined phase and is of course free from
any uncertainty related to the strong coupling g associated
with the perturbative rates discussed in Sec. II B.

However, we also note that the rate deviates from the Born
rate at high M/Tc (�4). The difference at high M/Tc has
the origin in the asymptotic limit (large momentum k) of
the quark dispersion relation with gluon condensates. In this
limit, it is found that the normal quark mode behaves like
w+ = k + c, where c contains still the nonzero contribution
from the condensates. The reason for this is the use of the
momentum-independent condensate values. This fact has crept
in the dilepton rate at high M/Tc. One way out could be to use
an ad hoc separation scale (M/Tc ∼ 2–3) up to which one may
employ the nonperturbative quark dispersion associated with
the gluon condensate and beyond which a free dispersion is
adopted. Alternatively, one could use a momentum-dependent
condensate, which is again beyond the scope of our calculation
and has to be provided by the lattice analysis. To date we
are not aware of such analysis. Nonetheless, we note that the
nonperturbative contribution is important only at low invariant
mass, as we see in Sec. III.
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2. Quark and ρ0 meson interaction (ρ meson in QGP)

We assume that ρ-meson-like states (qq̄ correlator in the
ρ-meson channel) can exist in a deconfined phase like QGP.
Then there will also be a contribution from ρ-meson channel
to the dilepton pairs (l+l−) in addition to the perturbative
production. To consider such a channel phenomenologically,
an interaction of ρ-q coupling is introduced through the
Lagrangian [45]

L = −1

4
ρa

µνρ
µν
a + 1

2
m2

ρρ
a
µρµ

a

+ q̄

(
iγµ∂µ − mq + Gργ

µ τa

2
ρa

µ

)
q, (8)

where q is the quark field, mq is the quark mass,
a is the isospin or flavor index, and τa is the
corresponding isospin matrix. The ρ-q coupling, Gρ ,
can be obtained in the same spirit as the four-point
interaction, G2(q̄γµτaq)2, in the Nambu-Jona-Lasinio (NJL)

model. This suggests Gρ =
√

8m2
ρG2 ∼ 6, by taking G2 from

the literature. The similar value for Gρ can be obtained by
simply assuming that the ρ meson couples in a universal way
to nucleons, pions, and quarks [45].

Now, using the vector meson dominance (VMD) [25], the
photon self-energy is related to the ρ0 meson propagator,

Dµν(P ), by

Im �µ
µ(P ) = e2

G2
ρ

m4
ρ Im Dµ

µ(P ). (9)

Then the thermal dilepton production rate from the ρ meson
can be written as

dR

d4x d4P
= − 1

3π3

α2

G2
ρ

m4
ρ

M2

1

eEp/T − 1

(
AL

ρ + 2AT
ρ

)
, (10)

and the spectral functions for the ρ meson can be obtained
from the self-energy of the ρ meson as

AL
ρ (P ) = ImF(

M2 − m2
ρ − ReF

)2 + (ImF)2
, (11)

AT
ρ (P ) = ImG(

M2 − m2
ρ − ReG

)2 + (ImG)2
, (12)

where F = −P 2

p2 �00(P ) and G = �T (P ) with L and T

standing for longitudinal and transverse modes, respectively.
Going beyond the HTL approximation, the integral expres-

sion for the matter part of the one-loop photon self-energy
for asymmetric charges in the deconfined phase (viz., with
nonzero chemical potential, µ, which would be appropriate for
FAIR energies [22]) can be obtained easily by extending the
results of Ref. [45] to finite µ as

Re F = 3G2

4π2

M2

p2

∫ ∞

0
dk k [n(ωk − µ) + n(ωk + µ)]

(
−2

k

ωk

+ M2 + 4ω2
k

4pωk

ln |a| + p0

p
ln |b|

)
,

Im F = 3G2

4π

M2

p3

∫ k+

k−
dk k [n(ωk − µ) + n(ωk + µ)]

(
p0 − ωk − M2

4ωk

)
,

(13)

Re G = 3G2

4π2

∫ ∞

0
dk

k2

ωk

[n(ωk − µ) + n(ωk + µ)]

