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Azimuthal correlations from transverse momentum conservation and possible local parity violation
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We analytically calculate the contribution of transverse momentum conservation to the azimuthal correlations
that have been proposed as signals for possible local strong parity violation and recently have been measured in
heavy ion collisions. These corrections are on the order of the inverse of the total final-state particle multiplicity
and, thus, are on the same order as the observed signal. The corrections contribute with the same sign to both
like-sign and opposite-sign pair correlations. Their dependence on the momentum is in qualitative agreement
with the measurements by the solenoidal tracker at the BNL Relativistic Heavy Ion Collider Collaboration, while
the pseudorapidity dependence differs from the data.
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I. INTRODUCTION

Topological configurations occur generically in non-
Abelian gauge theories and are known to be essential for
understanding the vacuum structure and hadron properties
in quantum chromodynamics (QCD) (for reviews, see, e.g.,
Ref. [1]). Also, they have been shown to play important
roles in hot QCD matter (i.e., quark-gluon plasma), which
existed in the early universe and now is created in heavy
ion collisions [2]. Despite much indirect evidence, a direct
experimental manifestation of the topological effects has
not been achieved and, therefore, is of great interest. One
salient feature of the topological configurations is the P- and
CP-odd effects they may induce. Based on that, it has been
suggested [3–6] to look for the possible occurrence of P- and
CP-odd domains with local strong parity violation for a direct
detection of topological effects. Such domains may naturally
arise in a heavy ion collision caused by the so-called sphaleron
transitions in the created hot QCD matter. In particular, the
so-called chiral magnetic effect (CME) predicts that, in the
presence of the strong external (electrodynamic) magnetic
field at the early stage after a (noncentral) collision, sphaleron
transitions induce a separation of negatively and positively
charged particles along the direction of the magnetic field,
which is perpendicular to the reaction plane defined by the
impact parameter and the beam axis. Such an out-of-plane
charge separation, however, varies its orientation from event
to event, either parallel or antiparallel to the magnetic field
(depending on whether the CME is caused by sphaleron or an-
tisphaleron transition). As a result, the expectation value of any
P-odd observable vanishes, and only the variance of such an
observable may be detected, which makes the measurement of
CME rather challenging. Recently, the solenoidal tracker at the
BNL Relativistic Heavy Ion Collider (STAR) Collaboration,
in Ref. [7], has published measurements of charged-particle
azimuthal correlations proposed in Ref. [8] as a CME signal
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and found interesting patterns partly consistent with CME
expectations. The STAR data have generated considerable
interest, and many subsequent works have appeared, which
propose alternative explanations [9–12], which suggest data
interpretations and new observations [13–16], and study
further consequences of CME [17–19].

We start with a discussion of the proposed CME signal as
measured by STAR. In Ref. [8], it has been suggested that the
CME may be approached indirectly by the measurement of
the following two-particle correlation:

γ = 〈cos(φ1 + φ2 − 2�RP )〉
= 〈cos(φ1 − �RP ) cos(φ2 − �RP )〉 − 〈sin(φ1 − �RP )

× sin(φ2 − �RP )〉, (1)

where �RP , φ1, and φ2 denote the azimuthal angles of the
reaction plane and produced charged particles, respectively.
Because this observable measures the difference between the
in-plane and out-of-plane projected azimuthal correlations,
it has been argued that this observable is particularly suited
for revealing the CME signal, which is an out-of-plane
charge separation. Specifically, the CME predicts γ > 0 for
opposite-sign pairs and γ < 0 for same-sign pairs. However,
as has been pointed out in Refs. [9–11,14–16], in noncentral
collisions, the presence of elliptic flow [20] already differ-
entiates between in and out of plane. As a consequence,
essentially any two-particle correlation will contribute to the
preceding observable, although the correlations’ dynamical
mechanism may generally be reaction-plane independent.
These so-called background correlations need to be well
understood theoretically and possibly need to be determined
by independent measurements.1 The STAR publication [7]
presents data for the correlator γ together with the reaction-
plane-independent correlator,

δ = 〈cos(φ1 − φ2)〉, (2)

1It is worth emphasizing that the contributions to γ from elliptic-
flow-induced correlations and from the CME have similar centrality
trends: Both the elliptic flow and the magnetic field, necessary for the
CME, increase from central to peripheral collisions.
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in the midrapidity region for both same- and opposite-
sign pairs in AuAu and CuCu collisions at two energies√

sNN = 200 and 62 GeV. The data are encouraging: At first
sight, the results for γ seem to be qualitatively consistent
with the CME expectations. However, as shown in Ref. [14],
when the correlator δ is taken into account as well, the
interpretation of the data, in terms of the CME, requires almost
exact cancellation of the CME and all possible background
correlations. Consequently, to extract a possible signal for
the CME, the understanding of these background correlations
becomes crucial at this stage.

