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Thermodynamics of nuclei in thermal contact
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The thermodynamic properties of a dinuclear system are studied with the methods of statistical mechanics. A
schematic model calculation shows that the excitation-energy transfer proceeds in energy steps of considerable
amount which are subject to large fluctuations. As a consequence, thermal averaging is strong enough to assure the
application of thermodynamical methods for describing the energy exchange between the two nuclei in contact.
In particular, thermal averaging justifies the definition of a nuclear temperature. The division of excitation energy
in thermal equilibrium is derived for several analytical descriptions of the level density.
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I. INTRODUCTION

One of the key quantities characterizing a nuclear reaction
is the excitation energy found in the reaction products. The
excitation energy summed over all products gives information
on the dissipative character of the reaction [1,2], whereas
the division of the excitation energy between different prod-
ucts provides information on more subtle dynamical effects
[3–5]. Indications for dynamical effects were deduced from
deviations of the measured excitation-energy partition from
the expectation of thermodynamical equilibrium between the
products at the moment of separation, see, e.g., Refs. [3–5],
which was deduced from the condition that the reaction
products have equal temperatures.

Very recently, the process of thermal equilibration of a
dinuclear system in the regime of strong pairing correlations
has been studied. Guided by recent experimental findings
on nuclear level densities, it has been discussed that two
moderately excited nuclei, brought into contact, form a system
with very peculiar thermodynamic properties. Nuclei in this
regime are characterized by a temperature, which is specific to
the nucleus and varies only weakly with excitation energy.
If the two nuclei have different temperatures, it has been
derived that thermal equilibration induces that all excitation
energy is transferred to the nucleus with the lower temperature
in a process of energy sorting [6]. This process is driven
by entropy, which evolves toward its maximum possible
value in an isolated system according to the second law of
thermodynamics.

In all these considerations, the nuclear temperature T was
derived from the energy dependence of the nuclear state
density �:

T =
[
∂(ln �)

∂E

]−1

(1)

A first difficulty arises from the fact that experiments most
often yield the nuclear level density ρ. The state density
differs from the level density by the spin degeneracy of the
nuclear levels. Fortunately, the slow increase of the spin
cut-off parameter with energy has practically no influence
on the energy dependence of the nuclear state density. Thus,
in a restricted energy range, the spin degeneracy can well be
considered by a constant factor [7], and the nuclear temperature

may also be deduced from the nuclear level density according
to the equation

T ≈
[
∂(ln ρ)

∂E

]−1

(2)

with a good approximation.
A more crucial problem is the application of thermo-

dynamical concepts in the above-mentioned publications.
The justification for assigning a temperature to microscopic
or mesoscopic systems like nuclei is not evident, and the
limitations of the applicability of canonical thermodynamics to
small systems [8–12] are repeatedly discussed. Limitations of
canonical and macrocanonical thermodynamics have also been
discussed for larger nonextensive systems, e.g., for systems
subject to long-range forces [13,14].

It is obvious that the system consisting of two nuclei in
contact forms a microcanonical ensemble, e.g., there is no
heat bath. In addition, the total energy of the system is finite
and a constant of time. The same is true for the total number
of particles. Due to its small size, however, the temperature
of an isolated nucleus is not well defined; it is subject to
fluctuations. This becomes obvious by the fluctuations of the
single-particle occupation distribution from one nuclear level
to another. For example, in the spirit of the exciton model [15],
the excitation energy may be shared by a strongly different
number of particles and holes. The analytical relations of the
Fermi-Dirac statistics apply only to an average over the single-
particle distributions of many neighboring nuclear levels.

At very low excitation energy, there arises still another
difficulty: The nuclear levels are discrete, and they no longer
overlap. Thus, the nuclear level density cannot be expressed
by a continuous function of energy. This puts the definition of
the nuclear temperature, Eq. (2), and its use for describing the
thermodynamic behavior of the system considered in doubt
even more.

The present work aims at clarifying the question how the
thermodynamics of nuclei, which are brought into thermal
contact, can be properly described. In particular, we are
interested in the process of thermal equilibration.