(
−

[
ω2

kM
2

2p3k
+ M2

4pk
+ M4

8p3k
+ m2

q

2pk

]
ln |a| − p0M

2ωk

2p3k
ln |b| + M2

p2
+ 2

)
,

Im G = 3G2

8πp

∫ k+

k−
dkk [n(ωk − µ) + n(ωk + µ)]

(
− ωk + m2

q

ωk

+ p2
0

p2
ωk + M2

2ωk

+ M4

4ωkp2
− p0M

2

p2

)
,

along with

a = (M2 + 2pk)2 − 4p2
0ω

2
k

(M2 − 2pk)2 − 4p2
0ω

2
k

, b = M4 − 4(pk + p0ωk)2

M4 − 4(pk − p0ωk)2
,

k− = 1

2

∣∣∣∣p0

√
1 − 4m2

q

M2
− p

∣∣∣∣, k+ = 1

2

(
p0

√
1 − 4m2

q

M2
+ p

)
,

where ωk =
√

k2 + m2
q .

In Fig. 5, the ρ-meson spectral function related to the
imaginary part of the ρ-meson propagator (left panel) in
(9) and the dilepton rate (right panel) are displayed for
various temperatures with µ = 0 and p = 200 MeV. As the
temperature increases, the peak in the imaginary part of the
ρ-meson propagator D becomes broader and is also reflected

in the dilepton rate. In the low-mass region (�1 GeV), the rate
is comparable with the Born rate.

In Fig. 6, the ρ-meson spectral function (left panel) and
the dilepton rate (right panel) are displayed for various µ at
T = 160 MeV and p = 200 MeV, which could be appropriate
in the perspective of FAIR energies. The effect of broadening
of the ρ meson is far less pronounced with increasing µ than
increasing T , indicating that the ρ meson is not completely
melted in the case of a system with finite baryon density such
as expected at FAIR energies even above the phase transition.
However, dilepton rates from the ρ meson as shown in Figs. 5
and 6 are comparable with the Born rate in QGP in the low-
mass region (M � 1 GeV) and may be an indication for chiral
restoration [10,11,45]. In addition, this rate would be important
for invariant masses below 1 GeV.
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FIG. 5. (Color online) Left panel (a): Imaginary part of ρ-meson propagator (spectral function) as a function of the invariant mass M for
a set of values T . Right panel (b): The dilepton rate from the ρ meson in a QGP as a function of M . The dashed lines are the corresponding
Born rates. We have used Gρ = 6.

We also note that if one includes higher mass vector mesons
such as φ meson within VMD, then there will be a peak
corresponding to an invariant mass of the order of φ-meson
mass, but in the low-mass region (M � 1 GeV) there should
be a very little change (less than 5%) in the dilepton rate.
Because we are interested in the low-mass region, we have not
discussed the φ meson here.

3. Rate from lattice gauge theory

The thermal dilepton rate describing the production of
lepton pairs with energy ω and momentum �p is related to
the Euclidian correlation function [30] of the vector current,
J

µ

V = ψ̄(τ, �x)γ µψ(τ, �x), which can be calculated numerically
in the framework of lattice gauge theory. The thermal two-point
vector correlation function in coordinate space, GV (τ, �x), is
defined as

GV (τ, �x) = 〈JV (τ, �x)J †
V (τ, �x)〉

= T

∞∑
n=−∞

∫
d3p

(2π )3
e−i(wnτ−�p·�x)χV (wn, �p), (14)

where the Euclidian time τ is restricted to the interval [0, β =
1/T ], and the Fourier transformed correlation function χV

is given at the discrete Matsubara modes, wn = 2πnT . The
imaginary part of the momentum space correlator gives the
spectral function σV (ω, �p), as

χV (wn, �p) = −
∫ ∞

−∞

σV (ω, �p)

iwn − ω + iε
⇒ σV (ω, �p)

= 1

π
Im χV (ω, �p). (15)

Using Eqs. (14) and (15), we can obtain the spectral represen-
tation of the thermal correlation functions at fixed momentum
in coordinate space as

G(τ, �p) =
∫ ∞

0
dω σV (ω, �p)

cosh[ω(τ − β/2)]

sinh[ωβ/2]
. (16)

The vector spectral function, σV , is related to the differential
dilepton production rate [30]4 as

σV (ω, �p) = 18π2Nc

5α2
ω2 (eω/T − 1)

dR

d4xd4P
, (17)

where Nc is the number of color degrees of freedom.