One well-known possible source of azimuthal correlation
is the conservation of transverse momentum, which has been
qualitatively discussed in Ref. [11] and has been suggested
to be a significant contribution to the measured observable γ .
The argument goes as follows. Consider, for a moment, all
particles in the final state, charged and neutral over all phase
space. Next, rewrite the correlator Eq. (1) as (for simplicity,
we set �RP = 0 here and in the rest of the paper)

γ =
〈∑

i �=j cos(φi + φj )∑
i �=j 1

〉

=
〈(∑

i cos(φi)
)2 − (∑

i sin(φi)
)2 − ∑

i cos(2φi)∑
i �=j 1

〉
, (3)

where i and j are summed over all particles. If we further
assume that all particles have exactly the same magnitude
of transverse momentum pt , the conservation of transverse
momentum implies∑

i

cos(φi) =
∑

i

sin(φi) = 0, (4)

and, in consequence, one obtains for sufficiently large N ,

γ = −v2

N
. (5)

Here, v2 is the elliptic-flow coefficient measured for all
produced particles, and N is the total number of all produced
particles (in full phase space). This contribution to the az-
imuthal correlations from transverse momentum conservation
(TMC) turns out to be on the order of the data measured by
STAR and, therefore, bears interest and importance.

However, the previous argument relies on two assumptions,
which are not realized in the actual measurement. First, STAR
measures only the charged particles in a small pseudorapidity
region |η| < 1, which accounts for only ∼15% of the total
number of produced particles. Second, the magnitude of
the transverse momentum is not a constant but, rather, is
distributed, more or less, according to a thermal distribution.
Therefore, a more realistic estimate for the contribution
of TMC to the foregoing correlation functions is required.
The influence of momentum conservation on observables in
heavy ion collisions has been discussed in the literature in
the context of spectra [21], elliptic flow [21,22], directed
flow [23], and certain two-particle densities [24], and
corrections of various importance have been established. In
the present paper, we will address the effect of TMC on the
correlation functions relevant for the potential measurement

of the CME. To this end, we derive the necessary formalism,
which allows us to quantify the azimuthal correlations caused
by TMC.

Before going into detail, let us discuss a few qualitative
features, which are to be expected from TMC, and which
will be demonstrated in detail in the following. First, TMC
introduces a back-to-back correlation for particle pairs because
they tend to balance each other in momentum. Second, the
expected correction should scale inversely with the total
number of particles because more particles provide more ways
to balance the momentum and, thus, to dilute the effect on
two-particle correlations. Furthermore, the correlation should
be stronger in plane than out of plane because of the presence
of elliptic flow. As a result, we expect that TMC results in a
negative contribution to the observable γ , which increases
with the strength of the elliptic flow v2. Finally, we note
that TMC is blind to particle charge, which leads to identical
contributions to same-sign and opposite-sign pair correlations.
Because of these features, TMC alone cannot be expected
as a full account for the observed charged-particle azimuthal
correlation patterns. Rather, it should be considered as an
important background effect that contributes significantly and,
therefore, necessitates quantitative studies for establishing any
final interpretation of the data.

The paper is organized as follows. In Sec. II, by assuming
only TMC, we present analytical calculations of the correlators
γ and δ, In Sec. III, we take the STAR acceptance into account
and compare our results with the available data (integrated
over transverse momentum). In Sec. IV, we discuss specific
differential observables, such as transverse momentum and
rapidity-dependent correlations. Our conclusions are listed in
Sec. V, where some comments also are included.

