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Microscopic model approach to (n,xn) pre-equilibrium reactions for medium-energy neutrons

M. Dupuis* and T. Kawano
Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

J.-P. Delaroche and E. Bauge
CEA, DAM, DIF, F-91297 Arpajon, France

(Received 15 October 2010; revised manuscript received 19 November 2010; published 7 January 2011)

We report on microscopic model calculations of the first step of direct pre-equilibrium (n,xn) emission in
neutron interaction with 90Zr and 208Pb below 20 MeV. Our model is based on both an accurate description of the
target excited states, provided by the self-consistent random-phase approximation (RPA) method implemented
with the Gogny D1S force, and well-established in-medium two-body forces to represent the residual nucleon-
nucleon interaction for the inelastic processes. Two goals have been achieved: The present microscopic approach
provides a unified description of collective state excitations and the pre-equilibrium one-step process, and our
reaction model reproduces the available data fairly well, without any parameter adjustment.

DOI: 10.1103/PhysRevC.83.014602 PACS number(s): 24.10.Eq, 21.60.Jz, 24.50.+g, 25.40.Fq

I. INTRODUCTION

Over the past two decades, quantum-mechanical pre-
equilibrium models extensively used to analyze nucleon-
induced reactions have reached maturity. Two main pre-
equilibrium mechanisms are usually considered. The first,
known as the multistep direct (MSD) process, assumes that the
projectile collides one or several times with the target nucleus
but at least one nucleon remains in the continuum. In the
second, the multistep compound (MSC) process, the projectile
is first absorbed by the nucleus and re-emitted rather rapidly,
before the composite system reaches the statistic equilibrium
state of a compound nucleus. The original MSC and MSD
models developed by Feshbach, Kerman, and Koonin (FKK)
[1] have been extended to account for reaction mechanisms
such as transfer of flux between the MSD and MSC chains [2],
multiple-particle emission during the MSD process [3], and
interference effects in the second step of the MSD [4], which
were not considered in the early days of pre-equilibrium
reaction modeling.

It was shown [2] that the MSD mechanism dominates
the pre-equilibrium emission for nuclear-induced reaction at
incident neutron energy as low as 14 MeV [2], and that
below ∼25 MeV, second and higher order direct processes
are weak. A MSD calculation is thus reduced to a one-step
direct process, which is equivalent to treating excitation of
the target nucleus after one interaction has taken place with
the projectile. This process may be modeled in the distorted-
wave Born approximation (DWBA) for inelastic transitions
to the continuum. Although the one-step process is relatively
simple compared to other pre-equilibrium mechanisms that
have been studied so far, its modeling still requires several
phenomenological ingredients, such as state densities and
optical model potentials. So far, its implementation also
systematically uses a very simple representation of the residual
two-body interaction, the parameters of which are directly
adjusted to fit experimental spectra. Koning and Chadwick [5]
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reduced the role of phenomenology in MSD calculations, as
these authors computed cross sections for each particle-hole
(p-h) state built from a pertinent Nilsson scheme, so their
model did not require phenomenological state densities.

Moreover, in medium-energy nucleon-induced reaction
analyses typically covering the 10- to 200-MeV range, the
so-called direct (collective) reactions are usually distinguished
from the pre-equilibrium MSD process [5,6]. We note that
this distinction is also made in studies based on the exciton
pre-equilibrium model [7]. The direct reactions correspond to
the excitation of sharp states at low excitation energies, such
as low-lying collective states, or to giant resonances which
are embedded in the continuum. The MSD pre-equilibrium
model so far relies on statistical assumptions, such as the
leading particle statistics or the residual system statistics [8],
and uses incoherent p-h excitations to account for target states
at excitation energy higher than a few MeV. Besides the
inconsistency in the modeling, the distinction between direct
reactions with collective excitations and the MSD process
applied with statistical assumptions leads to a double counting
between coherent p-h excitations (i.e., collective modes) and
incoherent p-h excitations, which has been partially cured
using phenomenological means [5,9]. Direct collective con-
tributions are usually calculated within a phenomenological
collective model that takes as input the multipole deformation
parameters βL extracted from high-precision proton-inelastic-
scattering studies [6]. However, while reliable information
about collective low-lying states are available, the collectivity
in nuclear spectra above the few low-lying collective states
is not experimentally well known in general. Consequently,
the contribution of this portion of collective spectra is either
ignored [5] or included using the assumption that the βL

values for collective states are determined from an assumed
fraction of the energy-weighted sum rule (EWSR) [7,9]. As
the distribution over the excitation energy of these strengths
is not always well established, even for giant resonances,
calculated cross sections for collective states above the
low-lying excitations strongly depend on the prescription
adopted for distributing the βL strengths over excitation
energy.

