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At the Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC), for example, virtual
photons produce many particles. At small impact parameters where the colliding nuclei make peripheral collisions,
photon fluxes are very large and these are responsible for the multiple photonuclear interactions. Free pair
productions, bound free pair productions, and nuclear Coulomb excitations are important examples of such
interactions, and these processes play important roles in the beam luminosity at RHIC and LHC. Here we obtained
the impact parameter dependence of bound free pair production cross sections and by using this probability we
obtained bound free electron-positron pair production with nuclear breakup for heavy ion collisions at RHIC and
LHC. We also compared our results to the other calculations.
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I. INTRODUCTION

In the Relativistic Heavy Ion Collider (RHIC) for Au + Au
collisions and in the Large Hadron Collider (LHC) for Pb + Pb
collisions, the cross sections of the electromagnetic production
of lepton pairs are very large because heavy ions that have
a large charge (Z) produce strong electromagnetic fields. If
one of the fully stripped ions captures one of the produced
electrons, it depletes the beam and this limits the luminosity of
the ion beam. There are several calculations about the bound
free pair production [1–3] and the cross section behaves as

σBFPP ∝ Z5
aZ

2
b ln

(
γ

�

)
, (1)

where Za and Zb are the charge numbers of the ion capturing
electrons, and � is a slowly varying parameter.

When the impact parameter b is smaller than twice the
nuclear radius R, the hadronic interactions that are the main
interests of the experiments occur. In ultraperipheral collisions
b > 2R, where b is greater than twice the nuclear radius R.
Photonuclear reactions and electromagnetic interactions can
be detected in ultraperipheral collisions [4–8]. In ultrarela-
tivistic heavy ion colliders, such as RHIC and LHC, there are
two dominant processes that restrict the luminosity of the ion
beams: bound free electron-positron pair production (BFPP)
and giant dipole resonance (GDR). In both processes, each
ion is acted on by the Lorentz contracted electromagnetic field
of the other ion. In the BFPP, an electron is captured by one
of the colliding ions and leads to the loss of the ion from
the beam. This leads to a change in the charge of the ion
and causes the ion to fall out of the beam. The importance
of BFPP for beam losses and the quenching limit of the LHC
was discussed in the literature [1,2,9–17]. In the GDR, the
Coulomb force dissociates the nucleus where the protons and
neutrons oscillate against each other. Then the neutrons fall
out of the beam. Each of these processes causes the limitation
of the beam lifetime for the collisions of Au + Au at RHIC or
Pb + Pb at LHC [18,19].

Bruce et al. [4], accelerator physicists at LHC, restudied the
question of Pb81-induced magnet quenches, and they presented
simulation results for the case of 208Pb82+ ion operation in

the LHC. They concluded that the expected heat load during
nominal 208Pb82+ operation is 40% above the quench level
and this limits the maximum available luminosity. The only
measurement of BFPP at RHIC used copper beams [9] and they
looked at a single-electron atom. The calculated theoretical
cross sections predict this measurement.

Recently, the STAR Collaboration measured electron-
positron pairs [20] together with the electromagnetic ex-
citation of both ions, predominantly to the giant dipole
resonance. The STAR Collaboration used gold atoms at√

sNN = 200 GeV/nucleon energies. The decay of the excited
nucleus generally emits one or two neutrons and these neutrons
are detected in the forward zero degree calorimeter.

II. FORMALISM

In this work, we calculate the cross section of BFPP with
the GDR of the ions in lowest-order QED as shown in Fig. 1.
We use the semiclassical approximation in the calculation and
the Monte Carlo method to obtain the exact results in Ref. [19].
In the bound free pair production accompanied by giant dipole
resonance, the electron is captured by one of the colliding ions
that is nuclear excited:

Za + Zb → (Z∗
a + e−)1s1/2,...