II. GENERAL FORMULAS

Let us assume that there are N particles in total produced
in a given heavy ion collision event with individual momenta
�p1, . . . , �pN . We denote the particles’ transverse momenta by
�p1,t , . . . ., �pN,t and their magnitudes by p1,t , . . . , pN,t . The
N -particle density fN (normalized to unity) with enforced
TMC can be written as

fN ( �p1, . . . , �pN )

= δ2( �p1,t + · · · + �pN,t )f ( �p1) · · · f ( �pN )∫
F

δ2( �p1,t + · · · + �pN,t )f ( �p1) · · · f ( �pN )d3 �p1 · · · d3 �pN

,

(6)

where f ( �pi) is the normalized [
∫
F

f ( �p)d3 �p = 1] single-
particle distribution. Note that the preceding integrals are
taken over the full phase space (denoted by F ) rather than the
region where the particles are actually measured. In Eq. (6),
we explicitly assume that all produced particles are governed
by the same single-particle distribution.2 We also ignore any
other two-particle correlations because, in this paper, we only
focus on the effects of TMC. To calculate a two-particle

2This assumption is reasonably well satisfied in heavy ion collisions
in which the final-state particles are mostly pions.
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correlator, such as 〈cos(φ1 + φ2)〉, we need the two-particle
density, which can be obtained from Eq. (6) by integrating out
N − 2 momenta,

f2( �p1, �p2) = f ( �p1)f ( �p2)

∫
F

δ2

(
N∑

i=1

�pi,t

)
N∏

i=3

[f ( �pi)d
3 �pi]

∫
F

δ2

(
N∑

i=1

�pi,t

)
N∏

i=1

[f ( �pi)d
3 �pi]

.

(7)

To perform the integrals in Eq. (7), we follow the techniques
of Refs. [21,22,25] and make use of the central limit theorem.
The sum of M uncorrelated transverse momenta

∑M
i=1 �pi,t =

�Kt has a Gaussian distribution if M is sufficiently large,3

that is,

GM ( �Kt ) =
∫

F

δ2

(
M∑
i=1

�pi,t − �Kt

)
M∏
i=1

[f ( �pi)d
3 �pi]

= 1

2πM

√〈
p2

x

〉
F

〈
p2

y

〉
F

× exp

(
− K2

x

2M
〈
p2

x

〉
F

− K2
y

2M
〈
p2

y

〉
F

)
.

(8)

Here, x and y denote the two components of transverse
momentum and〈

p2
x

〉
F

=
∫

F

f ( �p)p2
xd

3 �p,
〈
p2

y

〉
F

=
∫

F

f ( �p)p2
yd

3 �p, (9)

where the integrations are over full phase space F . By using
Eq. (8), we can express Eq. (7) in the following manner:

f2( �p1, �p2) = f ( �p1)f ( �p2)
GN−2(− �p1,t − �p2,t )

GN (0)

= f ( �p1)f ( �p2)
N

N − 2

× exp

(
− (p1,x + p2,x)2

2(N − 2)
〈
p2

x

〉
F

− (p1,y + p2,y)2

2(N − 2)
〈
p2

y

〉
F

)
.

(10)

By expanding in powers of 1/N and by restricting ourselves
to pairs with | �p1,t + �p2,t | �

√
2N〈p2

t 〉,4 we obtain

f2( �p1, �p2) � f ( �p1)f ( �p2)

×
(

1 + 2

N
− (p1,x + p2,x)2

2N
〈
p2

x

〉
F

− (p1,y + p2,y)2

2N
〈
p2

y

〉
F

)
. (11)

3We have checked, by simple Monte Carlo calculations, that the
central limit theorem applies for M > 10, see also Ref. [21]. This
condition is very well satisfied in heavy ion collisions, even in the
most peripheral ones.

4In practice, this is hardly any restriction because, for sufficiently
large N , only pairs with very large transverse momentum violate the
condition | �p1,t + �p2,t | � √

2N〈p2
t 〉, which are strongly suppressed

by the rapidly decreasing single-particle distributions f ( �p1)f ( �p2).

As already mentioned, the earlier correlation function does not
distinguish between same- and opposite-sign pairs (or pairs
that involve neutral particles) because the TMC involves all
particles without discrimination on the charge of particles. We
also note that the two-particle density f2( �p1, �p2) is maximum
for back-to-back configurations, as can easily be seen from
the dependence on the combinations −(p1,x + p2,x)2 and
−(p1,y + p2,y)2.

