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Quasiparticle theory of shear and bulk viscosities of hadronic matter
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A theoretical framework for the calculation of shear and bulk viscosities of hadronic matter at finite temperature
is presented. The framework is based on the quasiparticle picture. It allows for an arbitrary number of hadron
species with pointlike interactions, and allows for both elastic and inelastic collisions. Detailed balance is ensured.
The particles have temperature-dependent masses arising from mean-field or potential effects, which maintains
self-consistency between the equation of state and the transport coefficients. As an example, we calculate the
shear and bulk viscosity in the linear σ model. The ratio of shear viscosity to entropy density shows a minimum
in the vicinity of a rapid crossover transition, whereas the ratio of bulk viscosity to entropy density shows a
maximum.
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I. INTRODUCTION

One of the amazing experimental discoveries of measure-
ments of heavy-ion collisions at the Relativistic Heavy-Ion
Collider (RHIC) is the surprising amount of collective flow
exhibited by the outgoing hadrons. Collective flow is observed
in both the single-particle transverse momentum distribution
[1] (radial flow) and in the asymmetric azimuthal distribution
around the beam axis [2] (elliptic flow). It is now generally
accepted that collective flow is mostly generated early in
the nucleus-nucleus collision and is present before partons
fragment or coalesce into hadrons [3]. The quark-gluon matter
created in these collisions must be strongly interacting, unlike
the type of weakly interacting quark-gluon plasma expected to
occur at very high temperatures on the basis of asymptotic
freedom [4]. Perfect fluid dynamics with zero viscosity
reproduces the measurements of radial and elliptic flow quite
well up to transverse momenta on the order 1.5 GeV/c [5].
These results have been interpreted as strong indicators of
early thermalization and collective flow on a time scale of
several fm/c.

An amazing theoretical discovery was made by Kovtun
et al. [6]. They showed that certain special field theories
[anti-deSitter/conformal field theory (AdS/CFT)] that are dual
to black branes in higher space-time dimensions [7–9] have
the ratio of shear viscosity to entropy density η/s = 1/4π (in
natural units with h̄ = kB = c = 1). The connection between
transport coefficients and gravity arises because both involve
commutators of the stress-energy-momentum tensor. They
conjectured that all substances have this value as a lower limit,
and gave as examples various atomic and molecular systems.
In fact, it had been argued much earlier that any substance
should have a lower bound on η/s because of the uncertainty
principle [10]. Are the RHIC data telling us that the created
matter has a very small viscosity, the minimal value of η/s,
that it is a perfect fluid?

The relatively good agreement between perfect fluid calcu-
lations and experimental data for hadrons of low-to-medium
transverse momentum at RHIC suggests that the viscosity
is small. However, it cannot be zero. Indeed, calculations
within AdS/CFT suggest that η � s/4π [11–17]. Whether
or not this is a rigorous lower bound was questioned in

[18–20]. In fact, this bound may be violated when higher
order terms involving the Weyl tensor are added to the
action [21–23]. A brief summary of these violations may be
found in Ref. [24].

What is of even more import is that there are strong
theoretical arguments, and evidence from atomic and molec-
ular systems, that η/s should be a minimum in the vicinity
of the phase transition or rapid crossover between hadronic
matter and quark-gluon plasma1 [25], and that the ratio of
bulk viscosity to entropy density ζ/s should be a maximum
there [26] (see also Refs. [27–30]).

It ought to be possible to extract numerical values of the
viscosities in heavy-ion collisions via scaling violations to
perfect fluid flow predictions [31–34]. The program is to solve
relativistic viscous fluid equations, with appropriate initial
conditions and with a hadron cascade afterburner [35], over
a range of beam energies and nuclei and extract η(T )/s(T )
and ζ (T )/s(T ) from comparison with data. Thus, sufficiently
precise calculations and measurements should allow for a
determination of the ratio η/s as well as the ratio of bulk
viscosity to entropy density ζ/s as functions of temperature,
and that these ratios can pinpoint the location of the phase
transition or rapid crossover from hadronic to quark and gluon
matter. This is a different method than trying to infer the
equation of state of quantum chromodynamics (QCD) in the
form of pressure P as a function of temperature T or energy
density ε. Because of advances in both theory and computation,
vigorous activities are currently underway to determine the
dissipative effects in heavy-ion collisions [36–39].

From the theoretical perspective, it should be possible to
compute the shear and bulk viscosities directly from QCD
at finite temperature. In practice, this is extremely difficult
because QCD is generally a strongly interacting theory.
Calculations can and have been done at extremely high

1According to the theory of dynamical critical phenomena the shear
viscosity diverges at the critical point. A typical measurement on 3He
gives an increase in η of 10% when T is within 1 part in 104 of
Tc; see C. C. Agosta, S. Wang, L. H. Cohen, and H. Meyer, J. Low
Temp. Phys. 67, 237 (1987). This divergence is highly unlikely to be
observable in high-energy heavy-ion collisions.
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temperatures where perturbation theory, applied to quarks and
gluons, can be used on account of asymptotic freedom; see
Ref. [40] for shear viscosity and Ref. [41] for bulk viscosity.
At extremely low temperatures, perturbation theory can again
be used because the matter consists only of a very dilute gas
of pions, and low-energy pion dynamics is well understood.
See Ref. [42] for massive pions; for massless pions, see
Ref. [41] for shear viscosity and Ref. [43] for bulk viscosity.
There have been a variety of other kinetic theory calcula-
tions of the shear and/or bulk viscosities at low-to-moderate
temperatures in the literature in recent years [44–48]; these
usually include only elastic scattering of one or a few species
of hadrons.

In the intermediate region, which may be loosely defined
as 100 < T < 400 MeV, neither the low nor high temperature
approach is accurate. A few lattice QCD simulations have
used the Kubo formulas [49] to compute the shear [50,51]
and bulk [52] viscosities just above the critical temperature
of pure gluon/glueball matter. However, accurate lattice QCD
simulations of the properties of hadronic matter are extremely
time consuming and the final results are still likely to be far
in the future. The reason is that the lattice spacing a must be
small enough to describe the properties of an individual hadron
(a < 0.05 fm) whereas the box size L must be large enough
to contain many hadrons forming the dilute gas (L > 10 fm).
Hence the number of spatial lattice sites should be at least
200 in each direction. An interesting alternative approach to
the intermediate region is a model of classical, nonrelativistic
quasiparticles with color charges [53].

Our goal in this article is to provide a theoretical framework
in which to calculate the shear and bulk viscosities of hadronic
matter. This framework has the following features.

(i) It is relativistic.
(ii) It allows for an arbitrary number of hadron species.

(iii) It allows for both elastic and inelastic collisions.
(iv) It respects detailed balance.
(v) It allows for mean fields and temperature-dependent

masses.
(vi) The viscosities and the equation of state are mutually

consistent in the sense that the same interactions are
used to compute them all.

Obviously some assumptions or approximations must be
made for the theory to be applied in practice. The essential
assumptions are that quasiparticles are well defined and that
the elementary interactions are local. Thus our proposed
theoretical framework goes well beyond the classic works of
Refs. [54] and [42] which, although relativistic, considered
only elastic collisions in dilute gases. The inclusion of not only
resonances, but especially inelastic collisions, mean fields, and
temperature-dependent masses are essential for an accurate
determination of the bulk viscosity [55].

The outline of this article is as follows. In Sec. II we
recall the basics of the Boltzmann transport equation. In
Sec. III we derive the integral equations for the viscosities
by using the Boltzmann equation. In Sec. IV we show how
the Landau-Lifshitz condition plays a crucial role for the bulk
viscosity. In Sec. V we work out formulas for the viscosities
in the relaxation time approximation. In Sec. VI we generalize

the previous results to include mean-field or potential effects
and their significance for the bulk viscosity. In Sec. VII we
apply the framework to the linear σ model with massive pions.
As expected, the ratio η/s has a minimum and the ratio ζ/s

has a maximum near the rapid crossover transition, which is
more pronounced for larger vacuum σ masses. We conclude
in Sec. VIII. The reader not interested in mathematical details
is referred to Secs. VII and VIII and to the appendix where the
main formulas are summarized.