4A factor of 2 differs from that of Ref. [17]
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FIG. 6. (Color online) Same as Fig. 5 but for different µ at a given T .
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FIG. 7. (Color online) Zero-momentum (�p = 0) vector spectral
function, reconstructed from the correlation function [17] within
lattice gauge theory in quenched QCD using MEM, scaled with M2

as a function of M/T compared with that of the free one above the
deconfinement temperature Tc.

A finite-temperature lattice gauge theory calculation is
performed on lattices with finite temporal extent Nτ , which
provides information on the temporal correlation function,
G(τ, �p), only for a discrete and finite set of Euclidian times τ =
k/(NτT ), k = 1, . . . , Nτ . The correlation function, G(τ, �p),
has been computed [17] within the quenched approximation
of QCD using nonperturbative improved clover fermions [46]
through a probabilistic application based on the maximum
entropy method (MEM) [47] for temporal extent Nτ = 16
and spatial extent Nσ = 64. Then by inverting the integral
in Eq. (16), the spectral function is reconstructed [17] in
lattice QCD. In Fig. 7, such a reconstructed spectral function
scaled with M2 (equivalently ω2 for �p = 0) is displayed as
a function of M/T . The vector spectral functions above
the deconfinement temperature (viz., T = 1.5Tc and 3Tc)
show an oscillatory behavior compared to the free one.
The spectral functions are also found to be vanishingly
small for M/T � 4 because of the sharp cutoff used in the
reconstruction.

A direct calculation of the differential dilepton rate using
Eq. (17) above the deconfined temperature (Tc) at �p = 0 was
first time done in Ref. [17] within the lattice gauge theory in
quenched QCD using the MEM. In Fig. 8, the lattice dilepton
rates at �p = 0 for two temperatures (T = 1.5Tc and 3Tc) are
displayed as a function of the scaled invariant mass with
temperature and M/T = ω/T , the energy of the dileptons.
We have also compared the perturbative, nonperturbative,
and in-medium hadron rates within the same normalization
as shown in the plot. We note that the rate with gluon
condensate perfectly scales with the temperature, whereas
that of HTL depends on the choice of the effective coupling,
mq/T ∼ g/

√
6. The lattice results are comparable within a

factor of 2 with the Born rate as well as that of HTLpt at
high invariant mass M/T � 4. The absence of peak structures
around the ρ mass and also at higher M in the lattice dilepton
rate probably constrain the broad resonance structures in the
dilepton rates. However, for invariant mass below M/T � 4,

0 1 2 3 4 5 6 7 8 9 10
M/T
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/d

4 xd
4 P

Born 
LQCD (T=1.5T )

LQCD (T=3T )

Gluon Cond. 
qq --> ρ --> l l  (T=1.1T )

HTL  (m /T=1.0)

HG (T=1.1T )

p=0

- --

FIG. 8. (Color online) Comparison of various dilepton rates in
a QGP and in HG as a function of M/T for momentum �p = 0.
The critical temperature is 165 MeV [20], and the value of Gρ is
chosen as 6. The in-medium HG rate is from the recent calculations of
Ref. [48].

the lattice dilepton rate falls off very fast. This is because
the sharp cutoff is used to reconstruct the spectral function
from the correlation function and the finite volume restriction
in the lattice analysis. The lattice analysis is also based on
rather small statistics. These lattice artifacts are related to the
smaller invariant masses, which in turn indicate that it is not
yet very clear whether there will be any low-mass thermal
dileptons from the deconfined phase within the lattice gauge
theory calculation. Future analysis could improve the situation
in this low-mass regime. One cannot rule out [17] the existence
of van Hove singularities and energy gap, which are general
features of massless fermions in a relativistic plasma [29], in
the low-mass dileptons. This calls for further investigation on
the lattice gauge theory side by improving and refining the
lattice ingredients and constraints.