+ Z∗
b + e+, (2)

which leads to the loss of the (one-electron) excited ion from
the beam. In our calculations, Monte Carlo techniques were
used, and the integrands were tested on about 10 million
randomly chosen “positions” to ensure sufficient convergence
of our theoretical results. The total numerical error in the
computations is estimated to be less than or approximately
5%. And then we calculate the impact parameter dependence
cross section of BFPP accompanied by GDR, and by using
this result we calculate the transverse momentum, longitudinal
momentum, energy, and rapidity distribution of the produced
positrons.

After the electron-positron pairs are created, the electron
is captured by one of the colliding ions and then the positron
becomes free, which is described by the plane waves

�(+)
q = N+

[
eiq·ru(+)

σq
+ �

′]
, (3)
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FIG. 1. Dominant Feynman diagrams for two photon reactions:
(a) BFPP and (b) BFPP accompanied by GDR in a relativistic heavy
ion collision. We assume that BFPP (left of the dashed line) is
independent of the nuclear excitation (right of the dashed line).

and together with the (correction) term �
′

and this is
the distortion due to the charge of one of the nuclei. In
expression (3), moreover,

N+ = e−πa+/2�(1 + ia+), a+ = Ze2

v+
, (4)

is a normalization constant that accounts for the distortion of
the wave function that is acceptable for Zα � 1 [13,16,21],
and where α = e2/h̄c ∼= 1/137 is the fine structure constant
and v+ is the velocity of the positron in the rest frame of
the ion, into which the electron is captured in the course of
process (2).

For the outgoing positron, the spinor structure is

u(+)
σq

=
√

E
(+)
q + mc2

2mc2

[
φ(s)

σ ·pc

E
(+)
q +mc2

φ(s)

]
(5)

(for spinors with positive energy E(+)
q > 0), where φ(s) = χ

(s)
1/2

denotes a Pauli spinor and s = ±1/2 its spin projection.
After the pair production has occurred, the electron is

captured by one of the ions and, thus, needs to be described
as a bound state. In a semirelativistic approximation, these
electron states are often represented by [22,23]

�(−) =
(

1 − i

2m
α · ∇

)
u�nonrel(r), (6)

that is, in terms of the nonrelativistic (ground) state
function

�nonrel(r) = 1√
π

(
Z

aH

)3/2

e−Zr/aH (7)

of the hydrogenlike ion, where u represents the spinor part
of the captured electron and aH = 1/e2 is the Bohr radius of
atomic hydrogen.

Using the positron (Sommerfeld-Maue wave function) and
the captured electron (Darwin wave function) states from
above, the direct Feynman diagram for the second-order
perturbation calculation can be written as

〈�(−)|Sab|�(+)
q 〉 = i

∑
p

∑
s

∫ ∞

−∞

dω

2π

〈�(−)|Va(ω − E(−))
∣∣χ (s)

p

〉 〈
χ (s)

p

∣∣Vb(E(+)
q − ω)|�(+)

q 〉(
E

(s)
p − ω

)
= i

∑
p

∑
s

∫ ∞

−∞

dω

2π

∫ ∞

−∞
d3r

(
1 + i

2m
α · ∇

)
�nonrel(r)eip·rAa(r; ω − E(−))

×
∫ ∞

−∞
d3r

′
N+e−i(p−q)·r′

Ab(r
′
; E(+)

q − ω)
〈u|(1 − βαz)

∣∣u(s)
σp

〉 〈
u(s)

σp

∣∣(1 + βαz)
∣∣u(+)

σq

〉
(
E

(s)
p − ω

) , (8)

where Va and Vb are the potentials of nuclei a and b.
The transition matrix element for a fixed spin and momen-

tum state of the positron as well as for a given intermediate
state can be expressed as

〈�(−)|Sab|�(+)
q 〉 = iN+

2β

1√
π

(
Z

aH

)3/2 ∫
d2p⊥
(2π )2

ei(p⊥− q⊥
2 )·b

×F (−p⊥ : ωa)F (p⊥ − q⊥ : ωb)