Because the asymmetry between matter and antimatter in
high-energy nuclear collisions at RHIC is very small, so are
the baryon and electric charge chemical potentials. Therefore,
thermal and electrical conductivity are neglected in this article.
Their inclusion is straightforward but tedious, and work to
include them is in progress.

For ease and clarity of presentation we will, for the most
part, display formulas that include only 2 → 2 reactions,
both elastic and inelastic, and formation 2 → 1 and decay
1 → 2 of resonances. At certain key points in the article we
simply write down formulas for the more general cases. In
addition, in practice we generally use classical statistics. The
lightest hadron for which this would be the most significant
approximation is the pion, but even then the difference between
Bose-Einstein and classical statistics have been shown to be
inconsequential for the transport coefficients for zero chemical
potential [56]. While some of the material here is not original,
it is basic to developing the theoretical framework. We present
it to make the article self-contained and to define our notation.

II. BOLTZMANN EQUATION

The rate for 2 → 2 processes, that is, the number of
reactions per unit time per unit volume of the type a + b →
c + d is

rate = 1

1 + δab

∫
d3pa

2Ea(2π )3

d3pb

2Eb(2π )3

d3pc

2Ec(2π )3

d3pd

2Ed (2π )3

× |M(a, b|c, d)|2(2π )4δ4(pa + pb − pc − pd )

× fafb[1 + (−1)2scfc][1 + (−1)2sd fd ] (1)

= 1

1 + δab

∫
d3pa

(2π )3

d3pb

(2π )3

d3pc

(2π )3

d3pd

(2π )3
W (a, b|c, d)

× fafb[1 + (−1)2scfc][1 + (−1)2sd fd ], (2)

whence

W (a, b|c, d)= (2π )4δ4(pa + pb − pc − pd )

2Ea2Eb2Ec2Ed

|M(a, b|c, d)|2 .

(3)

Here sa is the spin of particle a, etc., and the factor 1/(1 + δab)
takes into account the possibility that the incoming particles
are identical. The amplitude M is dimensionless. There are
either Bose-enhancement or Pauli-suppression factors in the
final state. In the rest frame of the system the single-particle
distributions fa are normalized such that∫

d3p

(2π )3
fa(x, p, t) = na(x, t) (4)
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is the spatial density of particles of type a. In thermal
equilibrium,

fa(x, p, t) = 1

e(Ea−µa )/T − (−1)2sa
, (5)

where T is the temperature and µa is the chemical potential
of the particle. It is obvious that the rate is a Lorentz
scalar.

The rate for decay processes, that is, the number of decays
per unit time per unit volume of the type a → c + d is

rate =
∫

d3pa

2Ea(2π )3

d3pc

2Ec(2π )3

d3pd

2Ed (2π )3
|M(a|c, d)|2(2π )4

× δ4(pa − pc − pd )fa[1 + (−1)2scfc][1 + (−1)2sd fd ]

=
∫

d3pa

(2π )3

d3pc

(2π )3

d3pd

(2π )3
W (a|c, d)fa[1 + (−1)2scfc]

× [1 + (−1)2sd fd ], (6)

whence

W (a|c, d) = (2π )4δ4(pa − pc − pd )

2Ea2Ec2Ed

|M(a|c, d)|2 . (7)

This M has dimension of energy.
How do the W ’s relate to cross sections and decay

rates? The relationships for the cross sections are as
follows:

dσ

d�∗ = 1

64π2s

p∗
final

p∗
initial

|M|2,
(8)

dσ

dt
= 1

64πs

1

(p∗
initial)

2
|M|2.

Here s and t are the Mandelstam variables (one can tell from the
context whether t represents a Mandelstam variable or time).
The differential cross section in the center-of-momentum
frame is dσ/d�∗ whereas dσ/dt is usually written as a

function of the invariants s, t, u. Thus,

W (a, b|c, d) = s

EaEbEcEd

p∗
initial

p∗
final

dσ

d�∗

× (2π )6δ4(pa + pb − pc − pd ). (9)

This agrees with the literature on relativistic Boltzmann
equations when only elastic collisions are considered because
then p∗

final = p∗
initial. An alternative form, which may be more

useful for cross sections that are not isotropic in the center-of-
momentum frame, is

W (a, b|c, d) = 2s(p∗
initial)

2

EaEbEcEd

dσ

dt
(2π )5δ4(pa + pb − pc − pd ),

(10)

where
4s(p∗

initial)
2 = (

s − m2
a − m2

b

)2 − 4m2
am

2
b,

(11)
4s(p∗

final)
2 = (

s − m2
c − m2

d

)2 − 4m2
cm

2
d .

For the decay a → c + d consider the particle a at rest. It will
decay according to the usual exponential law:

dna(t)

dt
= −�a→c+d na(t) . (12)

One computes that

�a→c+d = p∗
final

8πm2
a

|M(a|c, d)|2, (13)

where
4m2

a(p∗
final)

2 = (
m2

a − m2
c − m2

d

)2 − 4m2
cm

2
d, (14)

so that

W (a|c, d) = πm2
a

EaEcEdp
∗
final

�a→c+d (2π )4δ4(pa − pc − pd ).

(15)

Now we consider the Boltzmann equation. Taking into
account both gain and loss rates we write it as follows:

∂fa

∂t
+ va · ∇fa =

∑
bcd

∫
d3pb

(2π )3

d3pc

(2π )3

d3pd

(2π )3

{
1

1 + δcd

W (c, d|a, b)fcfd [1 + (−1)2sa fa][1 + (−1)2sbfb]

− 1

1 + δab

W (a, b|c, d)fafb[1 + (−1)2scfc][1 + (−1)2sd fd ]

}

+
∑
cd

∫
d3pc

(2π )3

d3pd

(2π )3

{
1

1+δcd

W (c, d|a)fcfd [1+(−1)2sa fa] − W (a|c, d)fa[1 + (−1)2scfc][1 + (−1)2sd fd ]

}

+
∑
bc

∫
d3pb

(2π )3

d3pc

(2π )3

{
W (c|a, b)fc[1+(−1)2sa fa][1+(−1)2sbfb] − 1

1 + δab

W (a, b|c)fafb[1 + (−1)2scfc]

}
.

(16)
From detailed balance on the microscopic level, energy conservation, and chemical equilibrium as represented by µa + µb =

µc + µd for two-body reactions and by µa = µc + µd for two-body decays, we find relations between the forward and backward
going rates:

(1 + δab)W (c, d|a, b) = (1 + δcd )W (a, b|c, d), (17)

W (c, d|a) = (1 + δcd )W (a|c, d). (18)
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The Boltzmann equation then becomes

∂fa

∂t
+ va · ∇fa =

∑
bcd

1

1 + δab

∫
d3pb

(2π )3

d3pc

(2π )3

d3pd

(2π )3
W (a, b|c, d)

×
{

fcfd [1 + (−1)2sa fa][1 + (−1)2sbfb] − fafb[1 + (−1)2scfc][1 + (−1)2sd fd ]

}

+
∑
cd

∫
d3pc

(2π )3

d3pd

(2π )3
W (a|c, d)

{
fcfd [1 + (−1)2sa fa] − fa[1 + (−1)2scfc][1 + (−1)2sd fd ]

}

+
∑
bc

∫
d3pb

(2π )3

d3pc

(2π )3
W (c|a, b)

{
fc[1 + (−1)2sa fa][1 + (−1)2sbfb] − fafb[1 + (−1)2scfc]

}
. (19)

For classical statistics, where the Bose and Pauli factors are
dropped, the equilibrium phase-space distribution is

f eq
a (x, p, t) = e−(Ea−µa )/T . (20)

The Boltzmann equation then shortens somewhat:

∂fa

∂t
+ va · ∇fa

=
∑
bcd

1

1 + δab

∫
d3pb

(2π )3

d3pc

(2π )3

d3pd

(2π )3

×W (a, b|c, d){fcfd − fafb}
+

∑
cd

∫
d3pc

(2π )3

d3pd

(2π )3
W (a|c, d){fcfd − fa}

+
∑
bc

∫
d3pb

(2π )3

d3pc

(2π )3
W (c|a, b){fc − fafb}. (21)