Given the two-particle density Eqs. (7) and (11), we can
proceed to evaluate various two-particle azimuthal correlations
in any given kinematic region, for example, the one introduced
in Eq. (1),

〈cos(φ1 + φ2)〉 =

∫
�

f2( �p1, �p2) cos(φ1 + φ2)d3 �p1d
3 �p2∫

�

f2( �p1, �p2)d3 �p1d
3 �p2

,

(12)

and analogously for 〈cos(φ1 − φ2)〉. Here, we denote, by �,
the part of the phase space covered by the actual experiment.

Finally, we need the single-particle distribution, for which
we assume the following rather general form (�RP = 0):

f ( �p)d3 �p = g(pt , η)

2π
[1 + 2v2(pt , η) cos(2φ)]d2 �ptdη, (13)

where v2 is the pt - and η-dependent elliptic-flow coefficient
(with η as the pseudorapidity). By taking Eq. (11) into account
and by performing elementary calculations, we obtain our
main result:5

〈cos(φ1 + φ2)〉 = − 1

N

〈pt 〉2
�〈

p2
t

〉
F

2v̄2,� − ¯̄v2,F − ¯̄v2,F (v̄2,�)2

1 − ( ¯̄v2,F )2
,

(14)

where we have introduced certain weighted moments of v2,

v̄2 = 〈v2(pt , η)pt 〉
〈pt 〉 =

∫
g(pt , η)v2(pt , η)ptd

2 �ptdη∫
g(pt , η)ptd

2 �ptdη

, (15)

and

¯̄v2 =
〈
v2(pt , η)p2

t

〉
〈
p2

t

〉 =

∫
g(pt , η)v2(pt , η)p2

t d
2 �ptdη∫

g(pt , η)p2
t d

2 �ptdη

. (16)

Again, the indices F and � indicate that all integrations
in Eqs. (15) and (16) are performed over full phase space
(F ) or the phase space in which particles are measured (�),
respectively. For completeness, let us add that N denotes the
total number of produced particles (charged and neutral), and
〈pt 〉� is the average transverse momentum of the measured
particles.

One important lesson from the previous result is that, even
if we measure particles in a limited fraction of the full phase

5Here, and in the following, we assume that the azimuthal part of
� covers full 2π , that is, φ ∈ [0, 2π ). This is the only restriction we
impose on �.
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space (e.g., a narrow pseudorapidity bin), the effect of TMC
on 〈cos(φ1 + φ2)〉 is not suppressed.6 This may be roughly
understood in the following way: If each particle is generated
in an independent manner except the constraint from overall
TMC, then, for each given particle, its pt effectively has a
chance of 1/N (in the large N limit) to be balanced by every
other particle. That is equivalent to say that each pair has a
back-to-back correlation of strength 1/N , which is preserved
despite what fraction of particles is selected for measurement.
Furthermore, while not changing the order of magnitude of
the effect, the details of the pt and η dependence of single-
particle distribution and v2 may slightly affect the quantitative
results.

Next, we examine two approximations to the main result,
Eq. (14).

(i) If all the produced particles are measured (i.e., � = F )
and all have the same magnitude of the transverse mo-
mentum [i.e., g(pt , η) ∝ δ(pt − p0)h(η)], we recover
the result Eq. (5) discussed in Sec. I.

(ii) If one allows for a finite acceptance but neglects the
ptand η dependence of v2 (i.e., ¯̄v2,F/� = v̄2,F/� =
v2,F/�), Eq. (14) reduces to

〈cos(φ1 + φ2)〉 = −v2

N

〈pt 〉2
�〈

p2
t

〉
F

. (17)

Because 〈pt 〉2
�

〈p2
t 〉F only depends weakly on the acceptance

�, the corrections caused by TMC are, as already
pointed out, more or less, independent of the number
of observed particles.

Next, let us calculate the contribution from TMC to the
correlation function δ = 〈cos(φ1 − φ2)〉, which has also been
measured by STAR. Following similar procedures, we obtain
the following result:

〈cos(φ1 − φ2)〉 = − 1

N

〈pt 〉2
�〈

p2
t

〉
F

1 + (v̄2,�)2 − 2¯̄v2,F v̄2,�

1 − ( ¯̄v2,F )2
. (18)

We notice a few interesting features. First, the correlation
scales like −1/N as expected. Second, the effect does
not depend on elliptic flow in leading order and, thus, is
much stronger than that in 〈cos(φ1 + φ2)〉, which is of order
Ô(v2/N ). Let us again examine the same two approximations
for the foregoing result.

