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The cross sections for the glueball candidates in quasireal photon-photon collisions and on central diffraction
processes (i.e., double Pomeron exchange) in heavy-ion interactions at the Relativistic Heavy-Ion Collider
(RHIC) and the Large Hadron Collider (LHC) are computed. The rates for these distinct production channels are
compared, and they may be a fruitful approach to the investigation of glueballs.
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I. INTRODUCTION

The gluon self-coupling in QCD opens the possibility of
existing bound states of pure gauge fields known as glueballs.
Glueballs (G) are predicted by several theoretical formalisms
and by lattice calculations. For a comprehensive review of
the current status of theoretical and experimental aspects
of glueball studies, we refer readers to Refs. [1] and [2],
respectively. Many mesons have been considered as good
candidates for the lightest glueball in the spectrum, and in
particular the scalar sector (J¢ = 0**) seems promising.
The mesons f(1500) and the f;,(1710) have been considered
the principal candidates for the scalar glueball [3,4]. However,
in this mass region, the glueball state will mix strongly with
nearby ¢ states [4,5]. More recently, the Beijing Spectrometer
(BES) collaboration observed a new resonance called X (1835)
[6]. It is an important candidate for a glueball, and the nature
of meson X (1835) has several interpretations. Some consider
it a pseudoscalar glueball (JP¢€ = 0~%) as first suggested in
Ref. [7] and afterward in Ref. [8].

Recently, the clean topologies of exclusive particle produc-
tion in electromagnetic interactions such as hadron-hadron and
nucleus-nucleus collisions mediated by colorless exchanges
such the QCD Pomeron or two photons have attracted increas-
ing interest [9]. The cross sections for these processes are
smaller than the corresponding inclusive production channels,
which is compensated by a more favorable signal/background
relation. Experimentally, exclusive events are identified by
large rapidity gaps on both sides of the produced central system
and the survival of both initial-state particles scattered at very
forward angles with respect to the beam.

Here, we focus on exclusive glueball production in
two-photon and Pomeron-Pomeron interactions in coherent
nucleus-nucleus collisions at high-energy colliders [the Rel-
ativisitic Heavy-Ion Collider (RHIC) and the Large Hadron
Collider (LHC)]. In these cases, the photon flux scales as the
square charge of the beam, Z?, and then the corresponding
cross section is highly enhanced by a factor o« Z* ~ 107 for
gold or lead nuclei. A competing channel, which produces
similar final-state configurations, is the central diffraction
(CD) process. Such a reaction is modeled in general by the
two-Pomeron interaction. Experimentally, the separation of
these channels is somewhat difficult, and from atheoretical
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point of view the Pomeron-Pomeron interactions are subject
to large uncertainties at collider energies. One goal of the
present work is to compare the cross sections for these two
channels in the production of glueball candidates. This paper
is organized as follows: In the next section, we present the main
expressions for cross-sectional calculation of two-photon and
Pomeron-Pomeron processes, and in last section, we show and
discuss the numerical results.

II. CROSS-SECTIONAL CALCULATION

Let us start with the glueball production in photon-
photon scattering at coherent heavy-ion collisions using
the Weizsidcker-Williams approximation Equivalent Photon
Approximation (EPA). In such an approach, the cross section
for a two-quasireal-photon process to produce a glueball state,
G, at center-of-mass energy W,,,, factorizes into the product
of the elementary cross section for yy — G convoluted with
the equivalent photon spectra from the colliding ions [9]:

dk; dky dn, dn,
(1

where k), are the photon energies and dn/dk is the photon
flux at the energy k emitted by the hadron A. The photon
energies determine the center-of-mass energy W,,,, = +/4kk,
and the rapidity Y of the produced system. Namely, one
has ki, =(W,,/2)exp(£Y) and Y = (1/2)In(k;/k;). In
addition, ,/syy is the center-of-mass energy of the ion-ion
system and the Lorentz relativistic factor is given by y; =
Svn/(my). In particular, in the numerical calculations
we use /syy =0.2(5.5) TeV and y; = 109(2930) for
RHIC (LHC).

In the EPA approximation, the flux of equivalent photons
from a relativistic particle of charge Z is determined from the
Fourier transform of its electromagnetic field. For an extended
charge with electromagnetic form factor F,(Q?), the energy
spectrum can be computed as

d ZZA 2_0n2.
Tya) | 22 2D / = o QPR @)

where x = k/E is the fraction of the beam energy carried
by the photon and A(x) =1 —x + (1/2x2). Moreover, a =
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1/137 and Q? is the four-momentum transfer squared from
the charge, with Q2. ~ (xmy)?/(1 — x).