The generalization to arbitrary reactions {i} → {j} with n

particles in the initial state and m particles in the final state is
now clear. In obvious notation the Boltzmann equation is

∂fa

∂t
+ va · ∇fa =

∑
{i}{j}

1

S

∫ ′
dPi dPjW ({i}|{j})F [f ], (22)

where the prime indicates that there is no integration over
the momentum of a. There is a statistical factor for identical
particles in the initial state,

S =
∏

i

ni!, (23)

and products of Bose-Einstein and Fermi-Dirac distributions
as appropriate,

F [f ] =
∏

i

∏
j

{fj [1 + (−1)si fi] − fi[1 + (−1)sj fj ]}. (24)

III. VISCOSITIES

Now we use the Boltzmann equation to calculate the vis-
cosities. We restrict ourselves to zero chemical potentials. We
assume that the system is in approximately local equilibrium,
with local temperature T (x) and flow velocity Uµ(x). In the
Landau-Lifshitz approach, Uµ(x) is the velocity of energy
transport whereas in the Eckart approach, Uµ(x) would be

the velocity of baryon number flow [57,58]. However, the
net baryon number, electric charge, and all other conserved
quantum numbers are taken to be zero. Therefore one cannot
use the Eckart approach. Another consequence of all conserved
quantum numbers being zero is that thermal conductivity has
no meaning.

The symmetric energy-momentum tensor is written as

T µν = −Pgµν + wUµUν + �T µν, (25)

where P = P (T ) is pressure, s = dP/dT is entropy density,
ε = −P + T s is energy density, and w = T s = P + ε is
enthalpy density. These are all measured in a frame in which
the fluid is instantaneously at rest. The �T µν is the dissipative
part. It satisfies the condition,

Uµ�T µν = 0, (26)

on account of the Landau-Lifshitz definition of flow. The
entropy current is

sµ = sUµ, (27)

and is conserved if dissipative terms are neglected. The most
general form of �T µν is given by

�T µν = η
(
DµUν + DνUµ + 2

3�µν∂ρU
ρ
) − ζ�µν∂ρU

ρ.

(28)

Here

�µν = UµUν − gµν (29)

is a projection tensor normal to Uµ, and

Dµ = ∂µ − UµUβ∂β (30)

is a derivative normal to Uµ. The η is the shear viscosity and
the ζ is the bulk viscosity. In the local rest frame of the fluid,

�0ν = 0, �ij = δij , (31)

and

D0 = 0, Di = ∂i. (32)

In this frame,

∂µsµ = η

2T

(
∂iU

j + ∂jU
i − 2

3
δij∇ · U

)2

+ ζ

T
(∇ · U)2 .

(33)
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Nondecrease of entropy requires that both viscosities be
non-negative.

We are assuming that the interactions are well localized
in space and time. We are assuming that they are, for
practical purposes, point or contact interactions. Then the
energy-momentum tensor is written as a sum of independent
contributions:

T µν(x) =
∑

a

∫
d3p

(2π )3

p
µ
a pν

a

Ea

fa(x, p). (34)

Allow the system to be slightly out of equilibrium. Then we
can write

fa(x, p) = f eq
a (Uαpα/T ) [1 + φa(x, p)], (35)

and so

�T µν =
∑

a

∫
d3p

(2π )3

p
µ
a pν

a

Ea

f eq
a (Uαpα/T ) φa(x, p), (36)

where |φa| � 1. There is a constraint on φa(x, p) in that
the Landau-Lifshitz condition (26) must be satisfied. It is
customary and natural to use the same tensorial decomposition
of (28) when expressing φa(x, p) as a function of space time
and momentum.

φa = −Aa∂ρU
ρ + Ca

µν

(
DµUν + DνUµ + 2

3�µν∂ρU
ρ
)
.

(37)

Here Aa in general will depend on the scalar Uαpα . The tensor
Ca

µν could in principle be a linear combination of gµνand pµpν .
However, the former gives zero contribution. Therefore we
write Ca

µν = Capµpν where Ca will in general depend on the
scalar Uαpα .

It is worthwhile emphasizing that the expansion of �T µν

and φa in terms of the first order derivatives of the flow
velocity is only an approximation. It is referred to as the first
order dissipative fluid dynamics. Inclusion of second order
derivatives goes under the names of Müller and Israel and
Stewart. The second order theory is under intense investigation
because of its usefulness in describing high-energy nuclear
collisions where space-time gradients are not necessarily
small. It is also worth emphasizing that these same quantities
are zero for an equilibrated system in uniform flow.

It is now a straightforward matter to equate the two
expressions for the dissipative part of the energy-momentum
tensor. It is advantageous to work in the local rest frame of the
fluid.

ζ = 1

3

∑
a

∫
d3p

(2π )3

|p|2
Ea

f eq
a (Ea/T )Aa(Ea), (38)

η = 2

15

∑
a

∫
d3p

(2π )3

|p|4
Ea

f eq
a (Ea/T )Ca(Ea). (39)

How do we determine the Aa and Ca? The idea is to use the
Boltzmann equation where the term ∂fa/∂t + va · ∇fa is eval-
uated using the local equilibrium distribution f

eq
a (Uαpα/T ). It

will act as a source for the collision term on the other side of the
Boltzmann equation. With classical statistics the Boltzmann

equation reads as follows:

E−1
a pµ

a ∂µf eq
a = f eq

a

∑
bcd

1

1 + δab

∫
d3pb

(2π )3

d3pc

(2π )3

d3pd

(2π )3

×f
eq
b W (a, b|c, d){φc + φd − φa − φb}

+ f eq
a

∑
cd

∫
d3pc

(2π )3

d3pd

(2π )3
W (a|c, d)

×{φc + φd − φa} +
∑
bc

∫
d3pb

(2π )3

d3pc

(2π )3

× f eq
c W (c|a, b){φc − φa − φb}. (40)

The first task is to compute the left-hand side of the
Boltzmann equation. With f

eq
a = exp(−Uνp

ν/T ) we have

∂µf eq
a = − 1

T
f eq

a pν

(
∂µUν − 1

T
Uν∂µT

)
. (41)

Using the conservation equations for energy and momentum,
∂νT

µν = 0, and entropy (since the viscous terms are neglected
at this order), ∂µsµ = 0, we may deduce that

�µν 1

T
∂νT = −Uα∂αUµ, (42)

which has solution

1

T
∂µT = Uα∂αUµ + ξUµ∂αUα, (43)

where ξ is a function of T which is undetermined by Eq. (42). It
can be determined by substituting the previous expression into
the conservation equations. This gives ξ = −s/cV = −v2

s ,
where cV = dε/dT = T ds/dT is the heat capacity per unit
volume and v2

s = dP/dε is the square of the sound velocity.
Thus,

pµ∂µf eq
a = − 1

T
f eq

a pµpν[∂µUν − Uν(Uα∂α)Uµ]

= − 1

2T
f eq

a pµpν

[(
DµUν + DνUµ + 2

3
�µν∂ρU

ρ

)

− 2

3
�µν∂ρU

ρ + 2v2
s UµUν∂ρU

ρ

]
. (44)

After substituting in the structure of the φ’s and grouping
terms we get

Aa(∂ρU
ρ) − Ca

µν

(
DµUν + DνUµ + 2

3�µν∂ρU
ρ
) = 0,

(45)

where

Aa = 1

3EaT

[(
pα

a Uα

)2(
1 − 3v2

s

) − m2
a

]
+

∑
bcd

1

1 + δab

∫
d3pb

(2π )3

d3pc

(2π )3

d3pd

(2π )3
f

eq
b W (a, b|c, d)

×{Ac + Ad − Aa − Ab} +
∑
cd

∫
d3pc

(2π )3

d3pd

(2π )3

×W (a|c, d){Ac + Ad − Aa} +
∑
bc

∫
d3pb

(2π )3

d3pc

(2π )3

× f
eq
b W (c|a, b){Ac − Aa − Ab}, (46)
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and