An additional remark is in place: The condition of a fixed
total excitation energy of the dinuclear system is not realized
when the two nuclei brought into thermal contact move with

014607-10556-2813/2011/83(1)/014607(6) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevC.83.014607


KARL-HEINZ SCHMIDT AND BEATRIZ JURADO PHYSICAL REVIEW C 83, 014607 (2011)

large relative velocity. This is usually the case in heavy-ion
collisions, where the system is heated by one-body dissipation
according to the window formula [16]. If there is a net mass
flow in addition, the nucleus that grows in size is heated more,
preventing thermal equilibration. Our considerations apply to
the case when the energy per nucleon, corresponding to the
relative motion of the two nuclei, is small compared to the
temperatures involved. This scenario is assumed to be realized
in nuclear fission. The dissipation present also in this case
due to the Landau-Zener mechanism is rather weak and heats
the system rather homogeneously [17]. Therefore, it does not
prevent thermal equilibration so much. For that reason, we will
focus our considerations on nuclear fission.

II. MICROSCOPIC SCENARIO

In order to base our study on a solid and reliable foundation,
we chose statistical mechanics on the microscopic level as
the starting point [18]. Each one of the two nuclei is not
completely isolated but in contact with the other nucleus.
In this sense, the other nucleus acts as a sort of heat bath.
However, there are two important differences to a heat bath in
canonical thermodynamics: First, the temperature of the other
nucleus, acting as a kind of heat bath, fluctuates, as mentioned
above, and, second, the energy reservoir of that nucleus is
finite.

On the exact microscopic level, we may formulate the
problem as follows: While the complete system, consisting
of the two nuclei, is isolated, the two nuclei are allowed to
exchange between themselves (i) energy, e.g., by collisions
between nucleons in the contact region or coupling of the two
nuclei to collective modes of the whole system, and (ii) energy
and nucleons, if transfer of protons and neutrons between
the two nuclei is considered in addition. In fact, transfer of
nucleons is assumed to be the predominant mechanism for
energy transport due to the large nucleonic mean free path.

If complete knowledge is assumed of all nuclear states and
their single-particle configurations,1 it is possible to calculate
the evolution of the system, allowing for energy transfer
between the two nuclei, with the Monte Carlo technique:
Starting from an initial configuration, the system, consisting
of the two nuclei in contact, may change to any other
configuration, each one with the same probability, respecting
the condition of fixed total energy. Most often, the changes
of the configurations proceed in the two nuclei separately
according to Bohr’s compound-nucleus hypothesis [19].
However, the thermal contact allows also for a coupling.
In the independent-particle picture, the amount of energy
transferred by nucleon transfer is limited by the energies of
the available particles and holes. There are only very few
configurations with holes well below the Fermi level and
particles well above, because this would imply that a large
fraction of energy is stored in only few degrees of freedom.

1In the rest of this article, the explicit formulation is done in the
independent-particle picture because it is more transparent. Inclusion
of residual interactions, e.g., pairing correlations, would not change
the final conclusions of the specific questions studied in this chapter.

FIG. 1. (Color online) Probability function for energy transfer �E
between two nuclei with T1 = 1 MeV and T2 = 0.7 MeV in
thermal contact by the transfer of one nucleon. (Solid line) Change
of excitation energy �E1 of the first nucleus by the transfer of one
nucleon from the first to the second nucleus. (Dashed line) Change of
excitation energy �E2 of the second nucleus by the transfer of one
nucleon from the second to the first nucleus.

The transition to every final state of the complete system which
respects the conservation of total energy is equally probable.
The average rate of transitions that change the partition of
excitation energy between the two nuclei is proportional to the
thermal coupling between the two nuclei in contact. In nuclear
fission, the thermal coupling would be realized by the neck
region. Let us stress that including the transfer of nucleons
through the neck does not impose any additional difficulty:
The configurations of the nuclei with one neutron or proton
more, respectively less, should be included in the number of
possible final configurations.