× Tq(p⊥ : + β), (9)

where b is the impact parameter of the ion-ion collision, and
the function F (q, ω) can be described as the scalar part of the
field associated with ions a and b in momentum space. The
explicit form of these scalar fields can be written in terms of
the corresponding frequencies as

F (−p⊥ : ωa) = 4πZe(
Z2

a2
H

+ ω2
a

γ 2β2 + p2
⊥
) (10a)

for the frequency ωa , and as

F (p⊥ − q⊥ : ωb) = 4πZeγ 2β2[
ω2

b + γ 2β2(p⊥ − q⊥)2
] (10b)

for the frequency ωb, respectively. Apart from the scalar field
of each ion, Eq. (9) also contains the transition amplitudes
T , which relate the intermediate photon lines to the outgoing
electron-positron lines. This amplitude depends explicitly on
the (relative) velocity of the ions (β), the transverse momentum
(p⊥), and the momentum of the positron (q), and it is given by

Tq(p⊥ : +β) =
∑

s

∑
σp

1[
E

(s)
p −

(
E(−)+E

(+)
q

2

)
− β

qz

2

]
×

[
1 + α · p

2m

]
〈u|(1 − βαz)

∣∣u(s)
σp

〉
× 〈

u(s)
σp

∣∣(1 + βαz)
∣∣u(+)

σq

〉
. (11)
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In this amplitude, the parallel component of the intermediate-
state momentum is described by pz. The integration over
the impact parameter b in Eq. (9) can also be carried out
analytically. Following similar lines as in a direct diagram,
the crossed-term amplitude 〈�(−)|Sba|�(+)

q 〉 can be evaluated.
Having the amplitudes for the direct Sab and crossed Sba

diagram, the cross section for the generation of a bound free
electron-positron pair in collisions of two heavy ions can be
written as

σBFPP =
∫

d2b
∑
q<0

∣∣〈�(−)|S∣∣�(+)
q

〉∣∣2
, (12)

where S = Sab + Sba denotes the sum of the direct and crossed
terms. After all the simplifications from above, these cross
sections for the BFPP can be expressed as

σBFPP =
∫

d2b
∑
q<0

∣∣〈�(−)|Sab

∣∣�(+)
q

〉 + 〈�(−)|Sba

∣∣�(+)
q

〉∣∣2

= |N+|2
4β2

1

π

(
Z

aH

)3 ∑
σq

∫
d3qd2p⊥

(2π )5
[A(+)(q : p⊥)

+A(−)(q : q⊥ − p⊥)]2, (13)

where

A(+)(q : p⊥) = F (−p⊥ : ωa)F (p⊥ − q⊥ : ωb)Tq(p⊥ : +β)

(14a)

and

A(−)(q : q⊥ − p⊥) = F (p⊥ − q⊥ : ωb)F (−p⊥ : ωa)

× Tq(q⊥ − p⊥ : −β) (14b)

are some proper products of the transition amplitudes and
scalar parts of the fields as associated with ions a and b.
All these functions were displayed explicitly in Eqs. (1) and
(11) [19].

We found an expression for the impact parameter de-
pendence cross section of free-pair production in Ref. [24].
We used the same method to calculate the impact parameter
dependence BFPP cross section. Because it contains a highly
oscillatory Bessel function of order zero, we divide the
integration according to

dσBFPP

db
=

∫ ∞

0
dqqbJ0(qb)F(q), (15)

where F(q) is a six-dimensional integral. In the above
equation, the function J0(qb) is a rapidly oscillating function,
particularly for large b, making it impossible to apply the
Monte Carlo techniques. However, for a fixed value of positron
momentum q, the Monte Carlo technique can be generalized
to calculate the six-dimensional above integral F(q):

F(q) = π

8β2
|N+|2 1

π

(
Z

aH

)3 ∑
σq

∫ 2π

0
dφq

∫
dqzd

2Kd2Q

(2π )7

×
{
F

[
1

2
(Q − q); ωa

]
F [−K; ωb]Tq

[
− 1

2
(Q − q); β

]