(i) If all the produced particles are measured (i.e., � =
F ) and all have the same magnitude of transverse
momentum [i.e., g(pt , η) ∝ δ(pt − p0)h(η)], we obtain
〈cos(φ1 − φ2)〉 = − 1

N
.

(ii) If one allows for a finite acceptance but neglects the
ptand η dependence of v2 (i.e., ¯̄v2,F/� = v̄2,F/� =
v2,F/�), we obtain

〈cos(φ1 − φ2)〉 = − 1

N

〈pt 〉2
�〈

p2
t

〉
F

. (19)

6This statement is, of course, limited by the applicability of the
central limit theorem, which, however, works for as little as ten
particles.

Thus, the main difference between the two correlators, γ

[Eq. (14)] and δ [Eq. (18)] is the presence of v2 in the former.
Therefore, effects of TMC will be much more visible in the
correlator 〈cos(φ1 − φ2)〉.7

III. COMPARISON WITH DATA

In this section, we compare our results Eqs. (14) and (18)
with recently published STAR data [7], where charged parti-
cles have been measured in the pseudorapidity interval −1 <

η < 1 and the transverse momentum region pt > 0.15 GeV.
For the results integrated over transverse momentum, an
additional cut of pt < 2 GeV was imposed. As seen from
Eqs. (14)–(16) and (18), to calculate the contribution of the
TMC to 〈cos(φ1 + φ2)〉 and 〈cos(φ1 − φ2)〉, we need full
information about single-particle distribution g(pt , η) and
elliptic flow v2(pt , η) in the full phase space. Unfortunately,
such complete information is not currently available. Thus, we
will make some reasonable assumptions that hopefully allow
us to obtain an approximate insight into the discussed effect.

First, let us estimate the total number of produced particles
N . From the PHOBOS measurement [26], we know that the
total number of charged particles Nch grows linearly8 with
the number of participants Npart (or, equivalently, the number
of wounded nucleons [27]). At

√
sNN = 200 GeV, we find

that Nch ≈ 14Npart [26]; thus, the total number of particles can
reasonably be approximated by

N ≈ (3/2)Nch = 21Npart. (20)

This result allows us to roughly estimate the contribution of
TMC. We simply assume that 〈pt 〉2

� = 〈p2
t 〉F and v̄2,� = ¯̄v2,F ,

which leads to

〈cos(φ1 + φ2)〉 · Npart = −v̄2,�/21 ≈ −0.004, (21)

and

〈cos(φ1 − φ2)〉 · Npart = 1/21 ≈ −0.05, (22)

where we take v̄2,� = 0.08 to be slightly larger than the
elliptic-flow parameter v2,� = 0.06 to account for the mo-
mentum dependence of v2. Later, we will show that these
simple assumptions are well reproduced in a more detailed
calculation.

While this effect gives a contribution with the same sign and
order of magnitude for the same-sign pair correlation data, it is
a factor of 3–5 (very peripheral-midcentral) less in magnitude
for 〈cos(φ1 + φ2)〉 and a factor of 1.5–4 (midcentral-very
peripheral) larger than the STAR data. It also gives the same

7In Ref. [23], the effect of TMC for the determination of the
directed flow parameter v1 has been carried out. The authors find
that the correction scales with the number of observed particles.
While this may appear as a contradiction to our finding that the
corrections to 〈cos(φ1 − φ2)〉 are essentially independent of the
observed multiplicity, straightforward algebra shows that the results
of Ref. [23] are fully consistent with our results. Indeed, the authors
of Ref. [23] also use the formalism of Ref. [22] to derive their results.

8In contrast to the number of charged particles at midrapidity that
grows slightly faster than Npart.
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contribution to the opposite-sign pair correlation for which the
data are positive.