The results of a schematic model calculation of the energy
transfer due to nucleon exchange through the neck are shown
in Figs. 1 and 2. As an example, a constant single-particle

FIG. 2. (Color online) Probability function for net energy transfer
between two nuclei in contact with T1 = 1 MeV and T2 = 0.7 MeV by
the exchange of one nucleon. The curve shows the net change �Enet

of the excitation energy of the first nucleus.
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level density was assumed with an occupation probability as a
function of single-particle energy ε given by the Fermi-Dirac
distribution:

f (E) = 1

exp
(

ε
T

) + 1
, (3)

where ε is counted relative to the Fermi surface, which is
assumed to be identical in both nuclei. In this simple case,
the result of the calculation can be formulated analytically.
The probability of energy transfer by nucleon transfer from a
nucleus (named 1) with T1 to a nucleus (named 2) with T2 is
given by the product of the density fp1 of available nucleons
in nucleus 1 and the density fh2 of holes in nucleus 2:

f12 = fp1 × fh2, (4)

which are expressed by

fp1(E) = 1

exp
(

ε
T1

) + 1
(5)

and

fh2(E) = 1 − 1

exp
(

ε
T2

) + 1
. (6)

The probability of energy transfer by nucleon transfer from
the nucleus 2 to the nucleus 1 is given in an analogous
way. Figure 1 shows the two distributions of the energy
transferred by these two processes for T1 = 1 MeV and
T2 = 0.7 MeV. Transfer of nucleons in either direction on
the average transports excitation energy from the hotter to the
colder nucleus. The mean energy transported by the transfer of
one nucleon was determined numerically to about 0.48 MeV
in the case of the given example. The exchange of a nucleon
(the transfer of one nucleon from nucleus 1 to nucleus 2 plus
the transfer of one nucleon from nucleus 2 to nucleus 1),
which preserves the masses of the nuclei, is connected with
an energy transfer shown in Fig. 2. The mean energy transfer
for one nucleon exchange amounts to 0.96 MeV and the stan-
dard deviation of the energy-transfer distribution amounts to
3.0 MeV for the given example. This model calculation can
easily be run with any single-particle level density, even with
any sequence of individual levels, if it is performed with the
Monte Carlo technique.

Note that, to be fully realistic, we should have made a cal-
culation using the exact occupation functions, corresponding
to the specific states of the two nuclei involved in each
nucleon-transfer process. In other words, instead of sampling
the diffusion of energy by nucleon exchange between the two
nuclei from a single representative distribution depicted in
Fig. 2, we should have sampled the individual amounts of
energy transfer from different distributions. However, due to
the central-limit theorem, the result is essentially the same
after a few nucleon-exchange steps, if the first two moments
of the unique representative distribution are equal to the
average values of the first two moments of the individual
distributions involved. By the averaging of the individual
occupation functions over an energy interval in the order of the
standard deviation of the representative unique distribution,
nuclear-structure effects are reduced while preserving the
first two moments on the average, and the effective nuclear

properties approach those of the Fermi-gas model. This means
that the shape of the averaged occupation function approaches
the Fermi-Dirac distribution, supporting the validity of the
schematic calculation behind Figs. 1 and 2. A more detailed
discussion on the averaging over the properties of individual
nuclear levels and its consequences for the thermodynamical
behavior of the dinuclear system will be given in the next
chapter.

All these considerations prove that the statistical evolution
of the system is well defined, and it is even possible to
predict it precisely with a realistic model. Even if the
application of standard thermodynamical methods may be
questionable, e.g., due to the fluctuation of the temperatures
of the two nuclei involved as a function of energy partition,
the application of statistical mechanics poses no problem at
all. Thermal averaging or the thermodynamical limit are not
required.

III. THERMAL AVERAGING

In the light of the scenario outlined in the previous chapter,
the possible application of thermodynamics to the configura-
tion of two nuclei in thermal contact may be reconsidered.
The heat flow dE/dt between macroscopic objects, which is a
continuous quantity, is governed by the temperature difference
�T = T2 − T1 and the thermal resistance RT against energy
exchange:

dE

dt
= �T

RT

. (7)

However, Eq. (7) only describes the average behavior of
the dinuclear system because the energy exchange between
the two nuclei in contact in the scenario considered above
proceeds in steps of considerable magnitude, as shown in
the previous chapter. One nucleon exchange may increase or
decrease the excitation energy of one and the other nucleus
by an amount, which is in the order of the energy range
where single-particle levels are partly filled. This range is
at least in the order of one MeV, even at low excitation
energies due to pairing correlations. The transferred energy
is a considerable fraction of the total excitation energy of the
system. Therefore, the process of energy exchange cannot be
considered as a continuous process, but it proceeds in rather
large and fluctuating steps.