+F [−K; ωb]F

[
1

2
(Q − q); ωa

]
Tq[K; −β]

}

×
{
F

[
1

2
(Q + q); ωa

]
F [−K; ωb]Tq

[
− 1

2
(Q + q); β

]

+F [−K; ωb]F

[
1

2
(Q + q); ωa

]
Tq[K; −β]

}
. (16)

In Eq. (16), N+ is the normalization constant that comes
from the positron wave function; the Z/aH term comes from
the electron wave function. Here q is the momentum of the
positron, and Q and K are the new variables that are the
functions of q⊥ and p⊥. We performed a similar calculation
for the free electron-positron pair production in Ref. [24], and
all the functions and parameters in Eq. (16) are explained in
detail there. We should note that integral variables for the
bound free case obtained in Ref. [24] are six in contrast
to the free-pair production, which has nine variables. When
we integrate Eq. (16) numerically over all variables for fixed
values of q, we obtain the very simple function F(q):

F(q) = F(0)e−aq = σBFPPe
−aq, (17)

where F(0) is the value of the function at q = 0 and it is the
total cross section σBFPP which is equal to Eq. (1). In Eq. (17),
a is the slope of the function F(q) and it is a constant that
is independent of the charges and energies of the heavy ions
as seen in Fig. 2. The function F(q)/F(0) is obtained for the
charges of heavy ions in the range Za,b = 20–90 and for the
energies in the range γ = 10–3400. In this figure, each point
is calculated with the Monte Carlo method to about 5% error.
From this calculation, we can approximately write the slope
a = 1.35λC .

Finally, by using Eq. (15), we can write the impact
parameter dependence cross section as

dσBFPP

db
= σBFPP

a b

(a2 + b2)3/2
. (18)

Figure 3 shows differential cross sections of the transverse
momentum of the produced positrons for free and bound free
cases. From this figure, it becomes clear that the bound free
and free-pair production distributions display a rather similar
behavior. More information can be found in Ref. [19]. At the
end of our calculations, we can write the impact parameter

0 0.2 0.4 0.6 0.8 1
10

−1

10
0

q(λ
c
−1)

Fit
MC Calculation

F
(q

)/
F

(0
)

FIG. 2. The function F(q)/F(0) is calculated for the charges of
heavy ions in the range Za,b = 20–90 and for the energies in the
range γ = 10–3400. The points show the results of the Monte Carlo
calculations for each q value and the smooth curve is our fit for these
points. The slope of this function gives the value of a as 1.35λc.
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FIG. 3. Differential cross section as a function of the transverse momentum (p⊥) of the produced positrons. Calculated differential cross
sections are shown for the two collision systems (a) Au + Au at RHIC-100 GeV/nucleon and (b) Pb + Pb at LHC-3400 GeV/nucleon,
respectively. When compared with the production of free electron-positron pairs, the BFPP cross section for the capture of the electron into the
1s ground state is suppressed by about three orders of magnitude for all transverse momenta between 0.1 and 100 MeV/c [19].

dependence probability for bound free pair production as

P (b) = σBFPP
a

2π (a2 + b2)3/2
. (19)

In our previous work, we wrote the impact parameter
dependence probability for free pair production as [24]

P (b) = σfree
a

2π (a2 + b2)3/2
. (20)

III. RESULTS AND DISCUSSIONS

Recent papers [20,25–27] reported on the electromagnetic
production of free electron-positron pairs accompanied by
GDR at the RHIC for Au + Au collisions. In this article,
we calculate bound free electron-positron pair production
accompanied by GDR, and this process can be seen in Fig. 1.
In addition to the lepton pairs, the nuclei also exchange some
photons and this may break up the nuclei. After the GDR, if the
nucleus emits only one neutron we show this as (1n) and it is
the subset of (Xn). And in (Xn), a general Coulomb excitation
leads to the emission of any number of neutrons [18,28].