To perform more precise calculations, we further assume
that the single-particle distribution g(pt , η) can be expressed
in the following manner:

g(pt , η) = 1

T 2
exp

(−pt

T

)
h(η), (23)

where, for simplicity, we take a thermal distribution and
assume factorization of the momentum and pseudorapidity
dependence. To introduce a slight pseudorapidity dependence
of T [28], we will distinguish between TF and Tmid, which
depends upon whether we integrate over the full pseudora-
pidity range or the midrapidity region. In the following, we
take Tmid = 0.225 GeV and Tmid/TF = 1.1 [28]. In Eq. (23),
h(η) is the normalized pseudorapidity single-particle distri-
bution, which can be well represented by a double Gaussian
form

h(η) = 1

2
√

2πσ 2

[
exp

(
− (η − η0)2

2σ 2

)

+ exp

(
− (η + η0)2

2σ 2

) ]
, (24)

with η0 = 2 and σ = 1.9 for
√

sNN = 200 GeV.9 Finally, we
have to specify the momentum and pseudorapidity dependence
of elliptic flow. For simplicity, we represent this dependence
with a factorized liner ansatz for both the transverse momen-
tum and the pseudorapidity, which represents the presently
available data reasonably well up to pt � 2 GeV [30–32],10

v2(pt , η) = Cpt

7 − |η|
7

, (25)

and v2 = 0 for |η| > 7. Here, C = 0.14 so that, for the
midrapidity region |η| < 1, the calculated elliptic flow equals
0.06 [30–32].

With these parametrizations, we find that: 〈pt 〉2
� ≈ 0.257,

〈p2
t 〉F ≈ 0.252, v̄2,� ≈ 0.0886, and ¯̄v2,F ≈ 0.0773. By substi-

tuting these numbers into Eqs. (14) and (18), we obtain

〈cos(φ1 + φ2)〉 · Npart ≈ −0.005, (26)

and

〈cos(φ1 − φ2)〉 · Npart ≈ −0.05, (27)

which are very close to the numbers estimated at the beginning
of this section. While it is difficult to estimate the precise
uncertainty of our calculation, however, we expect our results
to be correct within a few tens of percent.

IV. DIFFERENTIAL DISTRIBUTIONS

The STAR Collaboration also presented data for 〈cos(φ1 +
φ2)〉 as a function of p+ = (p1,t + p2,t )/2 and p− = |p1,t −

9We performed the fit to the PHOBOS 35%–45% centrality AuAu
data [29].
10We have checked the influence of constant v2 for pt > 2 GeV and

found it negligible.

p2,t |. Both distributions are very informative: The azimuthal
correlation 〈cos(φ1 + φ2)〉 increases roughly linearly with p+,
while it only depends weakly on p−. In Ref. [14], we showed
that such behavior is not inconsistent with the CME and can
be understood if we assume that correlated pairs have slightly
larger momenta than uncorrelated ones.

As we will show in the following, a qualitatively similar
behavior can be obtained from TMC. With the two-particle
distribution Eq. (11), the p+ differential distribution reads

〈cos(φ1 + φ2)〉p+

=

∫
�

f2( �p1, �p2)δ(2p+ − p1,t − p2,t ) cos(φ1 + φ2)d3 �p1d
3 �p2∫

�

f2( �p1, �p2)δ(2p+ − p1,t − p2,t )d
3 �p1d

3 �p2

,

(28)

and analogously for p− = |p1,t − p2,t |.
Let us first discuss the simplified case in which v2(pt , η) is

replaced by its average value v2. By taking Eqs. (11) and (23)
into account, we obtain11

〈cos(φ1 + φ2)〉p+ = −v2
2p2

+
15NT 2

, (29)

and

〈cos(φ1 + φ2)〉p− = −v2
3T 2 + 3Tp− + p2

−
6NT (T + p−)

, (30)

where, for simplicity, we set TF = Tmid = T . As can be seen,
the correlation shows a strong quadratic growth with increasing
p+, in qualitative agreement with the data. The dependence on
p−, on the other hand, is essentially constant for p− � T

before it exhibits a linear increase. By performing analogous
calculations for δ, we obtain

〈cos(φ1 − φ2)〉p+/p− = 1

v2
〈cos(φ1 + φ2)〉p+/p− , (31)

thus, the p+ and p− dependence is identical; however, the
signal is significantly stronger.

11In this section, for simplicity, we integrate from pt = 0 despite the
finite cut pt > 0.15 GeV in the STAR experiments.
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FIG. 1. (Color online) The two-particle azimuthal correlation
〈cos(φ1 + φ2)〉 vs p+ = (p1,t + p2,t )/2 (blue line) and p− = |p1,t −
p2,t | (red line) for Npart = 100.
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FIG. 2. (Color online) The two-particle azimuthal correlation
〈cos(φ1 − φ2)〉 vs p+ = (p1,t + p2,t )/2 (blue line) and p− = |p1,t −
p2,t | (red line) for Npart = 100.