The glueball production in two-photon fusion can be
calculated using the narrow-resonance approximation [10]:

8n? 5 s
o(yy > G)=02J + 1)M—G G — yy)S(WW — MG),

3)

where ['(G — yy) is the partial two-photon decay width of
G, Mg is the glueball mass, and J is the spin of the state
G. Here, we compute the production rates for the mesons
fo(1500), fo(1710), and X (1835) [11], respectively, because
they have been mentioned as possible glueball candidates by
phenomenologists [1,2].

Some important comments are in order. The predictions for
the two-photon component are in practice somewhat difficult
as the branching ratios have not been measured. To compute
numerical values for the meson (glueball) cross section in two-
photon reactions, estimates for the two-photon decay widths
are needed. The determination of them depend upon whether
the meson state is a pure quarkonium, pure gluonic, or a mixed
hybrid state. For a pure quarkonium state, the width can be
related (at leading order) to the two-gluon width, I'(¢g — gg).
Namely, T'(qg — yy) = Dc e, (a/as)’ T(qq — gg), where
D.=9/2 is the color factor and e, is the relevant quark
charge. One can estimate the two-gluon width from the total
width for the meson state and the theoretical expectation that
the ¢§ — gg branching ratio' is of order o? [12]. In the case
of a pure gluonic state, the two-photon width can be computed
using a nonrelativistic gluon bound-state model as performed,
for instance, in Ref. [13]. There, the unknown parameters,
the digluon wave function or its first/second derivative at
the origin, are determined by using measured values of
rJ/v — Gy).

Now, we compute estimates for the two-photon widths as-
suming pure ¢4 and pure gluonic resonances, respectively. For
the first case, as discussed previously, we take ['(R — yy) =
e‘q1 (3a)? T'i(R)/2. Using the Particle Data Group (PDG) aver-
age values for the total width, one gets I'[ fo(1500) — yy] ~
0.3 keV, I'[fo(1710) — yy] >~ 0.4 keV, and I'[X(1835) —
yy] 2~ 0.2 keV. The corresponding cross sections using these
theoretical estimates for the width are 3 (158) ub, 3.4 (216) ub,
and 1.1 (84) ub at RHIC (LHC). If we are conservative,
one can consider the experimental upper bounds for the
two-photon widths as f((1500) and f,(1710). This procedure
gives an upper limit of the cross section for those resonances
in peripheral collisions. The ALEPH experiment [3] studied
the yy production of those glueball candidates via their
decay to w ¥~ and the following limits” were determined:
I'[fo(1500) — yy]1 < 1.08 keV and I'[ fp(1710) — yy] <

'For pure glueball resonance, G, the branching ratio is B(G —
gg) ~ 1, whereas mixing states will give intermediate values of
branching ratio.

’Here, we consider the ALEPH limits T'[yy — f5(1500)] -
B[ fo(1500) - 7wt ~] < 0.31 keV, I'lyy — fo(1710)] -
B[fo(1710) - 7t7~] < 0.55 keV and taking the branching
ratios 0.30 & 0.07 and 0.026 % 0.016 [3], respectively.
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21.25keV. Using those limits, the corresponding cross sections
are of order 0.95 mb (20 wb) for f,(1500) and 11.5 mb
(180 ub) for f(1710) at LHC (RHIC) energies. We quote
Ref. [14] for a comparison of our results with a wide class
of theoretical models and exotic QCD states in the meson
production in photon-photon process.

For a pure glueball resonance, we follow [13], adapted
for the candidates considered here. Namely, assuming the fy
resonances as states with / = L = 0, then Eq. (54) of Ref. [13]
has been used, where we take the PDG values for the radiative
J /¥ decays in the following channels: ¥ — y fo(1500) —
yrm and ¥ — yfo(1710) = y K K. Assuming the X(1835)
resonance to be a state with / =0 and L = § =1, we rely
on Eq. (35) of [13] and use the PDG value for the decay
channel ¥ — y X(1835) — yx "7~ n’'. Putting it all together,
we estimate that the two-photon widths for a pure glueball
resonance are I'[ fo(1500) — yy] >~ 0.77 eV, I'[ fo(1710) —
yy] ~7.03 eV, and I'[X(1835) — yy] =~ 0.021 keV. Notice
that for the X (1835) a larger width is predicted [8], being of
order 1.1 keV. The widths are about three orders of magnitude
smaller than for pure ¢g states. Therefore, as the two-photon
cross section scales as (2J + I' (R — yy), Eq. (3), one
can consider the experimental feasibility of using peripheral
heavy-ion collisions to determine the nature of the resonances
discussed previously. The values for the corresponding widths
and corresponding cross sections estimates are shown in
Table L.