014602-10556-2813/2011/83(1)/014602(12) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevC.83.014602


M. DUPUIS, T. KAWANO, J.-P. DELAROCHE, AND E. BAUGE PHYSICAL REVIEW C 83, 014602 (2011)

In the quantum-mechanical pre-equilibrium formalism of
Tamura, Udagawa, and Lenske (TUL) [10], the collective
and noncollective excitations are accounted for by transition-
strength functions provided by the random-phase approxima-
tion (RPA). The one-step cross section in TUL, although based
on a microscopic description of the nuclear excitation, is fac-
torized into the RPA strength and inelastic-scattering DWBA
cross section averaged over the different p-h components,
in which the detailed connection between the scattering and
residual states inevitably gets lost.

In this study we propose quantum-mechanical calculations
of the one-step direct contribution to the pre-equilibrium
process that use reliable residual two-body interactions
as well as a microscopic description of target states.
The self-consistent RPA (SCRPA) method implemented
with the Gogny D1S interaction [11] is used to provide our
description of the target excitations. This allows us to calculate
simultaneously the direct and the one-step contributions in
a unified way. Moreover, our model does not contain any
adjustable parameter so that the results of calculations can
directly be compared with experimental data.

In Sec. II we briefly review the quantum-mechanical
formulation of the one-step direct process. We detail the
different ingredients that are used in our calculations, namely,
the structure of target state excitations, two-body residual
interactions, and distorted waves. In Sec. III we compare
our model predictions with experimental data for (n,xn)
double-differential cross sections calculated for 10- to 20-MeV
neutron-induced reactions on the spherical 90Zr and 208Pb
target nuclei. Sensitivity of the calculated cross sections to
the choice of the residual two-body interaction and to the
collectivity content of target state excitations is examined.
Decomposition of cross sections over the spin and parity of
target excitations is also detailed, and we discuss figures of
merit of the present model. Finally, a conclusion and outlook
are provided in Sec. IV.

II. METHOD

In this section we first provide a brief account of the
well-known quantum-mechanical pre-equilibrium model of
the one-step emission process. Next we provide a detailed
description of RPA excitations and residual interactions used
in the modeling of the 90Zr(n,n′) and 208Pb(n,n′) reactions to
be studied later in Sec. III.

A. Reaction theory

The quantum pre-equilibrium model for the MSD process
is based on the Born series of the probability amplitude TF←0,
corresponding to the transition between an initial state made up
of an incident nucleon of momentum ki and target in its ground
state |0〉, and a final state made up of an outgoing nucleon of
momentum kf and target in excited state |F 〉 [1], namely,

TF←0 = 〈χ (−)(kf ), F |Vres

∞∑
n=1

(
1

PHP − E + iε
Vres

)n−1

× |χ (+)(ki), 0〉 =
∞∑

n=1

T
(n)
F←0, (1)

where Vres is the residual interaction responsible for the
inelastic process, E is the total energy of the system,
H = HA + H1 is the unperturbed Hamiltonian (i.e., target
Hamiltonian plus projectile Hamiltonian), P is the projector
on the space spanned by scattering states, and χ (+/−)(ki/f )
is the distorted wave in the entrance or exit channel. The
nth term is associated with the n-step component of the
pre-equilibrium MSD process.

The MSD double-differential cross section reads

d2σ (ki , kf )

d�f dEkf

= 1

2e

∫ Ekf
+e

Ekf
−e

dEk

µ2

(2πh̄2)2

k

ki

×
∑
F

|TF←0|2 δ(Eki
− Ek − EF ), (2)

where Eki/kf
is the energy of the nucleon in the entrance

or exit channel and EF = 〈F |HA|F 〉 − 〈0|HA|0〉 is the target
excitation energy. The sum over F includes all target excited
states. In Eq. (2) the average over the outgoing nucleon
energy Ekf

within a 2e width accounts for both the energy
bins in measurements and the energy resolution of the
experimental devices. This expression should also be averaged
over the incoming nucleon energy if the beam is only quasi-
mono-energetic, which often happens in neutron-scattering
experiments at medium energies.