Cµν
a = p

µ
a pν

a

2EaT
+

∑
cd

∫
d3pc

(2π )3

d3pd

(2π )3
W (a|c, d)

× {
Ccp

µ
c pν

c + Cdp
µ

d pν
d − Cap

µ
a pν

a

}
+

∑
bc

∫
d3pb

(2π )3

d3pc

(2π )3
f

eq
b W (c|a, b)

× {
Cap

µ
a pν

a + Cbp
µ

b pν
b − Ccp

µ
c pν

c

}
+

∑
bcd

1

1 + δab

∫
d3pb

(2π )3

d3pc

(2π )3

d3pd

(2π )3
f

eq
b W (a, b|c, d)

×{
Ccp

µ
c pν

c + Cdp
µ

d pν
d − Cap

µ
a pν

a − Cbp
µ

b pν
b}. (47)

The bulk viscosity is very small or zero in several limits.
The first is the conformal limit, which means that the theory has
no dimensional parameters, such as mass or intrinsic energy
scale. Then P ∼ T 4 and v2

s = 1/3, and so the first term on the
right-hand side of Eq. (46), the source term, vanishes and so
do the Aa . The second is the nonrelativistic limit of a single
species of particle. Then P ∼ m3/2T 5/2 exp(−m/T ) and v2

s =
T/m (plus corrections of higher order in T/m). Once again the
first term on the right-hand side of Eq. (46) vanishes (to lowest
order in T/m) and so the bulk viscosity should be very small.
These arguments do not apply to the shear viscosity because
the source term does not involve the equation of state.

IV. LANDAU-LIFSHITZ CONDITION

Equation (46) does not have a unique solution as it
stands. For example, consider elastic scattering for just one
type of particle. Starting with one solution A(E) we can
generate an infinite number of other solutions by making
the shift A(E) → A′(E) = A(E) − a − bE, where a and b

are arbitrary constants. These constants are associated with
particle conservation (a) and energy conservation (b). This
was noted in the literature before. It may be restated in more
physical terms. To return a system to kinetic and chemical
equilibrium after a change in volume, one might either change
the number of particles while keeping the average energy per
particle fixed, or one might change the average energy per
particle while keeping the total number of particles fixed.
Now it is apparent that this ambiguity is associated with the
Landau-Lifshitz condition (26), which is also sometimes called
the condition of fit when solving Eq. (46).

Consider an arbitrary set of particle species and all
possible reactions allowed by the symmetries. Make the
shift Aa(Ea) → A′

a(Ea) = Aa(Ea) − aa − bEa . The constant
b must be the same for all species of particle. The constants
aa are just like chemical potentials; they satisfy the same
relationships among themselves. Because we are restricting
our considerations to systems with zero net quantum numbers,
such as electric charge and baryon number, it is obvious that
the aa are all zero, just as all chemical potentials are zero.
The constant b acts like an inverse temperature and is as yet
undetermined.

Suppose that we have a particular solution A
par
a to Eq. (46);

does it satisfy the Landau-Lifshitz condition (26)? The general

solution would be Aa(Ea) = A
par
a (Ea) − bEa . Using Eq. (36)

the Landau-Lifshitz condition for the A term is

∑
a

∫
d3p

(2π )3
f eq

a (Ea/T ) Ea

[
Apar

a (Ea) − bEa

] = 0. (48)

Here it is useful to know the contributions to the pressure,
energy density, entropy density, and heat capacity from a single
species of particle.

Pa = T

∫
d3p

(2π )3
f eq

a (Ea/T ) ,

εa =
∫

d3p

(2π )3
Eaf

eq
a (Ea/T ) ,

(49)

sa = 1

3T 2

∫
d3p

(2π )3
|p|2f eq

a (Ea/T ) ,

cV a = 1

T 2

∫
d3p

(2π )3
E2

af
eq
a (Ea/T ) .

Now the coefficient b is determined in terms of integrals of the
particular solutions:

b = 1

T 2cV

∑
a

∫
d3p

(2π )3
f eq

a (Ea/T ) EaA
par
a (Ea). (50)

If the particular solutions already happen to satisfy the Landau-
Lifshitz condition, then b = 0. Substitution of Aa(Ea) =
A

par
a (Ea) − bEa into Eq. (38), with b as determined previously,

gives an expression for the bulk viscosity:

ζ = 1

3

∑
a

∫
d3p

(2π )3Ea

f eq
a (Ea/T ) Apar

a (Ea)
(|p|2 − 3v2

s E
2
a

)
.

(51)

Notice that if the particular solutions happen to satisfy the
Landau-Lifshitz condition then Eq. (51) reduces to Eq. (38).

There is no ambiguity with the Ca in the shear viscosity
because of the tensorial structure of the integrand in Eq. (47).
Physically the reason has to do with the fact that shear viscosity
is associated with the response to changes in shape at fixed
volume whereas bulk viscosity is associated with the response
to changes in volume at fixed shape.

V. RELAXATION TIME APPROXIMATION

Consider the Boltzmann equation [Eq. (21)]. Let us suppose
that all species of particles for all values of momentum are in
equilibrium except for species a with momentum pa . Replace
all phase-space distributions f with their equilibrium values
f eq except for fa , which we allow to be out of equilibrium
by a small amount. Thus we write fa = f

eq
a + δfa . This is

the momentum-dependent relaxation time approximation. We
approximate the Boltzmann equation by

∂fa(x, t, pa)

∂t
+ va · ∇fa(x, t, pa) = −ωa(Ea)δfa(x, t, pa),

(52)
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where

ωa(Ea) =
∑
bcd

1

1 + δab

∫
d3pb

(2π )3

d3pc

(2π )3

d3pd

(2π )3
W (a, b|c, d)f eq

b

+
∑
cd

∫
d3pc

(2π )3

d3pd

(2π )3
W (a|c, d)

+
∑
bc

∫
d3pb

(2π )3

d3pc

(2π )3
W (c|a, b)f eq

b (53)

is the frequency of interaction. The equilibration time is
defined as

τa(E) = ω−1
a (E). (54)

The deviation δfa is related to the function φa defined in
Eq. (35) by

δfa(x, p) = f eq
a (x, p)φ(x, p). (55)

Therefore we can substitute Eqs. (37) and (44) into Eq. (52) to
solve for the functions A

par
a and Ca , where C

µν
a = Cap

µ
a pν

a .

Apar
a (Ea) = τa(Ea)

3T Ea

[(
1 − 3v2

s

)
E2

a − m2
a

]
, (56)

Ca(Ea) = τa(Ea)

2T Ea

. (57)

The viscosities are now readily calculated using these
results. As usual, it is advantageous to work in the local rest
frame of the fluid:

ζ = 1

9T

∑
a

∫
d3p

(2π )3

τa(Ea)

E2
a

[(
1 − 3v2

s

)
E2

a − m2
a

]2

× f eq
a (Ea/T ) , (58)

η = 1

15T

∑
a

∫
d3p

(2π )3

|p|4
E2

a

τa(Ea)f eq
a (Ea/T ) . (59)

In the relaxation time approximation one must calculate the
momentum-dependent relation time or rate from Eq. (53) and
then substitute into the previous expressions and perform a
one-dimensional integration. These are generalizations of the
formulas given in Ref. [59] to an arbitrary number of species
of particles with energy-dependent relaxation times.

As a further approximation one may calculate a mean
interaction frequency ω̄a and an associated mean relaxation
time τ̄a = ω̄a

−1 via

ω̄a = 1

na

∫
d3p

(2π )3
ωa(Ea)f eq

a (Ea/T ) ,

(60)

na =
∫

d3p

(2π )3
f eq

a (Ea/T ) .

However, there is really no need to make this approximation
unless one only desires a rough order of magnitude estimate.
Depending on the dynamics, the relaxation time may be highly
momentum dependent. In either case it is clear that the particles
with the longest relaxation time dominate the viscosities,
because these particles can transport energy and momentum
over greater distances before interacting.