At the first glance, this seems to complicate the application
of thermodynamics to the dinuclear system even more, but the
contrary is true: The transfer of energy between the two nuclei
in steps causes an averaging of the thermodynamic properties
of the two nuclei. After some steps of energy transfer, the
resulting thermal driving force corresponding to the entropy
gradient averages over a considerable energy region, which
is given by the magnitude of the energy steps. This thermal
averaging smoothes out the fluctuations of the microcanonical
temperature defined by Eq. (2) in the region where the nuclear
level density is continuous but subject to fluctuations. Even
more, in the region of discrete, not overlapping, levels, this
effect averages over the levels in a finite interval. Note that any
of the discrete levels of the nucleus with the lower excitation
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FIG. 3. (Color online) The measured level density [29] of 172Yb
(full symbols) is compared with the result of a smoothing procedure
(open symbols). The logarithm of the level density was convoluted
with a Gaussian function with a standard deviation corresponding to
the temperature T of this nucleus. The value of T = 0.57 MeV was de-
duced from the level density around E = 5 MeV according to Eq. (2).
Border effects were avoided by extrapolating the logarithm of the
level density to both sides, below 0.1 MeV and above 6.7 MeV, by a
linear fit to the measured data before convolution.

energy is accessible if the partner nucleus with the higher
excitation energy is in the regime of overlapping levels. Thus,
the effective temperatures of the nuclei, which drive the process
of energy exchange, can well be evaluated by Eq. (2). However,
instead of the true level density ρ, a smoothed level density
should be inserted into Eq. (2), which results from averaging
the measured nuclear level density ρ over a finite energy
interval.

The magnitude of thermal averaging is illustrated in Fig. 3,
where the measured level density of 172Yb is compared
with the result of a smoothing procedure. The smoothing
procedure simulates the thermal averaging due to the finite
magnitude and the fluctuations of the energy transfer between
two nuclei in thermal contact. As a conservative estimate,
the smoothing was performed using a Gaussian function with
a standard deviation equal to the average nuclear temperature
T = 0.57 MeV as given by the inverse of the global logarithmic
slope of the level density. Thus, the standard deviation of
the smoothing function is a factor of 4 narrower than the
distribution of the individual energy-exchange values. Even
with this rather weak smoothing, the structures in the measured
level density around 1.2 and 2.4 MeV, corresponding to
the first quasiparticle excitations, which are also typical for
other nuclei, are completely washed out. This result reveals
that the averaging wipes out nuclear-structure effects to a
large extent and, thus, the application of the Fermi-Dirac
occupation function in our schematic calculation described
in the preceding chapter seems to be fully justified.

Finally, we conclude that the process of energy transfer is
governed by a differential equation similar to Eq. (7), however,

with an additional fluctuating term F:

dE

dt
= �T

RT

+ F. (8)

This fluctuating term introduces a random behavior of
the energy transfer and, thus, induces a thermal averaging
as described above. One may obtain an estimate of the
relative importance of the two terms in Eq. (8) by considering
the exchange of two nucleons, either protons or neutrons,
between the two nuclei in contact as the main mechanism
of energy transfer. From a set of numerical calculations
as the one described in Sec. II using different temperature
values, we deduced that the mean energy transfer in one
nucleon-exchange process is generally in the order of 3 times
the temperature difference (T1 − T2):

dE

dt
≈ 3

dn

dt
�T + F, (9)

where dn/dt is the nucleon-exchange rate. Equation (9) defines
the thermal resistance RT , introduced in Eq. (7): We find that
the thermal resistance is roughly equal to 1/3 of the inverse of
the nucleon exchange rate. Extending the transport-theoretical
considerations of Randrup [20], who derived the nucleon-
transfer rate in a di-nuclear system in thermal equilibrium,
to the present case of different temperatures T1 and T2, we
arrive at the following expression for the nucleon-exchange
rate dn/dt:

dn

dt
= 1

2

( ∑
i=n,p

∫ ∞

−∞
ωi(ε)Ki(ε)f12(ε)vbar(ε)Fgeodε

+
∑
i=n,p

∫ ∞

−∞
ωi(ε)Ki(ε)f21(ε)vbar(ε)Fgeodε

)
, (10)