Now, we address the Pomeron-Pomeron channel. In par-
ticular, we focus on the central diffraction (double Pomeron
exchange, DPE) in nucleus-nucleus interactions. As a starting
point, we compute the DPE proton-proton cross section, mak-
ing use of the Bialas-Landshoff [15,16] approach. We believe
that this nonperturbative approach is a reasonable choice due to
the light mass of glueball candidates considered in the present
calculation. For a perturbative QCD guided calculation, we
quote the recent work in Ref. [17], where the exclusive scalar
fo(1500) meson production is carefully investigated. Here,
we are particularly interested in the exclusive and central
inclusive (central inelastic) DPE production of glueball states.
In the exclusive DPE event, the central object G is produced
alone, separated from the outgoing hadrons by rapidity gaps,
pp — p + gap + G + gap + p. In the central inclusive DPE
event, an additional radiation accompanying the central object
is allowed. In the approach we use, Pomeron exchange
corresponds to the exchange of a pair of nonperturbative
gluons that takes place between a pair of colliding quarks.
For DPE central inclusive G production, we can neglect the
additional gap-spoiling effect, the so-called Sudakov effect.

TABLE I. Cross sections for pure glueball candidate production
through photon-photon fusion in electromagnetic nucleus-nucleus
collisions at RHIC and LHC energies.

Glueball candidate ry, (ev) RHIC (nb) LHC (ub)
fo (1500) 0.77 14-9.3 0.7-1.3
fo (1710) 7.03 6043 3.8-8.6
X (1835) 0.021 0.11-0.09 0.01-0.02
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The scattering matrix is given by

s a(t)—1 s a(t))—1
M= M, <—> (—) F(t) F(t2)

51 852
x exp[B(t1 + 1)] Sgap(\/E)- “4)

Here M, is the amplitude in the forward scattering limit
(t; = t; = 0). The standard Pomeron Regge trajectory is given
by a(t) = 1 + € + o't with € ~ 0.08, o’ = 0.25 GeV~2. The
momenta of incoming (outgoing) protons are labeled by p; and
p2 (ky and ky), whereas the glueball momentum is denoted by
P. Thus, we can define the following quantities appearing in
Eq. 4):s = (p1 + p2)%s1 = (ki + P, 5o = (ko + P)*, 1y =
(p1 — k)%, and t, = (p2 — k»)?. The nucleon form factor is
given by F,(t) = exp(bt) with b = 2 GeV 2. The phenomeno-
logical factor exp[B(#; + t;)] with g = 1 GeV~—2 takes into
account the effect of the momentum transfer dependence of the
nonperturbative gluon propagator. The factor S, takes the gap
survival effect into account, that is, the probability (S éap) of the
gaps not being populated by secondaries produced in the soft
rescattering. For our purpose here, we consider ngap = 0.032at

/s = 5.5 TeV innucleon-nucleon collisions * and Sg,, = 0.15
at 4/s = 200 GeV (RHIC). In particular, for RHIC we have
used an estimation using a simple one-channel eikonal model
for the survival probability [18], whereas for the LHC energy
we follow Ref. [19], which considers a two-channel eikonal
model that embodies pion-loop insertions in the pomeron
trajectory, diffractive dissociation, and rescattering effects. We
refer to Ref. [20] for a detailed comparison between the two
approaches and further discussions on model dependence of
inputs and consideration of multichannel calculations.