For the probability of GDR excitation in one ion, we use
the approximation

PC(1n)(b) = P 1
C(1n)(b)e−P 1

C (b), (21)

where

P 1
C(b) = S/b2 (22)

with

S = 2α2Z3N

AmNω
≈ 5.45 × 10−5Z3NA−2/3fm2, (23)

where mN is the nucleon mass and the neutron, proton, and
mass numbers of the ions are N , Z, and A, respectively. The
excitation probability is inversely proportional to the energy
ω ≈ 80 MeV A−1/3 of the GDR state [29]. At small impact
parameters, P 1

C(b) can exceed 1; then this cannot be interpreted
as a probability. Instead, it corresponds to the mean number
of excitations. In more detail, P 1

C(Xn)(b) is the mean number
of excitations; the probability of having exactly N excitations

follows a Poisson distribution. The probability for at least one
Coulomb excitation is

PC(Xn)(b) = 1 − e(−P 1
C(Xn)(b)). (24)

In mutual Coulomb dissociation (MCD), the two nuclear
breakups occur independently, so the probability for MCD
is [18,28]

PC(XnXn)(b) = [PC(Xn)(b)]2 (25)

and

PC(1n1n)(b) = [PC(1n)(b)]2. (26)

The excitation probability may be determined by a unitariza-
tion procedure.

The total cross section for BFPP with mutual nuclear
excitation is

σ GDR
BFPP = 2π

∫ ∞

bmin

dbbPBFPP(b)P 2
C(1n)(b)Pno had(b) (27)

where PBFPP(b) is the probability of BFPP, PC(1n)(b) is the
probability of simultaneous nuclear excitation as a function
of impact parameter, and Pno had(b) is the probability of
no hadronic interaction happening between the nuclei. No
hadronic interaction probability is calculated in the usual
Glauber manner from impact-parameter-dependent nuclear
density overlap. The nuclear charge density is assumed to
have a Woods-Saxon distribution [27,30].

TABLE I. Integrated cross sections for Au + Au collisions at
RHIC energies and for Pb + Pb collisions at LHC energies for free
pair production and bound free pair production. Our work is compared
with the calculations of Baltz for RHIC energies.

Untagged 1n1n XnXn

σ (b) σtagged(mb) σtagged(mb)

Au + Au at RHIC-Free 3.40 × 104 1.63 × 103 1.98 × 103

Pb + Pb at LHC-Free 2.12 × 105 10.2 × 103 12.4 × 103

Au + Au at RHIC-BFPP 94.5 4.5 5.5
Au + Au at RHIC-Baltz-BFPP 88.8 1.1 1.4
Pb + Pb at LHC-BFPP 202 9.7 11.7
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FIG. 4. Probability of positron production with (a) gold beams at RHIC and (b) lead beams at the LHC as a function of b with XnXn

(dashed line) and 1n1n (dotted line) and without nuclear excitation (solid line).

Baltz and his co-workers [31] calculated the cross section
for the bound free pair production by using Coulomb-Dirac
wave functions in a formulation which exhibits naturally the
same impact parameter cutoff as the Weizsacker-Williams
method. And their approximated cross section for the bound
free pair production at RHIC energies for Au + Au collisions
is equal to

σBFPP = 11.2 ln γ − 24(b). (28)

Baltz and his co-workers [32] approximately determined the
cross section for the bound free pair production at RHIC
energies for Pb + Pb collisions:

σBFPP = 14.3lnγ − 31 (b). (29)

To obtain the total bound free pair production cross
sections for different colliding ions, the charge dependence
is approximately as Z6.7, at least for ion pairs that range from
iodine to uranium [32]. By using these approximations for the
bound free pair production, the cross section for RHIC energies
in Au + Au collisions is equal to 88.8 b and the cross section
for RHIC energies in Pb + Pb collisions is equal to 113 b. In
Ref. [33], Baltz numerically calculated the probabilities for
each of the listed impact parameters using Coulomb-Dirac
wave functions for the bound electron and the continuum
positrons. By calculating those numerical results, the scheme
was laid out in a series of papers [1,31,34,35]. In this
article, we aimed to compare our impact-parameter-dependent
probability function with the results of Baltz. For this, by using
the data given in Ref. [33] for Pb + Pb collisions at RHIC
energies, we fitted a function that appropriates them which
can be written as

P (b) = 228.807

(1.72134 × 1010 + b4)1/2
. (30)

TABLE II. Integrated cross sections for Pb + Pb collisions at
RHIC energies by using our calculations and for the same collision
at RHIC energies by using the calculations of Baltz.