The lowest order of the MSD mechanism corresponds to the
one-step process. In that case, the transition amplitude TF←0

reduces to the first term of Eq. (1), namely,

T
(1)
F←0 = 〈χ (−)(kf ), NJM�|Vres|χ (+)(ki), 0〉, (3)

and the one-step double-differential cross section reads

d2σ (1)(ki , kf )

d�f dEkf

= 1

2e

∫ Ekf
+e

Ekf
−e

dEk

µ2

(2πh̄2)2

k

ki

×
∑
N

|〈χ (−)(kf ), NJM�|Vres|χ (+)(ki), 0〉|2

× δ(Eki
− Ek − EN ). (4)

The state |F 〉 = |NJM�〉 represents an excitation of total
angular momentum J , projection M , parity �, and excitation
energy EN . The ground state |0〉 has zero angular momentum
and positive parity, because we only consider spherical even-
even nuclei in this study. In the case of a nonzero target, the
angular momentum coupling between the initial and final states
can be dealt with. However, the effect of the target spin might
not be that large when the final-state-configuration-phase space
is large enough.

We introduce the one-body density-transition-matrix ele-
ments (OBDTMEs) associated with the transition between
the target ground state |0〉 and one excited state |NJM�〉.
They read

ρ
0,F
β,α = 〈NJM�|a†

α × aβ |0〉, (5)

where the single-particle (s.p.) operators a†
α and aβ correspond

to the creation and annihilation of a particle in a s.p. state
belonging to the basis {α}, respectively. This s.p. basis can
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be defined as the set of the target nucleus Hartree-Fock
(HF) mean-field solutions. The transition amplitude, Eq. (3),
is expressed as a combination of OBDTMEs and two-body
matrix elements of the residual interaction Vres, namely,

T
(1)
F←0 =

∑
α,β

〈χ (−)(kf ), α|Vres|χ (+)(ki), β〉A ρ
0,F
β,α , (6)

where the A symbol attached to matrix elements indicates
antisymmetrization. More details about this derivation can be
found in [12]. The OBDTMEs, Eq. (5), are the spectroscopic
information that must be known prior to calculating all the
one-step process components.

B. Target states in SCRPA

The structure properties for both ground and excited states
are described by the SCRPA method [13] implemented with the
Gogny D1S force [11]. For 208Pb, this nuclear structure model,
hereafter labeled SCRPA+D1S, provides a good description
of the properties for low-lying collective states and giant
multipole resonances [14,15], for many other states that have
weaker but non-negligible collectivity [16], and for high-spin
and non-natural parity states [16,17]. Spectroscopic properties
for 90Zr are less accurately described than those for 208Pb by
the present model as (i) the weak pairing content of the Z = 40
proton subshell is neglected here, and (ii) two-particle–two-
hole excitations required to form the yrast 2+ and 4+ states are
outside the RPA model space [18]. Nevertheless, for 90Zr, the
SCRPA+D1S approach accurately reproduces the properties
of most low-lying collective states as well as giant resonances,
both of which are shown to be of prime importance in the
reaction model analyses presented in the next section.

All details on the SCRPA+D1S method can be found
in [13,14,17], so here we simply point out that in the RPA
approximation, an excited state |NJM�〉 [Eqs. (3)–(5)] reads

|NJM�〉 = �
†
NJM�|0̃〉, (7)

where the ket |0̃〉 represents the RPA-correlated ground state.
The operator �† stands for the creation of a boson and reads

�+
NJM� =

∑
ph

XNJ�
ph A

†
JM�(ph̃) − YNJ�

ph AJM̄�(ph̃), (8)

where A
†
JM� and AJM̄� are the angular momentum coupled

creation and annihilation operators of a p-h pair, respectively,
defined in Ref. [12]. The single-particle states are defined with
respect to the HF mean field. Remember that in Eq. (8) the
sum runs separately over proton and neutron p-h states. The
transition operator [Eq. (8)] contains both isoscalar, T = 0,
and isovector, T = 1, components, where T is the isospin.
The total angular momentum J corresponds to the coupling
of the orbital angular momentum L to the intrinsic spin S.

The amplitudes XNJ�
ph and YNJ�

ph are related to OBDTMEs
[Eq. (5)] as follows:

XNJ�
ph = 〈NJM�|A†

JM�(ph̃)|0̃〉,
(9)

YNJ�
ph = 〈NJM�|A†

JM�(h̃p)|0̃〉.

The double-differential cross section [Eq. (4)] is obtained
by calculating the transition amplitudes [Eq. (6)] for all
possible transitions specified by the RPA amplitudes [Eq. (9)].

Although the SCRPA+D1S method provides a good overall
description of the spectroscopic properties of the two nuclei
under study, couplings to two or more p-h states and to
continuum states are neglected. These couplings impact as
a redistribution of strengths and shift positions of the RPA
eigenstates [19,20]. To first-order approximation, couplings
to states that are outside the RPA model space can be
handled by assigning a finite width �N and an energy shift

N to each RPA state. A microscopic calculation of these
corrections is outside the scope of the present study. We
use a phenomenological estimate for the damping plus the
escape width �N = 0.026E1.9

N MeV [21], to which we add
a width stemming from the energy resolution of the neutron
beam. This last term is represented using a Gaussian distri-
bution of width � � 0.5–1.3 MeV, depending upon incident
energy, which corresponds to the spreading of the elastic
peaks displayed in the neutron emission spectra analyzed in
Sec. III.