where ωi(ε) is the neutron n, respectively proton p, single-
particle level density. Ki(ε) is the transmission coefficient that
considers the effect of a potential barrier between the two
nuclei (see Fig. 16 of Ref. [21]). f12 and f21 are given by
Eq. (4) and its implicitly described counterpart, respectively.
vbar(ε) is the normal component of the mean nucleon velocity,
and Fgeo is an energy-independent geometrical factor, which
is directly proportional to the cross section of the neck and
inversely proportional to the volume of the initial nucleus.
Since the factors f12 and f21 strongly favour contributions in
the vicinity of the Fermi energy EF and T1;T2 � EF , the
nucleon velocity vbar(ε) may be approximated by the normal
component of the Fermi velocity vF , and ωi(ε) and Ki(ε) can
be replaced by their values ωi(EF ) and Ki(EF ) at the Fermi
energy. Thus, Eq. (10) reduces to:

dn

dt
≈ 1

2
vF Fgeo

( ∑
i=n,p

ωi(EF )Ki(EF )
∫ ∞

−∞
f12(ε) dε

+
∑
i=n,p

ωi(EF )Ki(EF )
∫ ∞

−∞
f21(ε) dε

)
. (11)

Note that the values of the two integrals are identical, in
agreement with the fact that the net average mass transfer
is zero. Numerical calculations revealed that the nucleon
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exchange rate according to Eq. (11) is closely proportional to
Tmean = 1

2 (T1 + T2), if T1 and T2 do not differ by more than a
factor of 2. This result is consistent with Randrup’s result [20],
who found that the nucleon transfer rate in a dinuclear system
is exactly proportional to the nuclear temperature under the
conditions of thermal equilibrium and zero relative velocity
between the two nuclei in contact.

Experimental information on the thermal resistance can
be deduced from the even-odd effect in fission-fragment
element distributions [22], which shows that only the most
asymmetric mass splits where thermal pressure is very strong
present a strong even-odd effect. This indicates that the time
for complete energy sorting is comparable to the saddle-to-
scission time.

The fluctuation term F in Eq. (8) is directly related to the
width of the distribution of net energy transfer, an example of
which is shown in Fig. 2. The numerical calculations presented
in Sec. II showed that the standard deviation of this distribution
is in the order of 2(T1 + T2) in one nucleon-exchange step. This
result can easily be understood, as the latter standard deviation
is connected to the energy range of partly filled single-particle
states near the Fermi level, which is defined by the nucleus
temperature. Since the temperature of a heavy nucleus at low
excitation energy is in the order of T = 1 MeV, the magnitude
of the fluctuating term is in the order of 4T = 4 MeV for
one nucleon exchange. This makes clear that the fluctuating
term in Eq. (8) is very important. If the masses of the two
nuclei in contact do not differ too much, the fluctuating term
is even appreciably larger than the mean energy transfer per
nucleon exchange. The shape of the amplitude distribution of
the fluctuating term is complex, but, in addition to its second
moment, its exact shape is not important, since the net transfer
after a few nucleon exchange steps will quickly approach a
Gaussian function due to the central limit theorem.

IV. EXCITATION-ENERGY SHARING
AND LEVEL DENSITY

After having established the validity of usually applied
thermodynamic concepts for modeling the process of thermal
equilibration in a dinuclear system, we would like to demon-
strate that the excitation-energy sharing between the two nuclei
in contact in thermal equilibrium strongly depends on the
characteristics of the nuclear level density ρ. In most cases,
the so-called Fermi-gas level density [23] has been assumed,
which is described by

ρ(E) ∝ exp(2
√

aE), (12)

where a is the level-density parameter. We have omitted the
preexponential factor, which has only little influence on the
energy sharing. Since the level-density parameter a is roughly
proportional to the nuclear mass A, the excitation energy is
divided in proportion to the masses of the reaction products
[3,24].