Now comes a subtle point. What if we were to include
weak interactions in our considerations? Clearly the relaxation
times for weak interactions are orders of magnitude greater
than the relaxation times for the strong interactions, so they
would dominate the viscosities. The answer is that one must
evaluate the actual physical conditions to which the viscous
fluid equations are to be applied. For example, in high-energy
nuclear collisions the size of the system is on the order
of 10 fm whereas the lifetime is of order 10 fm/c. Any
electrons, positrons, or neutrinos that might be produced by
this system will simply escape and not interact with any of
the hadrons. They cannot transport energy and momentum to
another part of the system. In addition, due to the weakness of
the interaction very few of them will actually be produced.
Thus the weak interactions are irrelevant in this situation.
The environment in the early universe or supernovae will
most likely require inclusion of the effects of the weak
interactions because the length and time scales are so much
greater.

VI. MEAN-FIELD OR POTENTIAL EFFECTS

Most hadronic models of hot matter involve temperature-
dependent mean fields, such as the Walecka model or the
linear sigma model. In the absence of chemical potentials there
should be no condensation of vector or tensor fields, only
scalar fields. Then the single-particle energies have the form
Ea = √

p2 + m̄2
a(T ) where m̄a(T ) is a temperature-dependent

effective mass that arises from the mean fields, in other words,
potential energy effects. This affects the bulk viscosity, but not
the shear viscosity, in several ways.

The Boltzmann equation acquires an extra term on the left
side of Eq. (16):(

∂

∂t
+ p

Ea

· ∇x − ∇xEa · ∇p

)
fa(x, t, p) = C[f ], (61)

where C[f ] represents the collision, formation, and decay
terms. The extra term involves the force F = dp/dt = −∇xE.
To calculate the viscosities the left side is evaluated with the
local equilibrium distribution,

f eq
a = exp

[− Uα(x)pα
a (x)/T (x)

]
. (62)

Now p0
a = Ea depends on x because m depends on T

which depends on x. This approach is not new but was
proven or justified many times in the past; see, for example,
Refs. [60,61].

A straightforward calculation gives(
∂

∂t
+ p

Ea

· ∇x − ∇xEa · ∇p

)
f eq

a

= − 1

EaT
f eq

a

[
pµpν

(
∂µUν − 1

T
Uν∂µT

)
+ 2

dm̄2
a

dT
Uα∂αT

]
.

(63)

The gradient of the temperature was determined previously:

1

T
∂µT = Uα∂αUµ − v2

s Uµ∂αUα. (64)
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This allows us to write(
∂

∂t
+ p

Ea

· ∇x − ∇xEa · ∇p

)
f eq

a

= − 1

2EaT
f eq

a

[
pµpν

(
DµUν + DνUµ + 2

3
�µν∂ρU

ρ

)

− 2

3
∂ρU

ρ

((
1 − 3v2

s

)
E2

a − m̄2
a + 3v2

s T
2 dm̄2

a

dT 2

)]
.

(65)

Thus the term (1 − 3v2
s )E2

a − m2
a = p2 − 3v2

s E
2
a in Eq. (46)

gets replaced by (1 − 3v2
s )E2

a − m̄2
a + 3v2

s T
2dm̄2

a/dT 2 =
p2 − 3v2

s (E2
a − T 2dm̄2

a/dT 2).
Taking into account the mean-field effects modifies the

particular solution in the relaxation time approximation:

Apar
a (Ea) = τa(Ea)

3T Ea

[(
1 − 3v2

s

)
E2

a − m̄2
a + 3v2

s T
2 dm̄2

a

dT 2

]
.

(66)

However, the mean fields also affect the equation of state, the
speed of sound, and the Landau-Lifshitz condition, so it is not
so straightforward to deduce the bulk viscosity at this point.

A. Model with no symmetry breaking

Consider a model with N scalar fields �a that has no
symmetry breaking, meaning that 〈�a〉 = 0 for all a. It has
the effective Lagrangian,

Leff = 1

2

∑
a

(∂µ�a)2 − U (�1, . . . , �N ). (67)

Assume that the potential is a polynomial in the fields to
arbitrarily high order. It represents localized multiparticle
interactions. The quasiparticle approach includes both mean
fields and independent thermal fluctuations around the mean
fields, all calculated in a thermodynamically self-consistent
manner [62–65]. This is sometimes referred to as the Phi-
derivable approach, and sometimes as the summation of daisy
and superdaisy diagrams. If fermions are present they are
integrated out and the effects of their interactions are subsumed
in U . In this approximation only even powers of the fields in
the potential play a role. The thermal average may be written
as

〈U 〉 =
∑

n1···nN

Un1···nN

〈
�2

1

〉n1 · · · 〈
�2

N

〉nN
, (68)

where the Un1···nN
are constants. The effective masses are

obtained from

m̄2
a =

〈
∂2U

∂�2
a

〉
, (69)

where it is assumed that the system has been diagonalized in
terms of normal modes such that〈

∂2U

∂�a∂�b

〉
= δabm̄

2
a. (70)

From the combinatorics,〈
∂2U

∂�2
a

〉
=

∑
n1···nN

Un1···nN

(2na)(2na − 1)(2na − 3)!!

(2na − 1)

× 〈
�2

a

〉 · · · 〈
�2

1

〉n1 · · · 〈
�2

N

〉nN
, (71)

so that

m̄2
a = 2〈

�2
a

〉 ∑
n1···nN

Un1···nN
na

〈
�2

1

〉n1 · · · 〈
�2

N

〉nN
. (72)

The equation of state is given by

P = P0 − V, ε = ε0 + V, (73)

where the subscript 0 refers to the free particle form with
effective masses m̄a . The energy-momentum tensor is

T µν = T
µν

0 + gµνV . (74)

Note that T s = ε + P = ε0 + P0 = T s0 where s = dP/dT

and s0 = dP0/dT so that the form of the entropy is unchanged.
This is a consequence of the assumption of independent parti-
cle motion between collisions in the mean-field approximation.
The potential energy density is obtained from

V = 〈U 〉 − 1

2

∑
a

m̄2
a〈�a〉2

=
∑

n1···nN

Un1···nN
[1 − (n1 + · · · + nN )]

〈
�2

1

〉n1 · · · 〈
�2

N

〉nN
.

(75)

The entropy density is computed from the formulas,

dP

dT
=

∑
a

∂P0a

∂T
+

∑
a

∂P0a

∂m̄2
a

dm̄2
a

dT
− dV

dT
, (76)

∂P0a

∂m̄2
a

= −1

2

〈
�2

a

〉
, (77)

〈
�2

a

〉 =
∫

d3p

(2π )3

1

Ea

f eq
a (Ea/T ) , (78)

whereby it is readily shown that

dV

dT
= −1

2

∑
a

〈
�2

a

〉dm̄2
a

dT
, (79)

from which follows

dP

dT
=

∑
a

s0a, (80)

so that the model is thermodynamically consistent. There are
some additional interesting temperature derivatives that can be
derived, such as

dV

dT
=

∑
a

Va

d
〈
�2

a

〉
dT

, (81)

and

d〈U 〉
dT

= 1

2

∑
a

m̄2
a

d
〈
�2

a

〉
dT

. (82)

014906-8



QUASIPARTICLE THEORY OF SHEAR AND BULK . . . PHYSICAL REVIEW C 83, 014906 (2011)

The numbers Un1···nN
have the interpretation of representing

the interaction of 2(n1 + · · · + nN ) particles in the initial plus
final states. Taking account of the combinatorics, the vertex
itself would be

Un1···nN

(2n1 − 1)!! · · · (2nN − 1)!!
,

where it is assumed that all na 	= 0. If an na happened to be
zero then the factor (2na − 1) is replaced by 1.