The energy shift 
N is chosen to approximately compen-
sate for differences between SCRPA+D1S and experimental
energies of well-known excitations, since the predicted EN

values tend to be higher. Experimental excitation energies
of the first 3−, 5−, 2+, 4+, 6+, 8+, and 10+ excitations
for 208Pb [22], the first 3− and 5− excitations in 90Zr [23],
and systematic energies of giant resonances [21] for both
nuclei are used as references to calculate the 
N values.
For giant resonances, we use the reference excitation energies
Ex � αA−1/3, with α = 31 MeV for the low-energy octupole
resonances (LEOR), α = 80 MeV for the isovector giant
dipole resonance (IVGDR), and α = 80 and 63 MeV for the
isoscalar giant monopole and quadrupole resonances (ISGMR
and ISGQR) [21], respectively. The 
N corrections for all
states that are not directly anchored to an experimental
value, or to a value from systematics, have been determined
using a simple interpolation. For 90Zr, the RPA energies are
shifted by a 
N value smaller than 200 keV for low-lying
states and by 
N values in the range 0.7–1.5 MeV for
giant resonances. For 208Pb, the 
N values reach approxi-
matively 1 MeV for low-lying states and 1–2 MeV for giant
resonances.

For our applications, the SCRPA+D1S equations were
solved by expanding solutions on a harmonic oscillator
basis, including 14 major shells and assuming no space
truncation. Note that all RPA excited states with spin J up
to J = 14 (h̄ units) with natural [� = (−)J , i.e., J = L]
and non-natural [� = (−)J+1, i.e., J = L ± 1] parities are
considered. Transition amplitudes [Eq. (6)] are calculated
with the computer code DWBA98 [24]. The full expres-
sion of the transition amplitudes [Eq. (6)], which includes
angular momentum coupling details and different compo-
nents of the two-body interaction Vres for direct and ex-
change terms, can be found in Refs. [24,25]. Note that the
present one-step direct model, which uses the SCRPA+D1S
nuclear-structure approach, has been established and em-
ployed in the previous microscopic pre-equilibrium study of
Ref. [26].
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C. Transition probabilities

We perform an analysis of reduced transition probabilities
for the excitation of natural parity states that characterizes the
collectivity content of the two targets’ spectra. This is useful in
the later interpretation of the calculated one-step cross section
[Eq. (4)].

For any natural parity J� → 0+ transition, the reduced
electric transition probability is defined as

B(EJ, 0+ ← J�) =
∑
M

∣∣〈NJM�|rJ Y J
M |0〉∣∣2

, (10)

where rJ Y J
M is the transition operator. The B(EJ ) values

[Eq. (10)] are calculated with the RPA wave functions [Eq. (7)]
or with p-h excitations of the uncorrelated HF mean field,
defined as

|NJM�〉ph = A
†
JM�(ph̃)|0〉, |0〉 = |HF〉. (11)

Remember that collective states generate much stronger
transition densities than do those for single p-h states. The
comparison between p-h and RPA transition probabilities
provides a measure of the collectivity content of the nuclei
spectra.

By performing this comparison for all transitions with a
total angular momentum transfer in the range J = 0–14, it
is shown that the nuclear spectrum contains non-negligible
collectivity for natural parity transitions up to J = 6 in 90Zr
and up to J = 8 in 208Pb. In each nucleus, the RPA and p-h
strengths become very similar for higher J values. To be more
specific, we focus on the 3− and 5− excitations, which are the
most relevant to this study. The E3 and E5 strength functions
[Eq. (10)] are displayed in Figs. 1 and 2 for 90Zr and 208Pb,
respectively. The excitation energies Ex in the plots correspond
to the corrected energies EN − 
N defined in Sec. II B.

For 90Zr, the RPA E3 strength in Fig. 1(b) has significant
contributions below Ex = 9 MeV, and it mainly contains a
very collective low-lying state at Ex = 2.7 MeV, as well as
the LEOR centered at Ex = 6.9 MeV. The RPA E5 strength in
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FIG. 1. Strength functions [Eq. (10)] for E3 and E5 excitations in
90Zr as described with one p-h or RPA operator. Vertical bars are for
the strengths at discrete energies Ex . Full curves are obtained from
folding the strength functions with a Gaussian distribution (curves
are scaled by a factor of 0.5).
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FIG. 2. Same as Fig. 1 for 208Pb.