At low excitation energies, the slope of the logarithm of
the nuclear level density is found to vary much less strongly
than predicted by Eq. (12). Two descriptions, which have been
introduced by Gilbert and Cameron [25], are still widely used

(e.g., [26]): the back-shifted Fermi-gas formula

ρ(E) ∝ exp[2
√

a(E − EbF )] (13)

and the constant-temperature formula

ρ(E) ∝ exp

(
E − EbC

T

)
. (14)

Recent experiments revealed that the nuclear level density ρ

up to excitation energies E of about 10 [27] or even 20 MeV
[28] are well represented by the constant-temperature formula
(14) with a parameter T that essentially does not depend on
energy; see for example the full dots in Fig. 3. As illustrated in
Fig. 3, after thermal averaging the constant-temperature for-
mula even better describes the effective averaged level density.
According to Eq. (2) the parameter T of Eq. (14) coincides with
the nucleus temperature. The constant-temperature behavior
has been explained by the gradual melting of Cooper pairs
in the energy domain governed by strong pairing correlations
[29]. It was already mentioned above that for a system of
two nuclei in contact, the constant-temperature formula leads
to the surprising result that essentially all excitation energy
is transported to the heavy nucleus by a process of energy
sorting [6]. The excitation-energy sorting is clearly reflected
by several fission observables such as the number of prompt
neutrons emitted by the fission fragments [6].

When some transfer of nucleons is considered, also the
even-odd mass differences have a sizeable influence on the
last steps of the energy-sorting mechanism in the regime of a
constant-temperature level density. The eventual exchange of
one neutron and one proton may transform an odd-odd nucleus
in its ground state to an even-even nucleus in its ground state,
which is more strongly bound by about two times the pairing
gap parameter �, assuming the same value for protons and
neutrons. This leads to an increase in entropy due to the higher
excitation energy available in the other nucleus. A schematic
scenario, which explains the complex features of the even-odd
effect in fission-fragment nuclear-charge distributions along
these lines, has been described in Ref. [22].

The description of the energy division in the case of the
back-shifted Fermi-gas formula is more complex. In this case,
Eq. (2) leads to the following energy dependence of the nuclear
temperature:

T ∝
√

(E − EbF )

A
. (15)

The condition of thermal equilibrium leads to the following
implicit equation for the energy division between the two
nuclei:

E1 − EbF1

E2 − EbF2
= A1

A2
. (16)

The indeces 1 and 2 stand for the first and the second
nucleus, respectively. Since the backshift energy EbF is
negative for most nuclei, this leads to a division of excitation
energy, which is most often in between the division according
to the mass ratio and complete energy sorting. Below a certain
threshold of the total energy, which depends on the values of
the back-shift energies and nuclear masses in Eq. (16), there
is no solution for Eq. (16) and the result is identical with
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the one of the constant-temperature formula, corresponding to
complete energy sorting.

Finally, we would like to stress that the pure Fermi-gas
level-density formula [Eq. (12)] is generally not a realistic
description of the nuclear level density. Even at higher
excitation energies, where the level density is expected to be
well represented by the independent-particle model, which
is behind the Fermi-gas formula, a considerable back-shift
energy is expected according to Eq. (13). It is understood
as the consequence of pairing correlations and shell effects.
Thus, also in this regime the excitation-energy division
according to thermal equilibrium in a dinuclear system follows
Eq. (16). The assumption that the excitation energy in thermal
equilibrium is shared according to the ratio of the masses is
never valid in a strict sense.

V. CONCLUSIONS

The process of thermal equilibration in a di-nuclear system
is conventionally described using thermodynamical concepts.
In particular, these concepts were applied in the recent
discovery of the energy-sorting process in nuclear fission [6].
In the present work, considerations obtained with schematic
calculations based on statistical mechanics show that this

description is justified in spite of the small size of nuclei.
Indeed, the energy transfer between the two nuclei in contact
proceeds in steps, mainly by nucleon exchange through the
contact zone. The nucleons that take part in the exchange are
those with energies close to the Fermi energy. Therefore, the
energy transfer leads to a fluctuation of the excitation energy of
one and the other nucleus by a considerable amount of the order
of 2(T1 + T2). After a number of steps, the system averages
over a considerable energy region, and thus the entropy which
determines the dynamical evolution of the system is an average
one. Consequently, the irregularities of the level density are
smoothed out by the very nature of the energy-exchange
process, allowing for the definition of a nuclear temperature.
Finally, the dependence of the excitation energy division on
the expression used for the level density was discussed.
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