We also performed full calculations with g(pt , η), h(η),
and v2(pt , η) discussed in Sec. III and given by Eqs. (23),
(24), and (25), respectively. However, in this calculation,
we correct v2(pt , η) and assume a constant value for v2 for
transverse momenta pt > 2 GeV. The results for Npart =
100 are presented in Figs. 1 and 2 for 〈cos(φ1 + φ2)〉 and
〈cos(φ1 − φ2)〉, respectively.

Again, similar to what has been observed in the STAR data,
the correlation 〈cos(φ1 + φ2)〉 grows rapidly with increasing
p+, while it appears much flatter with increasing p−. By
comparing our results with the STAR data, we see that the
TMC gives a comparable signal for p+ and p− larger than
1 GeV and underestimates the data for lower values of p+
and p−.

Finally, let us discuss the pseudorapidity dependence of the
correlation 〈cos(φ1 + φ2)〉. The dependence of 〈cos(φ1 + φ2)〉
on |η1 − η2| has been measured by STAR and has been found
to be dominated by |η1 − η2| < 2, which is consistent with
the CME expectation. It is quite clear that such dependence
cannot be obtained in the present calculation because no
pseudorapidity dependence appears in the nontrivial part
of the two-particle correlation function shown in Eq. (11).
Consequently, TMC predicts the correlator 〈cos(φ1 + φ2)〉 to
be essentially flat as a function of |η1 − η2| in the midrapidity
region except for a very mild dependence caused by the slight
dependence of f ( �p) and v2 on η. However, here, we have
assumed that the transverse momentum is balanced over the
entire rapidity interval. In an actual heavy ion reaction, it is
not unreasonable to expect that the transverse momentum is
balanced over a shorter rapidity interval. If this were the case,
we would predict not only a stronger rapidity dependence
of the signal, but also a considerably stronger signal at
midrapidity. Therefore, it would be worthwhile to construct
and to measure an equivalent of the charge balance function
[33] for the transverse momentum. This problem is currently
under consideration.

V. CONCLUSIONS AND COMMENTS

We have quantitatively investigated the contribution of
TMC to the azimuthal correlation observables γ = 〈cos(φ1 +
φ2)〉 and δ = 〈cos(φ1 − φ2)〉 measured by the STAR Col-

laboration as motivated by the possible strong local parity
violation and CME. Our conclusions can be summarized as
follows.

(i) The contribution caused by TMC is comparable in
magnitude to the prediction of the CME as well as the
data. In the STAR acceptance, we find this contribution
to be approximately equal to γ ≈ −1.7v2/N , where
v2 is the elliptic-flow coefficient at midrapidity and
N is the total number of produced particles (neutral
and charged). This result suggests rather weak energy
dependence at RHIC because v2 and N scale similarly
with energy.

(ii) By taking v2 = 0.06 and N = 21Npart, where Npart is
the number of participants, we obtained γ · Npart ≈
−0.005, which is a factor of 3–5 (very peripheral-
midcentral) smaller than the experimental data. Thus,
we may conclude that the TMC alone cannot explain the
data. Also, there is no charge dependence as opposed
to experimental data. However, it is a significant source
of background that eventually must be quantified and
taken into account if one really wants to extract the
possible CME from the present (and future) data.

(iii) We have demonstrated that finite-acceptance issues
(i.e., the facts that particles are measured in a relatively
narrow pseudorapidity bin and neutral particles are not
detected) do not suppress the effect of TMC on γ .

(iv) We studied the dependence of γ vs p+ = (p1,t +
p2,t )/2 and p− = |p1,t − p2,t |. We found that γ in-
creases with increasing p+, γ ∝ ( p+

〈pt 〉 )α+ with α+ =
2 to 3. The dependence on p− is much weaker, γ ∝
( p−
〈pt 〉 )α− , with α− ≈ 1. This behavior is qualitatively

similar to what is observed in the data. We also
investigated the dependence of γ on |η1 − η2| and
found no pseudorapidity dependence in contrast to what
is observed in the data.

(v) Finally we calculated δ = 〈cos(φ1 − φ2)〉 and found
that, in the STAR acceptance, δ ≈ −1/N . We found
this contribution to be a factor of 1.5–4 (midcentral-very
peripheral) larger than the experimental data, which
indicates again that the TMC effect is a significant
source of background.