Following the calculation presented in Ref. [16], we find
M, for colliding hadrons,

Mo =32¢} D} f d*k prv. py exp(=3k%/7%),  (5)

where « is the transverse momentum carried by each of
the three gluons. VAJV is the gg — G’ vertex depending on
the polarization J of the G’ glueball meson state. For the
cases considered here, J = 0, one obtains the following result
[16,21]:

pY)
Ay0 v S K

PiVinPy = 5 A, (6)
1 "2 ZMéo

where A is expressed by the mass Mg and the width I'(gg —
G) of the glueball meson through the relation

A? =81 MsT(gg — G). (7)

For obtaining the two-gluon decays widths, the following
relation is used: I' (G — gg) = B (G — gg) I'iei(G). At this
point, some discussion is in order. The two-gluon width
depends on the branching fraction of the resonance R to gluons,

3t is obtained using a parametric interpolation formula for the
Khoze-Martin-Ryskin (KMR) survival probability factor [19] in
the form Séap = a/[b + In(y/s/s9)] with a =0.126, b = —4.988,
and sy = 1 GeV?. This formula interpolates between CD survival

probabilities of 4.5% at Tevatron and 2.6% at the LHC.
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B(G — gg), and its knowledge would give quantitative
information on the glueball content of a particular resonance.
As discussed before, it is a theoretical expectation [12] that
B[R(q3) — ggl = O(a?) ~ 0.1 — 0.2, whereas B [R(G) —
gg] ~ 1. Here, we are conservative and assume the resonance
to be a pure glueball. This fact translates into an upper bound
for the exclusive DPE production as the cross section scales
with I' (R — gg). Following Ref. [22], the two-gluon width
can be computed from the resonance branching fractionin J /¢
radiative decay, B (¥ — y G). For the candidates of interest
here, one obtains

87 (2 —9) B[y — y G(0T+)] M,
crX|Hj(x)]? T Mg’

B[G(0"F) — ggl =

87 (72 — 9)BIY — y GO~ My,
crx|Hy(x)]> Tt Mg’

B[G(0™") — ggl =

where the function H;(x) is determined in the nonrelativistic
quark model (NRQM) (see appendix of Ref. [22]) and
cg is a numerical constant (Cg =1, 2/3, 5/2 for JC =
0~*, 0FF, 27+ respectively). The masses of J /v and of reso-
nance are My and Mg, respectively, and x =1 — (Mé/MI/%).
Based on these equations, in Ref. [22] the following values
for the branching fractions for scalar glueballs candidates are
obtained: B[ fp(1500)] = 0.64 = 0.11, B[ fp(1710)] = 0.52 £
0.07. For the pseudoscalar X the situation is less clear due
to little information on its decaying channels in radiative
J/¢¥ decays. The authors in [22] have a prediction for
n resonance which gives B[n(1410)] = 0.9 £0.2. As the
branching fraction scales as 1/M in this theoretical model,
an educated guess for the X branching fraction would be
B[X(1835)] = (M,/Mx) - B[n(1410)] = 0.69 & 0.15. In the
numerical calculations, we set the limit case B[X(1835)] =1
and notice that the branching would be about 30% smaller.
The values for Iy, used in our calculations are summarized
in Table II. A consequence of the small deviation for the
branching fraction in pure ¢4 and glueball resonance is the
difficulty in testing their nature using the exclusive diffractive
data. An option would be to obtain, for instance, the differential
cross section on angular distributions and then compare the
predictions for each composition (pure gg, mixing state, and
pure glueball).

In addition, we use the parameters T =1 GeV and
DyG2%t =30 GeV~! [16], where G is the scale of the
process-independent nonperturbative quark gluon coupling.
An indirect determination of unknown parameter oy = G2 /47

TABLE II. Cross sections for inclusive (inc.) and exclusive (exc.)
glueball production in the DPE process for RHIC and LHC energies.

Glueball gy MeV) RHIC (mb) LHC (mb)

0.63 £ 0.21 (inc.)
0.40 £ 0.14 (exc.)

0.77 £+ 0.51 (inc.)
0.50 & 0.32 (exc.)

Sfo(1500) 69.8

fo(1710) 70.2 0.68 +0.26 (inc.)  0.80 + 0.52 (inc.)
0.41 £0.16 (exc.)  0.49 £ 0.31 (exc.)
X (1835) 70.27 0.64 £0.24 (inc.)  0.77 £ 0.50 (inc.)

0.38 £0.14 (exc.)  0.45£0.29 (exc.)
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has been found in Ref. [23] using experimental data for central
inclusive dijet production cross section at Tevatron. Namely,
the constraint S7, (v/s = 2TeV)/af = 0.6, where S, is the
gap survival probability factor (absorption factor), has been
found. Considering the KMR [19] value Séap = 0.045 for CD
processes at Tevatron energy, one obtains oy = 0.274.