Fig. 1(d) is mainly concentrated in two states: a low-lying state
located at Ex = 2.2 MeV and a state that displays strong col-
lectivity located at Ex = 9.8 MeV. The E3 and E5 p-h strengths
seen in Figs. 1(a) and 1(b), respectively, are significantly lower
that those for RPA and mainly contribute above Ex � 8 MeV.
These differences characterize the collective content of the
spectrum of present interest.

In 208Pb, the RPA E3 strength in Fig. 2(b) is mostly
concentrated below Ex = 7 MeV, with a very collective
low-lying state at Ex = 2.6 MeV and the LEOR centered at
Ex = 5.2 MeV. The RPA E5 strength in Fig. 2(d) displays large
collectivity below Ex = 7 MeV. The p-h strengths in Figs. 2(a)
and 2(b) are significantly smaller than those for RPA solutions
and are concentrated at higher energy.

D. Residual interaction for inelastic transitions

We now provide some details about the effective two-body
interactions, Vres in Eq. (6), that are used in our one-step
direct calculations. In all previous quantum pre-equilibrium
calculations this residual interaction was represented by a
simple central interaction with a Yukawa form factor (see
Ref. [5] as an example) for which the strength was adjusted
to reproduce experimental cross sections. As our goal is to
perform calculations that can be directly compared to experi-
mental data without any adjustment being made, we consider
reliable interactions for which the parameters are fixed and not
adjusted to match nucleon-scattering experimental data.

However, for the reactions under study here, this require-
ment can be only partially fulfilled. While at higher incident
energy (above approximately 50 MeV) the Melbourne g matrix
[27], used as an effective interaction in microscopic folding
model calculation, provides very accurate predictions for
proton elastic [12,27] and inelastic scattering [16,28], a good
representation of the effective interaction to be used in a direct
reaction model at lower energy is still lacking and a more com-
plicated reaction mechanism should be considered as well [12].
Nonetheless, we consider that g matrices could still provide a
reasonable description of the residual interaction, but we do
not expect the same degree of accuracy below ∼50 MeV as that
reached in proton-scattering studies at higher incident energy.

014602-4



MICROSCOPIC MODEL APPROACH TO (n,xn) PRE- . . . PHYSICAL REVIEW C 83, 014602 (2011)

Accordingly, we use the density-dependent extensions
CDM3Yn [29] (where n ranges from 1 to 6) of the effective in-
teraction M3Y [30] based on the g-matrix elements of the Paris
NN potentials. For comparison, we also consider the original
M3Y interaction [30]. Other density-dependent extensions of
M3Y, such as the DDM3Y and BDM3Y interactions [29],
have also been tested in our one-step MSD calculations, but
as these lead to predictions very close to those obtained with
the CDM3Yn parametrizations, they are not discussed here.
These interactions all contain central (in the four spin-isospin
S = 0, 1 and T = 0, 1 channels), spin-orbit (T = 0, 1), and
tensor (T = 0, 1) components [30]. The density dependence
originally was introduced in the central term of the M3Y
force to ensure the reproduction of saturation properties of
nuclear matter. An additional energy dependence was also
introduced to simulate the energy dependence of the nucleon
optical potential [31].

Finally, we indicate that the distorted waves entering the
transition amplitudes [Eq. (3)] have been obtained in both
incoming and outgoing channels using the phenomenological
Koning-Delaroche optical potential [32].

III. RESULTS AND DISCUSSION

In this section we present the results of our (n, n′) one-step
calculations for the scattering of 14- and 18-MeV neutrons
from the 90Zr and 208Pb targets. We first investigate the
effect of the residual two-body interaction on the calculated
cross sections. Next we compare our predictions with (n,xn)
experimental data and emphasize how a precise description
of the excited states impacts predictions. Finally, we ex-
plain how our calculation avoids some of the deficiencies
met in previous analyses, and we discuss the approxima-
tions we made to assess uncertainties in the present model
predictions.