In Fermi liquid theory, functional variation of the energy
density with respect to the distribution functions should yield
the single-particle energies [66]. That relationship holds here
too. The kinetic part of the energy density is ε0 with the
effective masses m̄a . Making a variation δfa also affects the
mass. Hence,

δε

δfa

= Ea +
∑

b

∫
d3p

(2π )3

fb(Eb)

2Eb

∂m̄2
b

∂
〈
�2

a

〉 δ
〈
�2

a

〉
δfa

+ δV

δfa

= Ea + 1

2

δ
〈
�2

a

〉
δfa

∑
b

∂m̄2
b

∂
〈
�2

a

〉 〈�2
b

〉 + δV

δfa

. (83)

Variation of the potential part is given by

δV =
∑

n1···nN

Un1···nN
[1 − (n1 + · · · + nN )]

〈
�2

1

〉n1 · · · 〈
�2

N

〉nN

×
[

n1〈
�2

1

〉δ〈�2
1

〉 + · · · + nN〈
�2

N

〉δ〈�2
N

〉]
, (84)

so that

δV

δfa

= 1〈
�2

a

〉 δ
〈
�2

a

〉
δfa

∑
n1···nN

Un1···nN
[1 − (n1 + · · · + nN )]

× na

〈
�2

1

〉n1 · · · 〈
�2

N

〉nN
. (85)

Now it is easy to see from the expression [Eq. (72)] for the
mass that ∂m̄2

a/∂〈�2
b〉 is a symmetric matrix and that

δV

δfa

= −1

2

δ
〈
�2

a

〉
δfa

∑
b

∂m̄2
b

∂
〈
�2

a

〉 〈�2
b

〉
. (86)

This cancels the extra term from ε0 so that

δε

δfa

= Ea, (87)

verifying the internal consistency of the model.

B. Model with symmetry breaking

Now we allow for one of the fields to condense. For
definiteness let it be the N th one. After making the shift
�N → �N + v, where v is the condensate, all fields obey
〈�a〉 = 0. Generalizing the previous analysis we write

〈U 〉 =
∑

n1···nN

∑
l

Un1···nN ;l
〈
�2

1

〉n1 · · · 〈�2
N

〉nN
vl. (88)

If there is no condensation, then all Un1···nN ;l with l > 0
vanish, and we return to the previous case. Following the same

arguments as before we obtain the effective masses,

m̄2
a = 2〈

�2
a

〉 ∑
n1···nN

∑
l

Un1···nN ;lna

〈
�2

1

〉n1 · · · 〈
�2

N

〉nN
vl, (89)

and the potential energy density,

V = 〈U 〉 − 1

2

∑
a

m̄2
a〈�a〉2

=
∑

n1···nN

∑
l

Un1···nN ;l[1 − (n1 + · · · + nN )]

× 〈
�2

1

〉n1 · · · 〈
�2

N

〉nN
vl. (90)

The value of the condensate is determined by extremizing the
pressure P = P0 − V at fixed T , namely (∂P/∂v)T = 0. The
result is ∑

n1···nN

∑
l

Un1···nN ;l l
〈
�2

1

〉n1 · · · 〈
�2

N

〉nN
vl = 0. (91)

This is just the same condition as 〈∂U/∂v〉 = 0.
For the dissipative part of the energy-momentum tensor and

the Landau-Lifshitz condition we need

�V =
∑

n1···nN

∑
l

Un1···nN ;l[1 − (n1 + · · · + nN )]

× 〈
�2

1

〉n1 · · · 〈
�2

N

〉nN
vl

[
n1〈
�2

1

〉�〈
�2

1

〉 + · · · nN〈
�2

N

〉�〈
�2

N

〉]

−�v
∑

n1···nN

∑
l

Un1···nN ;l(n1 + · · · + nN )l

× 〈
�2

1

〉n1 · · · 〈
�2

N

〉nN
vl−1. (92)

The condensate deviates from its equilibrium value because of
the corresponding deviation of thermal fluctuations. One may
express �v in terms of the �〈�2

a〉 using Eq. (91) but for our
purposes there is no need to do so explicitly. For verification of
the Fermi liquid result that functional variation of the energy
density with respect to the distribution function yields the
single-particle energy, it is sufficient to observe that

δV

δfa

= −1

2

δ
〈
�2

a

〉
δfa

∑
b

∂m̄2
b

∂
〈
�2

a

〉 〈�2
b

〉 − 1

2

δv

δfa

∑
b

∂m̄2
b

∂v

〈
�2

b

〉
.

(93)

This exactly cancels the extra term coming from ε0 so that

δε

δfa

= Ea, (94)

in the presence of a condensate too. From this point on, the
expression for �T µν and the bulk and shear viscosities is the
same as when there is no condensation.

C. Landau-Lifshitz condition

The single-particle energy at finite temperature is a func-
tional of the distribution functions Ea = Ea ({f }). When there
is a small deviation from equilibrium,

fa(x, p) = f eq
a (Ea,0) + δfa(x, p), (95)
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the single-particle energy changes to

Ea = Ea,0 + δEa. (96)

Here the subscript 0 indicates the value the energy would have
if there was no departure from equilibrium at all. If f

eq
a is

expressed as a function of the true energy Ea , then

fa(x, p) = f eq
a (Ea) + δf̃a(x, p), (97)

where

δf̃a(x, p) = δfa(x, p) − ∂f
eq
a (Ea)

∂Ea

δEa. (98)

The structure of the quasiparticle Boltzmann equation is such
that it is the function δf̃a , which determines the transport
coefficients. It is important to realize that energy conservation
in the collisions dictates that linearization of the collision term
must be performed with respect to the true energy Ea .

Following the same arguments as earlier, expansion of
T ij from Eq. (74) around local equilibrium, using Eq. (95),
leads to

�T ij =
∑

a

∫
d3p

(2π )3

pipj

Ea

δf̃a. (99)

The change in the energy density is given by

�T 00 =
∑

a

∫
d3p

(2π )3
Eaδfa

=
∑

a

∫
d3p

(2π )3

(
Eaδf̃a + Ea

∂f
eq
a (Ea)

∂Ea

δEa

)

=
∑

a

∫
d3p

(2π )3

(
Eaδf̃a − Ea

T
f eq

a (Ea)δEa

)

=
∑

a

∫
d3p

(2π )3

(
Eaδf̃a − 1

2T

dm̄2
a

dT
f eq

a (Ea)δT

)
.

(100)

Recall that

δfa = −e−Ea/T

[
δEa

T
− Ea

T 2
δT

]
, (101)

and

δf̃a = e−Ea/T δT

T 2
. (102)

Substituting these in Eq. (100) we find that, in the local rest
frame,

�T 00 =
∑

a

∫
d3p

(2π )3

1

Ea

(
E2

a − m̄aT
dm̄a

dT

)
δf̃a. (103)

Hence, in a general frame of reference,

�T µν =
∑

a

∫
d3p

(2π )3

1

Ea

(
pµ

a pν
a − UµUνT 2 dm̄2

a

dT 2

)
δf̃a.

(104)

This is the obvious generalization of the result of Ref. [61] to
a system with multiple species of particles.

Following the usual arguments we can deduce the
viscosities:

ζ = 1

3

∑
a

∫
d3p

(2π )3Ea

f eq
a (Ea/T ) Aa(Ea)|p|2, (105)

η = 2

15

∑
a

∫
d3p

(2π )3Ea

f eq
a (Ea/T ) Ca(Ea) |p|4. (106)

If one has a particular solution that does not happen to
satisfy the Landau-Lifshitz condition, one can make it so by
adding a term linear in the energy, just as before:

∑
a

∫
d3p

(2π )3Ea

f eq
a (Ea/T )

[
E2

a − T 2 dm̄2
a

dT 2

]

× [
Apar

a (Ea) − bEa

] = 0. (107)

To simplify the resulting formula, it is helpful to use

∑
a

∫
d3p

(2π )3
f eq

a (Ea/T )

[
|p|2 − 3v2

s

(
E2

a − T 2 dm̄2
a

dT 2

)]
= 0,

(108)

which is a consequence of the identity dP/dT =
(dP/dε) dε/dT = v2

s dε/dT in the independent particle mod-
els used here. The coefficient b is thus

b = v2
s

T 2s

∑
a

∫
d3p

(2π )3Ea

f eq
a (Ea/T )

[
E2

a − T 2 dm̄2
a

dT 2

]
Apar

a (Ea).

(109)

Substitution of Aa(Ea) = A
par
a (Ea) − bEa into Eq. (105) gives

ζ = 1

3

∑
a

∫
d3p

(2π )3Ea

f eq
a (Ea/T )Apar

a (Ea)

×
[
|p|2 − 3v2

s

(
E2

a − T 2 dm̄2
a

dT 2

)]
. (110)

Of course, the term proportional to v2
s will integrate to zero

if the particular solution does satisfy the Landau-Lifshitz
condition. The appearance of the factor in square brackets
is natural because it matches the source function in Eq. (46).