On the other hand, in HTLpt, apart from the uncertainty
in the choice of g, the low-mass (M → 0, vanishing pho-
ton energy) one-loop dilepton rate obtained from vector
meson spectral function analysis [30] diverges because the
quark-photon vertex is inversely proportional to the photon
energy. This also requires further improvement of the HTLpt.
However, we assume that the perturbative rate could also be
reliable for M � 200 MeV with T � 200 MeV and g of the
order of 2. The other two phenomenological models, viz.,
gluon condensate measured in lattice [18] and ρ-q interaction
in the deconfined phase, as discussed respectively in Secs.
II C1 and II C 2, for nonperturbative dilepton production at
low-mass regime are at least cleaner than the perturbative rates,
which depend weakly on the choice of the strong coupling
constant. The rate with gluon condensate is free from strong
coupling, whereas that from ρ-q interaction does not depend
strongly on the choice of the coupling (see Fig. 9). In addition
to the perturbative rate, these two together could also provide a
realistic part of the dilepton rate at low-mass regime (�1 GeV)
from the deconfined phase, as also can be seen in the next
section. As a comparison, we have also shown the recent
rate from in-medium hadrons of Ref. [48], where the analytic
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FIG. 9. (Color online) Momentum integrated dilepton rate as a
function of the invariant mass M . We have used Tc = 165 MeV
for the nonperturbative rate with gluon condensate. The in-medium
hadronic rate (HG) is from Ref. [48].

structure of the ρ-meson propagator has been used because of
its interaction with thermal mesons.

III. MOMENTUM INTEGRATED RATE

The momentum integrated dilepton rate can be obtained as

dR

d4xdM2
=

∫
d3p

2p0

dR

d4xd4P
. (18)

In Fig. 9, dilepton rates from QGP and in-medium hadrons
are displayed as a function of invariant mass. As can be
seen, the nonperturbative contribution using gluon condensate
dominates over the Born rate as well as the perturbative rate
below M � 200 MeV. The nonperturbative rate is indeed
important with input from the first principle calculations [18]
that describe the bulk properties of the deconfined phase. More
important, this domain is also beyond reach of any reliable
perturbative calculations in a true sense. The rate from the ρ-q
interaction is almost of the same order as that of the Born
rate as well as the in-medium hadrons for M � 600 MeV,
whereas it is higher than the perturbative one in the domain
600 � M (MeV) � 800 due to the broadening of the ρ peak in
the medium. We also note that this rate has a weak dependence
on the realistic range of values of the ρ-q coupling (2–6).
In addition, the higher order perturbative rate from HTL, as
discussed previously, becomes reliable for M � 200 MeV and
also becomes of the order of Born rate for M � 500 MeV.
We also note that the momentum integrated HTL rate used
here has been obtained recently by Rapp et al. [11] through
a parametrization of the prefactor of the zero-momentum
one-loop HTL rate [28] with a temperature-dependent g,
which is claimed [49] to reproduce the Born rate in Eq. (2)
within the appropriate limit. Now, for comparison, we have
also shown the recent rate from the in-medium hadrons of
Ref. [48]. It is clear that for low invariant mass (�1 GeV)
only the Born rate from the QGP is unrealistic as well as
insufficient for describing the dilepton rate. Instead, we suggest

that the nonperturbative rate with gluon condensate should
be important for M � 200 MeV, whereas the rates from the
ρ-q interaction and HTLpt are important for M � 200 MeV.
Next, we discuss some aspects of the quark-hadron duality
hypothesis [23].

IV. THOUGHTS ON THE QUARK-HADRON
DUALITY HYPOTHESIS

It is advocated [10,23] that because of the potential
broadening of the ρ-meson resonance suffering in a dense
hadronic environment, the overall (momentum integrated)
dilepton rate out of the hadronic gas becomes equivalent to
that from the deconfined phase as

dRH

d4xdM2
≈ dRQ

d4xdM2
, (19)

which entails a reminiscence to a simple perturbative qq̄

annihilation in the vicinity of the expected QGP phase
transition. This hypothesis of extended quark-hadron duality
for the thermal source of low-mass dileptons has been claimed
as an indication for chiral symmetry restoration [10,11,23] in
the deconfined phase. However, we note that in this hypothesis
the volumes of QGP and hadronic gas was assumed to be the
same in a given instant of time and therefore the dileptons shine
equally bright from both phases at a given instant of time per
unit volume. This aspect of quark-hadron duality should be
carefully re-addressed on its general validity, as the suggestive
conclusion is indeed far reaching. A more realistic way to look
into it is envisaged here.