Untagged 1n1n XnXn

σBFPP(b) σtagged(mb) σtagged(mb)

Pb + Pb at RHIC 123 5.92 7.18
Pb + Pb at RHIC-Baltz 113 1.44 1.74

For Au + Au collisions at RHIC energies, the fitting function
can be written as

P (b) = 178.246

(1.72134 × 1010 + b4)1/2
. (31)

Although this function is a simple and well-behaved function,
integrating it over the impact parameter does not give a
converged value for the total cross section. Therefore, they
used a cutoff parameter γ /ω for the upper impact parameters,
where γ is the Lorentz factor and ω is the energy difference.
This cutoff parameter is the result of the Weizsacker-Williams
method. However, in our method, there is no need to calculate
an upper impact parameter and we take the integral limits from
zero to infinity.

In Table I, some values of tagged and untagged cross
sections are calculated for RHIC and LHC energies for free pair
production and bound free pair production. We also compared
our results with the calculations of Baltz at RHIC energies
for bound free pair production. We calculated untagged bound
free pair production cross sections and the results are 94.5 b
for RHIC and 202 b for LHC collisions. Here we did not
include the nuclear excitation processes and these values are
shown in the first column in the table. When we include the
nuclear excitation processes (mainly the GDR), the results are
more than two orders of magnitude smaller than the untagged
calculations.

In Table II, we compared our calculations with the work
of Baltz for RHIC energies at Pb + Pb collisions. In Table III,
we tabulated the BFPP cross sections with GDR (tagged) for
minimum impact parameters of 14, 15, and 16 fm. Tagged
cross sections for LHC collisions are about two times greater
than RHIC collisions for various minimum impact parameters.
In Fig. 4 we obtained the probability of positron production

TABLE III. Integrated cross sections for Au + Au collisions at
RHIC energies and for Pb + Pb collisions at LHC energies for
different impact parameters.

bmin 14 fm 15 fm 16 fm

σ GDR
BFPP (RHIC) 4.9 mb 4.5 mb 4.2 mb

σ GDR
BFPP (LHC) 10.6 mb 9.7 mb 8.9 mb
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FIG. 5. Differential cross section as a function of the energy (p0) of the produced positrons for (a) RHIC and (b) LHC; and as function of
the longitudinal momentum (pz) of the produced positrons for (c) RHIC and (d) LHC. The solid line is the total production, the dashed line is
for XnXn, and the dotted line is 1n1n.

with gold beams at RHIC and lead beams at the LHC as a
function of impact parameter b. The solid line indicates the
BFPP without nuclear excitation (untagged), the dashed line
is the BFPP with XnXn excitation, and the dotted line is

BFPP with 1n1n excitation (tagged). In Fig. 5 we plot the
differential cross section as a function of the energy (p0) and
longitudinal momentum (pz) of the produced positrons for
RHIC and LHC. The calculations show that both are the same
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FIG. 7. Probability of positron production with gold beams at
RHIC as a function of b; the solid line shows our work and the
dashed line shows the work of Baltz.

order of magnitude. In Fig. 6 we show the differential cross
section as a function of the transverse momentum (p⊥) of
the produced positrons for RHIC and LHC. The transverse
momentum distributions are consistently lower than energy
and longitudinal momentum. In addition, we also calculated
the differential cross section as a function of the rapidity (y)
for RHIC and LHC.