In the relaxation time approximation this becomes

ζ = 1

9T

∑
a

∫
d3p

(2π )3

τa(Ea)

E2
a

f eq
a (Ea/T )

×
[
|p|2 − 3v2

s

(
E2

a − T 2 dm̄2
a

dT 2

)]2

. (111)

This expression is obviously positive definite.

VII. THE LINEAR σ MODEL

The linear σ model was long used as a simple renormaliz-
able model of pion dynamics at low energy. Although it cannot
claim to be quantitatively accurate, being supplanted by chiral
perturbation theory, it is still a much-used model for testing
approximations and as a proxy for more involved and detailed
low-energy models of QCD. Indeed, we will show that the
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model exemplifies the richness of the equation of state and
transport coefficients to be expected from QCD.

The Lagrangian is

L = 1
2 (∂µσ )2 + 1

2 (∂µπ)2 − U (σ,π ), (112)

where

U (σ,π ) = λ

4
(σ 2 + π2 − f 2)2 − Hσ. (113)

Compare to Eq. (67), where πi is identified with �i for i =
1, 2, 3 and σ is identified with �4. The SU(2)R× SU(2)L chiral
symmetry is explicitly broken by the term Hσ , which gives
the pion a mass. The scalar field has a nonvanishing vacuum
expectation value v determined at the classical level by the
equation,

λv(v2 − f 2) = H. (114)

The scalar field is thus split into a condensate and a fluctuation,
σ = v + �. The three parameters, λ, H , and f , are determined
by the vacuum values of the pion decay constant fπ and the
pion and sigma masses:

λ = m2
σ − m2

π

2f 2
π

, (115)

H = f 2
π m2

π , (116)

f 2 = m2
σ − 3m2

π

m2
σ − m2

π

f 2
π . (117)

For numerical calculations we take fπ = 93 MeV, mπ =
140 MeV, and either mσ = 600 or 900 MeV.

A. Thermodynamics

The equation of state is calculated following the general
procedure outlined in Sec. VI. It must be done numerically.
For more details the reader is referred to Refs. [62–65].

The temperature dependence of the meson masses and σ

condensate v are shown in Fig. 1 for two illustrative values
of the vacuum σ mass. There is no true phase transition,
only a crossover from the low-temperature regime where
there is a large difference between the two masses and the
high-temperature regime where the masses are practically
identical. The condensate decreases to very small values at
high temperature but never vanishes. The temperature at which
the symmetry is approximately restored is around 245 MeV. It
should be noted for future reference that the pion and σ masses
rise linearly with temperature at high temperature. This is a
generic feature of high-temperature field theories.

The entropy density, energy density, and pressure are shown
in Fig. 2. These thermodynamic quantities follow a continuous
curve with no phase transition. They go to zero exponentially as
T → 0 because all mesons are massive. At large temperature
they show the usual behavior that s ∼ T 3 and P ∼ ε ∼ T 4. At
intermediate temperatures rapid variation of the meson masses
result in maxima in s/T 3 and ε/T 4 but not in P/T 4.

Figure 3 shows the speed of sound squared v2
s and heat

capacity cV for the two choices of the vacuum σ mass. As
the vacuum σ mass increases the speed of sound develops a
dip and the heat capacity develops a peak around 245 MeV.
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FIG. 1. (Color online) Variation of meson masses and condensate
with temperature for a vacuum sigma mass of 600 MeV (top) and
900 MeV (bottom).

This indicates that the system is near a second-order phase
transition. At high temperature v2

s → 1/3 and cV → T 3, both
on account of the fact that the equation of state approaches
P ∼ T 4.

B. Scattering amplitudes

The Feynman rules can easily be determined from the
Lagrangian of the linear σ model. At one loop order the various
scattering amplitudes are as follows:

Mπaπb ;πcπd

= −2λ

(
s − m2

π

s − m2
σ

δabδcd + t − m2
π

t − m2
σ

δacδbd + u− m2
π

u− m2
σ

δadδbc

)
,

(118)

Mπσ ;πσ = −2λ − 4λ2f 2
π

(
3

t − m2
σ

+ 1

u− m2
π

+ 1

s − m2
π

)
,

(119)

Mππ ;σσ = −2λ − 4λ2f 2
π

(
3

s −m2
σ

+ 1

t − m2
π

+ 1

u− m2
π

)
,

(120)
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FIG. 2. (Color online) Energy density, pressure, and entropy
density as functions of temperature for a vacuum sigma mass of
600 MeV (top) and 900 MeV (bottom).

Mσσ ;σσ = −6λ − 36λ2f 2
π

(
1

s − m2
σ

+ 1

t − m2
σ

+ 1

u − m2
σ

)
.

(121)

The poles in the s and u channels of ππ → ππ and πσ →
πσ , respectively, pose trouble as is well known in the literature.
We are not aware of any prescription to regularize both of these
singularities while satisfying crossing symmetry. It is obvious
that the problematic terms are coming from the three-point
vertices. Those terms were not included when calculating the
equation of state anyway. To be consistent with the equation
of state, these terms must be dropped when calculating
the viscosities. Equivalently, we approximate the scattering
amplitudes by their limits as s, t , and u all go to infinity. Thus
the scattering amplitudes just reduce to constants.

C. Viscosities

With the transition amplitudes specified, the departure
functions Aa and Ca for a = π and σ can be determined as
solutions to the integral equations Aa = 0 and Cµν

a = 0 using
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FIG. 3. (Color online) Temperature dependence of the speed of
sound (top) and heat capacity (bottom).

Eqs. (46) and (47). When substituted into Eqs. (105) and (106)
we will get the bulk and shear viscosities.

The set of integral equations are projected into a suitable
vector space and solved by a variational method. The procedure
is standard and can be found classic monographs [54,67]. The
departure functions are expanded in terms of some chosen
basis functions gn as

Ca =
N∑

n=1

ca,ngn (Ea/T ) , (122)

and the expansion coefficients ca,n are adjusted to minimize
the functional,

F =
∑

a

(Ca − C̃a, Ca − C̃a), (123)

where C̃ is the true solution. We have defined the inner product
between two functions χ1 and χ2 as

(χ1, χ2) =
∑

a

∫
d3p

(2π )3
χ1,a(p)R[χ2,a(p)], (124)

where R is the collision operator acting on the space of
departure functions which, in the notation of Eq. (22), should
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be understood as

R[χ ] =
∑
{i}{j}

1

S

∫ ′
dPi dPjW ({i}|{j})

n∏
i=1

m∏
j=1

fi

× [1 + (−1)sj fj ]

( ∑
i

χi −
∑

j

χj

)
. (125)

With the variational technique one hopes to find a good
approximation to the departure functions using a modest set
of basis functions. However, this is not guaranteed. In this
paper we will show numerical results obtained this way for
the shear viscosity. Solving the integral equations for the bulk
viscosity is more difficult, as is well known, because of the
presence of zero modes. Details of the numerical techniques
used and their convergence properties will be presented
elsewhere.

In Figs. 4 (mσ = 600 MeV) and 5 (mσ = 900 MeV) we
show the ratio of shear viscosity to entropy density from
a third-order variational calculation of the full Boltzmann
equation compared to the relaxation time approximation of
the Boltzmann equation. The variational method converges
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FIG. 4. Ratio of shear viscosity to entropy density from the
solution to the integral equation (top) and from the relaxation time
approximation (bottom). Recall that the KSS bound is 1/4π ≈ 0.08.
The vacuum sigma mass is 600 MeV.
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FIG. 5. Ratio of shear viscosity to entropy density from the
solution to the integral equation (top) and from the relaxation time
approximation (bottom). Recall that the KSS bound is 1/4π ≈ 0.08.
The vacuum sigma mass is 900 MeV.

very quickly. For the present case the first-order solution
was already good to within a few percent and it was
unnecessary to go beyond the third order. It is satisfying that
results from the relaxation time approximation are within
a factor of 2 compared to the sophisticated variational
method. The difference between the results of the variational
method versus the relaxation time approximation is most
apparent at low temperature and for mσ = 900 MeV. This
can be attributed to how the collision dynamics is approx-
imated when using the relaxation time method. Although
the relaxation time used is energy dependent, it is still
only an approximation to the full solution of the integral
equations.