(vi) The present calculation is based on the minimal
assumption that the transverse momentum is balanced
over all particles (in the full phase space). Thus, it is
very likely that the calculated contribution to γ and
δ from the TMC rather represents the lower limit.
Should, as it is not reasonable to assume, the transverse
momentum be balanced over a finite-rapidity interval,
we predict not only a stronger effect at midrapidity, but
also a rapidity dependence of the correlation functions
γ and δ. Thus, a measurement of something, such
as a transverse momentum balance function would
be highly desirable. This problem is currently under
consideration.

We end this paper with a few additional comments.

(a) While TMC alone is not sufficient to explain the data,
one may combine it with other effects, such as the
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TABLE I. Estimated contributions to azimuthal correlations from various effects and comparison with data. The DATA are from the STAR
measurement for AuAu 200-GeV collisions at ∼50%–60% centrality.

Ô × 103 〈cos(φ1 + φ2)〉++ 〈cos(φ1 + φ2)〉+− 〈cos(φ1 − φ2)〉++ 〈cos(φ1 − φ2)〉+−

CME −(0.1 − 1) +(0.01 − 0.1) +(0.1 − 1) −(0.01 − 0.1)
LCC ∼0 +(0.1 − 1) ∼0 +(1 − 10)
TMC ∼−0.1 ∼−0.1 ∼−1 ∼−1
DATA −0.45 +0.06 −0.38 +1.97

CME or local charge conservation (LCC) [10] to get
closer to the data. In Table I, we summarize the esti-
mated contributions to the azimuthal correlations from
these effects together with the STAR data. All numbers
quoted are for AuAu 200-GeV collisions at ∼50%–60%
centrality (which corresponds to Npart ≈ 50 [34]).

As a precaution, all numbers (except the STAR data)
bear considerable uncertainty. The numbers from the
CME for observables 〈cos(φ1 + φ2)〉++,+− are extracted
from Ref. [4]. The numbers for 〈cos(φ1 − φ2)〉++,+−
were obtained by using the relation 〈cos(φ1 − φ2)〉++ =
−〈cos(φ1 + φ2)〉++ and analogously for (+,−), which
hold in the case of a pure CME. The numbers from
the LCC are inferred from Ref. [10]: The authors
showed the difference 〈cos(φ1 + φ2)〉+− − 1

2 [〈cos(φ1 +
φ2)〉++ + 〈cos(φ1 + φ2)〉−−]. From LCC, one should ex-
pect 〈cos(φ1 + φ2)〉++,−− ∼ 0, so the 〈cos(φ1 + φ2)〉+−
could be inferred. Furthermore, the value for 〈cos(φ1 −
φ2)〉+− is estimated by 〈cos(φ1 − φ2)〉+− ∼ 〈cos(φ1 +
φ2)〉+−/v2. Finally, as the authors pointed out, their
results represent an upper limit of the magnitude for LCC
because they exactly enforce local charge neutrality. Our
results for TMC are as given in Secs. I–IV (with the
expected uncertainty within a few tens of percent). The
STAR data are from Ref. [7]. Although these are rough
estimates, one still can make a few observations: First,
no single effect shows a pattern for all observables that
are in accord with the data; second, different correlators
appear to be dominated by different effects, in particular—
both CME and TMC provide important contributions to

〈cos(φ1 + φ2)〉++, while TMC seems necessary to explain
the 〈cos(φ1 − φ2)〉++ and LCC seems necessary to explain
the observed value of 〈cos(φ1 − φ2)〉+−. The situation for
〈cos(φ1 + φ2)〉+−, on the other hand, is more complicated,
and none of the effects discussed here seems to dominate.
Clearly, additional measurements will be required to
disentangle this situation.

(b) As far as comparisons of the data with models are
concerned, such as the ones presented by the STAR Col-
laboration [7], one has to ensure that the model satisfies
at least two criteria. First, the model has to conserve
transverse momentum not only on average, but also
event by event. Second, the model has to reproduce the
measured magnitude of the elliptic flow v2, as essentially,
all trivial contributions to 〈cos(φ1 + φ2)〉++,+− scale with
v2. For example, UrQMD is known to underestimate the
measured v2 [35]. This may partly be the reason that it also
underestimates the measured data for 〈cos(φ1 + φ2)〉++ as
reported in Ref. [7].
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