The calculation presented here concerns the central in-
clusive process, where the QCD radiation accompanying the
produced object is allowed. Therefore, in order to describe
the exclusive processes where the central object is produced
alone, we include the Sudakov survival factor T (k, i) [24]
inside the loop integral over k. The Sudakov factor T (k, u) is
the survival probability that a gluon with transverse momentum
k remains untouched in the evolution up to the hard scale
= Mg /2. The function T (k, ) is given by [24]

" (k2) di
T(xk,u)=exp| — L T 2

1-6
x fo [Zng(Z)+Zqu(Z):|dZ>, (8)
q

where § = |lz|/(/1 + |1€|), Pgye(2) and Py4(z) are the Dokshitzer-
Gribov-Lipatov-Altarelli-Parisi spitting functions. In next
section, we discuss the effect of introducing the Sudakov factor
in the estimation of exclusive production in the Pomeron-
Pomeron channel.

In order to calculate the AA cross section, the procedure
presented in Ref. [25] is considered, where the central diffrac-
tion and single diffraction cross sections in nucleus-nucleus
collisions are computed using the so-called criterion C (we
refer to Ref. [25] for further details). Using the profile function
for two colliding nuclei, Tap = [ d*b Ta(b) Tg(b — b), the
final expression for CD cross section in A A collisions is given
by [25]

oD = A2 / d*b Taa(b) exp [—A% o) Taa(b)] 052, (9)

where o and oY = Séz{p X o[?;)(\/a:) are the inelastic and
CD cross sections, respectively, in the proton-proton case.

Using Woods-Saxon nuclear densities and considering the
inelastic cross section (7;,‘[‘7 = 73(49) mb for LHC (RHIC)
energy, /saa = 5.5(0.2) TeV, we compute the CD cross
section for nuclear collisions. The values for the inelastic cross
section are obtained from DPMIJET [26], where the scattering
amplitude is parameterized using oy, 0 and elastic slope (these
parameters are taken as fitted by the PHOJET model [27]).
We notice that for LHC energy the effective atomic number
dependence is proportional to A'/3, which means that the
nuclear CD cross section is only one order of magnitude larger
than the nucleon-nucleon cross section. For completeness, we
give the values of the DPE cross sections for the proton-proton
case used in Eq. (9): apCIP(RHIC) =0.170, 0.180, 0.168 mb
and opCpD(LHC) = 0.80, 0.85, 0.83 mb for f(1500), fo(1710),
and X (1835), respectively.

In the next section, we compare the two production channels
and investigate the main theoretical uncertainties. We provide
estimates of cross sections and event rates for both processes
for RHIC and LHC energies at the heavy-ion mode.
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III. RESULTS AND DISCUSSION

In what follows, the numerical results for the two-photon
and Pomeron-Pomeron processes are presented and discussed.
In Table I, the cross sections for glueball production in photon-
photon fusion at RHIC and LHC energies are shown. For
RHIC we have considered the nominal center-of-mass energy
of 200 GeV for gold-gold collisions, and for LHC we take the
planned nominal energy of 5500 GeV in lead-lead collisions.
The first value corresponds to the cross section obtained using
a nonfactorizable photon flux (Cahn-Jackson) [28], and the
second one refers to the factorizable flux as shown in Egs. (1)
and (2). The deviation is sizable for RHIC and LHC. The cross
sections are sufficiently large for experimental measurement.
The event rates can be obtained using the beam luminosity [9]:
For LHC, one has Lpypp, = 5 - 102 cm™2s~!, which produces
the following number of events. One has 3.6 x 102, 2 x 103,
and 4 for f,(1500), fo(1710), and X (1835), respectively, in the
nominal LHC running time with ions of 10° s (one month). The
event rates can be enhanced in a pPb mode, where the nominal
beam luminosity is increased three orders of magnitude
compared to the PbPb mode. The present calculation can
be compared to previous studies on glueball production in
heavy-ion collisions [29,30]. In general, the numerical results
are similar to those computations, and the main deviation
comes from the distinct estimates for the two-photon decays
widths. A direct comparison can be done for the f,(1710)
case, where in Ref. [30] one gets 48 nb for RHIC and 2.3 ub
for LHC (using cut in impact parameter b > 2R, and using
Iy, ~4eV [30]).