A minimum near the crossover temperature of 245 MeV is
observed in the shear viscosity to entropy density ratio for both
mσ = 600 MeV and mσ = 900 MeV. Note that for fixed mπ

and fπ the coupling constant λ in this model grows with mσ

[see Eq. (115)]. This leads to increasingly strong interaction,
thereby reducing the shear viscosity. The parameters we have
chosen are illustrative of QCD phenomenology. Whether or
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FIG. 6. (Color online) Ratio of bulk viscosity to entropy density
in the relaxation time approximation.

not other, more extreme, values of the parameters constitute a
possible counterexample of the KSS bound deserves a more
careful study and is beyond the scope of this article.
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FIG. 7. (Color online) The quantity m̄2
a − dm̄2

a/dT 2 that enters
the calculation of the bulk viscosity for a vacuum sigma mass of
600 MeV (top) and 900 MeV (bottom).

The ratio of bulk viscosity to entropy density from the
relaxation time approximation,

ζ = 1

T

∑
a

∫
d3p

(2π )3

τa(Ea)

E2
a

f eq
a (Ea/T )

×
[(

1

3
− v2

s

)
|p|2 − v2

s

(
m̄2

a − T 2 dm̄2
a

dT 2

)]2

, (126)

is shown in Fig. 6. Although we have not yet managed to solve
the integral equations for the bulk viscosity, we do not expect
the difference between the two approaches to be significantly
different from what we obtained for the shear viscosity. For
a vacuum σ mass of 900 MeV, there is a clear maximum in
ζ/s near the crossover temperature. To ascertain its origin it is
only necessary to examine Eq. (126). The ratio is quadratically
proportional to the violation of conformality, either in terms
of speed of sound,

1
3 − v2

s ,

or in terms of bulk transport mass,

m̄2
a − T 2 dm̄2

a

dT 2
= d

dβ2

(
β2m̄2

a

)
.

A comparison of Figs. 3 and 7 with Fig. 6 clearly shows
that ζ/s is largest when the violation of conformality is
greatest. Note that for the system to be conformal it is only
necessary that P ∼ T 4 and that m̄ ∼ T ; it is not necessary for
the effective mass to vanish. Intuitively, the bulk viscosity is
enhanced when it is easy to transfer energy between kinetic
motion and internal degrees of freedom, such as resonances
or heavier mass particle, mean fields, particle production
or absorption, or effective masses that vary strongly with
temperature. All of these are playing a role here to a greater or
lesser extent.

VIII. CONCLUSION

In this article we constructed a theoretical framework for
the calculation of the viscosities of hot hadronic matter. The
framework has the benefit that it is relativistic, it allows for an
arbitrary number of hadron species, it allows for elastic and
inelastic collisions and the formation and decay of resonances,
it respects detailed balance, and it allows for temperature-
dependent mean fields and temperature-dependent masses. It
is a consistent theory in the sense that the same interactions
that are used to calculate the equation of state are used to
calculate the viscosities. The significance of this is that the
bulk viscosity, in particular, depends very dramatically on
the equation of state and on the quasiparticle masses. The
essential assumption is that quasiparticles are good degrees of
freedom. The basic resulting formulas have been assembled in
the appendix for ease of reference.

As a nontrivial application we applied this theoretical
framework to the linear σ model using the physical vacuum
pion mass. As the vacuum σ mass increases, the crossover
transition become sharper, the speed of sound develops a dip,
and the heat capacity develops a peak. This is well-known
physics, but it has significance for the viscosities. As expected,
the ratio η/s has a minimum at the crossover temperature
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whereas the ratio ζ/s develops a maximum there for large
enough vacuum σ masses. The minimum value of η/s is
greater than the purported bound of 1/4π , although we really
have nothing new to add here in this direction.

As a byproduct of our theoretical framework we gener-
alized the relaxation time formulas for the shear and bulk
viscosities of Gavin [59] to include an arbitrary number of
species of hadrons with energy-dependent relation times and
temperature-dependent effective masses. These formulas alone
can be applied very usefully without much numerical work.

The theoretical framework presented here can be applied
to increasingly sophisticated models of hadronic interactions.
Work on doing so is in progress. Also in progress is the
extension to include chemical potentials. The latter may not
be important at RHIC and Large Hadron Collider (LHC) but
they will be for heavy-ion collisions at Facility for Antiproton
and Ion Research (FAIR).
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APPENDIX

In this Appendix we gather some of the basic results of the
article. For more details see the text.

The Boltzmann equation is(
∂

∂t
+ p

Ea

· ∇x − ∇xEa · ∇p

)
fa(x, t, p)

=
∑
{i}{j}

1

S

∫ ′
dPi dPjW ({i}|{j})F [f ], (A1)

where the prime indicates that there is no integration over
the momentum of a. There is a statistical factor for identical
particles in the initial state,

S =
∏

i

ni!, (A2)

and products of Bose-Einstein and Fermi-Dirac distributions
as appropriate,

F [f ] =
∏

i

∏
j

{fj [1 + (−1)si fi] − fi[1 + (−1)sj fj ]}. (A3)

The rate function is

W ({i}|{j}) = (2π )4δ4(Pi − Pj )

(
∏

i 2Ei)(
∏

j 2Ej )
|M({i}|{j})|2. (A4)

The departure of the phase-space distributions are expressed
in terms of φa as

fa = f eq
a (1 + φa) , (A5)

which furthermore has the tensorial decomposition,

φa = −Aa∂ρU
ρ + Ca

µν

(
DµUν + DνUµ + 2

3�µν∂ρU
ρ
)
.

(A6)

In terms of these the viscosities are

ζ = 1

3

∑
a

∫
d3p

(2π )3

|p|2
Ea

f eq
a (Ea/T ) Aa(Ea), (A7)

η = 2

15

∑
a

∫
d3p

(2π )3

|p|4
Ea

f eq
a (Ea/T ) Ca(Ea). (A8)

The departure functions satisfy integral equations. For exam-
ple, for two-body reactions,

1

EaT

[(
1

3
− v2

s

)
|p|2 − v2

s

(
m̄2

a − T 2 dm̄2
a

dT 2

)]

=
∑
bcd

1

1 + δab

∫
d3pb

(2π )3

d3pc

(2π )3

d3pd

(2π )3

× f
eq
b W (a, b|c, d){Aa + Ab − Ac − Ad}, (A9)

and

p
µ
a pν

a

2EaT
=

∑
bcd

1

1 + δab

∫
d3pb

(2π )3

d3pc

(2π )3

d3pd

(2π )3
f

eq
b W (a, b|c, d)

× {
Cap

µ
a pν

a + Cbp
µ

b pν
b − Ccp

µ
c pν

c − Cdp
µ

d pν
d

}
.

(A10)

For resonance formation and decay and multiparticle reactions
see the text. The dissipative part of the energy-momentum
tensor can be written as

�T µν =
∑

a

∫
d3p

(2π )3

1

Ea

(
pµ

a pν
a − UµUν dm̄2

a

dT 2

)
δf̃a,

(A11)

where δf̃a is defined in the text. In the relaxation time
approximation the viscosities can be written as

η = 1

15T

∑
a

∫
d3p

(2π )3

|p|4
E2

a

τa(Ea)f eq
a (Ea/T ) , (A12)

and

ζ = 1

T

∑
a

∫
d3p

(2π )3

τa(Ea)

E2
a

f eq
a (Ea/T )

×
[(

1

3
− v2

s

)
|p|2 − v2

s

(
m̄2

a − T 2 dm̄2
a

dT 2

)]2

. (A13)

The effective masses are calculated self-consistently using
the same potential U and same approximations as when
calculating the equation of state, namely,

m̄2
a =

〈
∂2U

∂�2
a

〉
. (A14)
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