A. Sensitivity to effective interaction

As explained in the previous section, the effective two-body
residual interaction Vres [Eq. (6)] to be used at relatively low
energies should be considered carefully before making any
comparison with the data. We compare the calculated cross
sections [Eq. (4)] using the M3Y, CDM3Y1, and CDM3Y6
effective interactions. These three sets of calculations are
performed with the RPA excitation [Eq. (7)]. The results for the
18-MeV neutron scattering from 90Zr are displayed in Fig. 3(a)
for the angle-integrated double-differential cross section in
Eq. (4) for outgoing energies Eout in the range 0–18 MeV
(the contribution from elastic scattering is not included) and
in Fig. 3(b) for the angular distribution of emitted neutrons at
the outgoing energy Eout = 11 MeV. In both figures the two
cross sections calculated with CDM3Y1 (dashed curves) and
CDM3Y6 (dotted curves) are almost identical in shape, and
their magnitudes differ by approximately 5%. Results based
on CDM3Yn, with n ranging from 2 to 5, are between those
for CDM3Y6 and CDM3Y1 so they are not displayed. We
notice that results obtained with the two CDM3Y interactions
(dotted and dashed curves) are up to 30% larger than those
obtained with M3Y (full curves). This difference stems from a
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FIG. 3. (n,xn) spectra and angular distributions for 18-MeV
neutrons incident on 90Zr. One-step cross sections calculated with
the M3Y (full curves), CDM3Y1 (dashed curves), and CDM3Y6
(dotted curves) interactions: (a) angle-integrated neutron emission
spectra and (b) angular distributions at Eout = 11 MeV.

combination of two effects. The energy dependence included
in CDM3Yn interactions leads to a reduction in the cross
sections by 3%–7%, but the explicit density dependence
greatly increases the cross sections. This enhancement is
understood as follows: We know that a density dependence
in a nuclear interaction usually acts as a repulsive interaction.
However, the original M3Y interaction [30] corresponds to a
g-matrix calculation that is an average over a range of densities
[33]. Since low-energy projectiles mainly probe the surface,
low-density part of the target, repulsion effects are most likely
overestimated in the present calculation performed with M3Y.
The explicit density dependence in CDM3Y n corrects for this
effect.

The comparison between the two-body interactions used in
our calculations provides us with estimates for uncertainty
in predictions. From the present study, this uncertainty
can be represented by a global normalization factor of
approximately 30%. While we do not expect any greater
variations related to the choice between different effective
interactions, a more systematic study should be performed to
evaluate this uncertainty with better precision than presently
achieved. Using a microscopic residual interaction that is
fixed for all the reactions under study represents significant
progress nonetheless. Indeed, previous MSD calculations used
simple central phenomenological interactions with parameters
directly adjusted to fit the experimental distributions. The
strengths of these interactions thus displayed strong variations
between different studies, as they may depend on (i) projectile
and target, (ii) adopted prescriptions for the phenomenological
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FIG. 4. (n,xn) spectra for 14.1-MeV neutrons incident on 90Zr.
Calculated one-step contributions to the neutron emission spectra
compared to experimental (n,xn) data [34] (open circles). Full and
dashed curves are for cross sections calculated using the RPA and p-h
excitations, respectively. Outgoing angles are indicated on panels (a),
(b), (c), and (d).

level densities and optical potential, as well as (iii) relative
contributions of other reaction mechanisms (i.e., two-step
direct, MSC, direct collective reaction, and evaporation pro-
cesses) to (n,xn) emission.

B. Comparison to experimental data

Next we compare the calculated one-step double-
differential cross sections [Eq. (4)] to experimental (n,xn)
data for 90Zr and 208Pb in Figs. 4–9. All calculations (full
curves) were performed with the CDM3Y3 interaction and
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FIG. 5. Same as Fig. 4 for 18-MeV incident energy.
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FIG. 6. (n,xn) angular distributions for 14.1-MeV neutrons
incident on 90Zr. Cross sections calculated with the CDM3Y3
interaction (full curves) are compared to experimental data [34] (open
circles). The neutron outgoing energies Eout are indicated on panels
(a) and (b).

the RPA states of Eq. (7), including those with natural and
non-natural parities. Cross sections are displayed in two
representations, that is, as a function of the emission energy
Eout at selected outgoing angles θc.m. (spectra), and as a
function of θc.m. at selected Eout values (angular distributions).
Note that neither calculated elastic scattering nor nondirect
interaction contributions to the neutron emission spectra are
displayed in Figs. 4–9.

1. 90Zr target

Comparisons of calculated spectra with data are displayed
for the incident energies Ein = 14.1 and 18 MeV in Figs. 4
and 5, respectively. The calculations at Ein = 14.1 MeV are in
good agreement with the data for Eout > 6.5 MeV at θc.m. =
30◦, 60◦, and 100◦ and for Eout > 10 MeV at θc.m. = 150◦.
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FIG. 7. (n,xn) angular distributions for 18-MeV neutrons inci-
dent on 90Zr. Cross sections calculated with the CDM3Y3 interaction
(full curves) are compared to experimental data [34] (open circles).
The neutron outgoing energies Eout are indicated on panels (a), (b),
(c), and (d). Dashed and dotted curves in panel (c) are for one-step
calculations performed with only natural and only non-natural parity
excitations, respectively.
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FIG. 8. Same as Fig. 4 for 14.1-MeV neutrons incident on 208Pb.
Data are from [35].