The momentum integrated rate in Eq. (18) should be gauged
to the adequate degrees of freedom in a particular phase. A
certain measure is given by the corresponding entropy density.
Hence, we suggest that for duality to hold one approximately
should have

1

sH

dRH

d4xdM2
≈ 1

sQ

dRQ

d4xdM2
, (20)

where si (i = H,Q) is the entropy density of the respective
phase. For an isoentropic crossing over the phase transition,
one has sHdVH ≈ sQdVQ. Hence, if one takes into account
the respective volume of both phases at a given instant of time,
then instead of Eq. (19) one should ask for

dVH

dRH

d4xdM2
≈ dVQ

dRH

d4xdM2
, (21)

where dVi (i = Q, H ) is the volume of the respective phase.
Now, at a given instant of time this can lead to

dRH

dtdM
≈ dRQ

dtdM
, (22)

where dRi/dtdM is the total yield per time from total phase i

in the system at any instant of time. Therefore, Eq. (22) means
that the fireball emits the same number of dileptons per unit
time if described either by a hadronic or by a deconfined
partonic description. This could likely be a more realistic
way to look into the quark-hadron duality. Now, even if the
momentum integrated rates in Eq. (18) from both phases are
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same in some kinematic domain (e.g., see Fig. 9), this may
not necessarily imply a quark-hadron duality as given by (22)
because the hadronic volume is expected to be larger than
that of QGP by at least a factor of 4 to 5. Furthermore, we
note that the quark-hadron duality should also be true for any
momentum at a given instant of time.

V. CONCLUSION

We have discussed the low-mass dilepton production
rate from the deconfined phase within various models, viz.,
perturbative and nonperturbative, and compared it with that
of first-principle calculations based on lattice gauge theory
and in-medium hadrons. We also have discussed in detail the
limitations and uncertainties of all those models at various
domains of the invariant mass. It turns out that at very low
invariant mass (�200 MeV) the nonperturbative rate using
gluon condensate measured in lattice becomes important as
this domain is beyond reach of any reliable perturbative
calculations. The other nonperturbative contribution from ρ-q
interaction also becomes important below 1 GeV as it is almost
of same order as those of the Born and in-medium hadrons.
We also note that these two rates are at least cleaner than
the perturbative rates, in the sense that the gluon condensate
rate has nonperturbative input from lattice equation of states
and is thus free from any coupling uncertainties, whereas the
ρ-q interaction rate does not depend strongly on the choice
of its coupling. We also discussed the ρ-q interaction in the
perspective from the FAIR scenario.

On the other hand, the perturbative contribution, within
its various uncertainties, becomes steady and reliable beyond

M > 200 MeV and also becomes comparable with the Born
rate and the lattice gauge theory rate for M � 500 MeV. The
lattice gauge theory rate also constrains the broad resonance
structure at large invariant mass. More specifically, the rate
with gluon condensate is important for M � 200 MeV,
whereas those from the ρ-q interaction and HTLpt would
be important for M � 200 MeV for the deconfined phase in
heavy-ion collisions. Instead of considering only the Born
rate, the various nonperturbative and perturbative rates from
appropriate domains of the invariant mass below 1 GeV
would comprise a more realistic rate for low-mass dileptons
from the deconfined phase created in heavy-ion collisions.
We hope that more elaborate lattice gauge theory studies
on dileptons above the deconfined temperature can provide
more insight than the present lattice gauge theory calcu-
lations on the low-mass region, which could then verify
the various model calculations on low-mass dileptons above
the deconfined temperatures. Finally, we also have dis-
cussed a realistic way to look into the quark-hadron duality
hypothesis.
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[43] M. G. Mustafa, A. Schäfer, and M. H. Thoma, Phys. Lett. B 472,
402 (2000).
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