In Fig. 7 we plot the impact parameter dependence
probability function by using our approximated function and
by using the function that we fitted with the help of the data
given by Baltz [33]. We compared our probability function
with the fitting probability function for the data of Baltz.
The difference is that the fitting function goes to zero more
slowly than our function because, for large impact parameters,
it behaves like ∼1/b2 and our probability function for large
impact parameters behaves as ∼1/b3.

In Fig. 8 we compare our results to the fitting function by
using the data of Baltz for tagged(1n1n) and tagged(XnXn)
states for the RHIC energies at Au + Au collisions. This plot
shows that our calculations are about four times higher than
the calculations of Baltz. In both calculations, as seen in the
figure, the results of 1n1n and XnXn are very close to each
other.

IV. CONCLUSIONS

In this work, we obtained the impact-parameter-dependent
cross section of bound free electron-positron pair production.
By using this result, we calculated BFPP with GDR cross
sections for 1n1n and XnXn excitations. We also compared
our results to the work of Baltz; our results are about four times
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FIG. 8. Probability of positron production with gold beams at
RHIC as a function of b for tagged(1n1n) and tagged(XnXn) results
for our work and for the work of Baltz.

larger. The main reason for this difference is the behavior of
the impact-parameter-dependent probability of BFPP.

BFPP accompanied by GDR is an important electromag-
netic interaction in relativistic heavy ion collisions. Although
there is no way to directly measure the impact parameter
experimentally, it is possible to select events with different
impact parameter distributions. In this work, we obtained
the impact-parameter-dependent BFPP which itself has a
certain impact parameter distribution. BFPP accompanied by
GDR excitation also has another impact parameter distribution.
The combined reaction occurs mainly at small impact param-
eters. In STAR, the presence of mutual Coulomb excitation
is used to select different impact parameter distributions to
measure things like interference in ρ photoproduction [28,36].
The technique is applied to two-photon interactions by Baltz
et al. [18]. There is a more analytical treatment by Baur et al.
[26]. BFPP with Coulomb excitation presents an interesting
complication, because the nucleus may be altered at the
same time as the electron is captured. If the nuclear breakup
includes proton (or higher charge) emission, then things might
get complicated. This should not be a problem for GDR
excitation of lead, because all of the relevant isotopes are
stable, but it could be important for higher excitations, leading
to multiple-particle emission.
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[5] M. C. Güçlü, Prog. Part. Nucl. Phys. 62, 498 (2009).

[6] K. Hencken, D. Trautmann, and G. Baur, Phys. Rev. C 53, 2532
(1996).

[7] K. Hencken, D. Trautmann, and G. Baur, Phys. Rev. C 59, 841
(1999).

[8] A. J. Baltz, Phys. Rev. C 74, 054903 (2006).
[9] R. Bruce, J. M. Jowett, S. Gilardoni, A. Drees, W. Fischer,

S. Tepikian, and S. R. Klein, Phys. Rev. Lett. 99, 144801
(2007).

[10] S. R. Klein, Nucl. Instrum. Methods A 459, 51 (2001).

014902-7

http://dx.doi.org/10.1103/PhysRevA.50.4842
http://dx.doi.org/10.1103/PhysRevA.50.4842
http://dx.doi.org/10.1103/PhysRevA.40.2831
http://dx.doi.org/10.1103/PhysRevA.40.2831
http://dx.doi.org/10.1103/PhysRevA.63.032713
http://dx.doi.org/10.1016/j.ppnp.2008.12.022
http://dx.doi.org/10.1103/PhysRevC.53.2532
http://dx.doi.org/10.1103/PhysRevC.53.2532
http://dx.doi.org/10.1103/PhysRevC.59.841
http://dx.doi.org/10.1103/PhysRevC.59.841
http://dx.doi.org/10.1103/PhysRevC.74.054903
http://dx.doi.org/10.1103/PhysRevLett.99.144801
http://dx.doi.org/10.1103/PhysRevLett.99.144801
http://dx.doi.org/10.1016/S0168-9002(00)00995-5
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