The discrepancy observed at θc.m. = 30◦ for EF � 12 MeV
is discussed later. For Ein = 18 MeV (see Fig. 5), good
agreement is also found for Eout > 8 MeV at θc.m. = 30◦, 60◦,
and 90◦ and for Eout > 10 MeV at θc.m. = 150◦. As expected,
emission at low energy, and more particularly at large angles,
is underestimated, as it should be dominated by the compound
nucleus evaporation and most likely by the MSC process, both
of which are not considered in the present analysis.

For Ein = 14.1 MeV in Fig. 4(a), the experimental neu-
tron emission at θc.m. = 30◦ and Eout � 12 MeV is clearly
underestimated. A possible explanation is that the first 2+
state located at Eexp = 2.186 MeV in the experimental 90Zr
spectrum [23], which could provide a large contribution to
the neutron emission at Eout = Ein − Eexp = 11.9 MeV, is not
taken into account in our calculation as such a low-lying 2+
excitation is not predicted by the present RPA structure model
(see Sec. II B). The same Ein = 14.1 MeV data were ana-
lyzed in [6], where the contribution of this 2+ state to the
neutron emission was taken into account using a collective
phenomenological model. While this 2+ level provided an
important contribution, its excitation was not sufficient to fully
explain the emission observed at Eout � 12 MeV. Furthermore,
the broadening of the elastic peak is quite large, and the
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FIG. 9. Same as Fig. 7 for 14.1-MeV neutrons incident on 208Pb.
Data are from [35].

discrepancy between data and calculations almost disappears
at Ein = 18 MeV [see Fig. 5(a)]. Further work is thus required
to establish the genuine origin of the observed underestimation.

Angular distributions are displayed in Figs. 6 and 7 for
Ein = 14.1 and 18 MeV, respectively. Calculations are in
global agreement with the data. However, the mismatch is seen
between calculated angular distributions and experimental data
for θc.m. > 45◦ and Eout = 8.6 MeV, and for Ein = 14.1 and
18 MeV in Figs. 6(b) and 7(d), respectively. This could be
easily explained by evaporation and MSC contributions that
are not included in our calculations. Isotropic angular distri-
bution components could be added to the present calculations
to better reproduce the general trend observed in the data.

2. 208Pb target

A similar analysis was performed for 14.1-MeV neutron
scattering from 208Pb. Comparisons between predictions and
data for spectra and angular distributions are displayed in
Figs. 8 and 9, respectively. The experimental cross sections
are fairly well reproduced by our calculations. Note that the
calculated one-step cross section for 208Pb at 14.1 MeV is
higher than that for 90Zr, as seen in Fig. 4 for the same
incident energy. This difference occurs not only because of the
higher level density but also because of the stronger collectivity
present in the 208Pb excited states. A good illustration is the
angular distribution at Eout = 8.5–8.6 MeV, which needs a
multistep compound and/or evaporation components in the
90Zr case [see Fig. 6(b)], while the one-step direct cross section
still dominates the distribution for 208Pb, as seen in Fig. 9(a).

3. Reaction cross sections

Ratios of the total one-step direct process contribution to
the reaction cross section (σR) are provided in Table I for 90Zr
and 208Pb at three different incident neutron energies, namely,
10, 14.1, and 18 MeV. The σR values have been obtained
using the Koning-Delaroche optical potential [32]. The total
cross section for the one-step process σ (1) corresponds to the
double- differential cross section [Eq. (4)] integrated over
outgoing angles and energies. The σ (1) values have been
calculated with the CDM3Y3 interaction. As seen in Table I,
the ratio σ (1)/σR increases with increasing incident energies
and reaches 21% and 33% at Ein = 18 MeV for 90Zr and 208Pb,
respectively. This ratio is stronger in 208Pb, as the level density
and collectivity content are higher than in 90Zr.

TABLE I. Reaction cross sections σR and ratios of the total one-
step cross section σ (1) to σR for neutron scattering off 90Zr and 208Pb
at 10-, 14-, and 18-MeV incident energies.

Ein (MeV) σR (b) σ (1)/σR (%)

10 1.819 10.45
90Zr 14.1 1.743 15.90

18 1.707 20.70
10 2.545 21.85

208Pb 14.1 2.527 26.65
18 2.498 32.87
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C. RPA versus particle-hole excitations

The cross sections calculated with the RPA description of
the excited states [Eq. (7)] are next compared to those obtained
with p-h excitations [Eq. (11)] in Figs. 4 and 5 for 90Zr and in
Fig. 8 for 208Pb.