For the convenience of phenomenologists, we provide here
a parametrization of the ultraperipheral AA cross section as
a function of the resonance mass at the LHC energy. This
makes the computation of event rates simple when the specific
meson state and its two-photon decay width are provided.
Using the Cahn-Jackson photon flux, we obtain in the interval
400 < My < 4000 MeV the parametrization

Oupe (AA — R+ AA) o9 My
QJ+1DT(R; — yy) 1+ (Mg/4)’

where oy = 4.9147 mb/GeV and g = —3.45335; I'),,, and
My are the decay width and the resonance mass in units of
giga-electron-volts, respectively. Several authors have argued
for a low-lying scalar glueball, with mass between 500 and
1200 MeV [1,2], depending on the components. The previous
parametrization allows us to obtain estimates starting from a
modeling for the two-photon width.

In Table II, the results for Pomeron-Pomeron production
of glueball are presented. The estimates are shown for the
inclusive (inc.) and exclusive (exc.) DPE as discussed in
previous section. Namely, for the inclusive production, the
Sudakov survival factor is not included (glueball is produced in
association with Pomeron remnants), whereas for the exclusive
case it is taken into account. In order to estimate the model
dependence in the CD cross section, we have changed the
soft Pomeron parameters in order to be consistent with the
semi-hard Pomeron values considered in the DESY-HERA fits
to diffractive deep inelastic scattering (DDIS). For instance,
taking fit A of the H1 Collaboration [31] parametrization for

(10)
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the diffractive structure function FZD ® one has € = 0.118,
o« =0.06, and b =2.75 GeV~2. Such a change enhances
the cross section by a factor of 3 for PbPb collisions at the
LHC. In Table II, the cross sections are presented, taking
into account such a theoretical error band. The lower bound
corresponds to soft Pomeron parameters, and the upper bound
stands for the semihard Pomeron ones. For RHIC energy,
the Pomeron-Pomeron contribution seems to be bigger than
the photon-photon channel to a large extent. On the other
hand, at the LHC they are competitive. However, the Pomeron
contribution can be easily separated from photon channel
by imposing a cut on the impact parameter of collision.
After imposing this kinematic cut (b > 2R,), the Pomeron
contribution is reduced as they are dominated by small impact
parameter contributions.

The present result is difficult to compare directly to previous
studies on Refs. [29,30]. Those authors did not include
the survival probability gap in their calculations, and the
theoretical approaches for Pomeron-Pomeron interaction are
distinct. For instance, in Ref. [29], the IP [P — G cross section
is obtained using the Pomeron-quark coupling like an isoscalar
photon, which allows us to obtain the DPE cross section from
the two-photon one. On the other hand, in Ref. [30], only the
inclusive double Pomeron production is considered. Following
that study, we can perform a closer comparison. The cross
sections are computed there with inelastic scattering effects
using the Glauber approximation (in Table III of Ref. [30];
see 044 elastic), which is similar to the procedure presented
here. After including a gap survival probability factor, one
gets for the fy(1710) meson the values 1.23 (3.04) mb for
RHIC (LHC), which is not so far from our results presented
for inclusive production in Table II.

Finally, itis important to discuss the uncertainties in the cur-
rent calculations and the experimental feasibility of detecting
glueball candidates. The main uncertainty here is the model
dependence on obtaining the two-photon and the two-gluon
widths for a pure glueball meson. For the two-photon width,
we considered the nonrelativistic gluon bound-state model of
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Ref. [13], which could be a debatable issue and is far from
being optimal. There are more modern approaches as reviewed
in Ref. [2], but this is out of the scope of the present work. For
the two-gluon widths, we obtained them from the quarkonium
width based on a nonrelativistic bound-state calculation [22].
This type of matrix elements has been discussed in Ref. [32],
giving rise to an effect of chiral suppression. We did not discuss
the implication of those findings in the present calculation.
Concerning the experimental detection, the advantage of the
exclusive processes discussed here is clear: glueballs are
probably being produced with a high cross section in inelastic
collisions (in pp or AA reactions), but when the multiplicity
is high the combinatorial background is overwhelming. In
exclusive production, there is no combinatorial background.
In the ultraperipheral two-photon production of glueballs, the
final-state configuration is clear: nuclei remain intact after
collision and a double large rapidity gap between them is
present (glueball is centrally produced with alow pr transverse
momenta spectrum). This type of measurement is already done
at RHIC for photoproduction of vector mesons and exclusive
dilepton production with a signal identification that is well
understood [33]. The situation for DPE glueball production is
similar, with the pr spectrum being broader than the processes
initiated by two photons. Thus, a transverse momentum cut
(and also impact parameter of collision) could separate the
two channels (for a review of these issues, we refer readers to
Ref. [34]).
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