In general, cross sections calculated with p-h excitations
(dashed curves) are significantly lower than those obtained
with the RPA excitations (full curves) and underestimate data
at high emission energy. These differences can be directly
related to those observed between p-h and RPA B(EJ ) values,
discussed in Sec. II C for the E3 and E5 transitions. The
relation between the magnitude of the cross section and
B(EJ ) value can be understood by taking as an example
the simple collective model for inelastic scattering [6,36]. In
this model, differential cross sections are directly proportional
to the square of the deformation parameter βL [6] for any
natural parity transition (J = L). In that case, the quantity β2

L

can be simply related to the reduced transition probabilities
B(EJ ) in Eq. (10) for the electric multipole [36], and DWBA
inelastic-scattering cross sections thus exactly scale as B(EJ )
values. While in the present paper inelastic cross sections are
obtained using the microscopic approach depicted in Sec. II A,
which requires using the full transition density matrices [16],
we can assume that the magnitude of the calculated cross
section roughly scales as the associated B(EJ ) value.

Changes between p-h– and RPA-based cross sections in
Figs. 4, 5, and 8 qualitatively follow those for the E3 and E5
reduced transition probabilities displayed in Figs. 1 and 2.
However, cross-section variations are not exactly similar
to variations of E3 and E5 strengths, as excitations with
other multipolarities contribute significantly, as discussed
in the next section. This comparison provides a measure
of the impact of collectivity content of excited states on
scattering properties and illustrates how a good description
of this collectivity, provided by an accurate well-established
nuclear-structure model, is of key importance to performing
reliable calculations of direct pre-equilibrium emission cross
sections.

However, the relation between the magnitude of DWBA
cross sections and B(EJ ) values does not hold for
(i) non-natural parity transitions, which would require an
analysis of other spectroscopic quantities such as magnetic
transition probabilities B(MJ ), and (ii) isovector transitions.
But as for excitation energies below 15 MeV, which are
relevant for the present study, the isoscalar transitions to
natural parity states provide the main contributions to the
one-step cross section, their analysis is sufficient to understand
the impact of collectivity on calculated spectra. An exception
is the IVGDR, which is mainly isovector in nature, but in the
present analysis conducted below 20 MeV the transition to
this state does not provide a large contribution to the one-step
cross sections (see Sec. III D).

D. Spin and parity components

Our model analysis focuses next on the spin and parity
content of transitions feeding excited states. For convenience
a distinction is made between natural [� = (−)J ] and non-
natural [� = (−)J+1] parity transitions.
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FIG. 10. The 18-MeV neutrons incident on 90Zr. Contributions of
the different spin-parity J � transitions to the one-step cross section
for the neutron emission at θc.m. = 30◦ and at Eout in the range
3–17 MeV. Circles are for experimental data. In panel (a), full, dashed,
dotted, and dot-dashed curves are for calculations using excitations
with all multipolarities (total), J � = 1−, J � = 2+, and J � = 3−,
respectively. In panel (b), full, dashed, dotted, and dot-dashed curves
are for calculations using excitations with non-natural parity (n.n.p.),
J � = 4+, J � = 5−, and natural parity and J � 6, respectively.

Spectra tied with natural parity transitions are discussed
at first place for θc.m. = 30◦ in the interaction between 18-
and 14.1-MeV neutrons incident on 90Zr (Fig. 10) and 208Pb
(Fig. 11), respectively. Inelastic scattering cross sections for
ground-state to excited-state transitions, where J grows from
J = 1 to J = 3, are shown as dashed, dot, and dot-dashed
curves, respectively, in Figs. 10(a) and 11(a). Similar analyses
are shown in Figs. 10(b) and 11(b), where the dashed, dot,
and dot-dashed curves are for J = 4, J = 5, and J � 6,
respectively. The full curves in Figs. 10(a) and 11(a) are for the
total one-step emission, that is, with J = 0–14, and � = +
and � = −.

As can be seen in Fig. 10(a) for 90Zr, the 3− excita-
tions (dot-dashed curve) provide the main contribution to
the one-step process. These excitations are responsible for
the high-emission-energy peak and most of the spectrum
emission at Eout ∼ 11 MeV, that is, for the LEOR energy
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FIG. 11. Same as in Fig. 10 for 14.1-MeV incident neutrons on
208Pb and for Eout in the range 2–12 MeV.

(Ex ∼ 6.9 MeV). Another key contribution to the spectrum,
which originates from the 2+ level excitations, displays
a maximum for Eout ∼ 13.5 MeV. Transitions with higher
multipolarities (i.e., with J > 3) also contribute significantly
to neutron emission, as shown in Fig. 10(b). A quite strong
J� = 5− component is observed for the outgoing energy
Eout ∼ 8 MeV, stemming from collective transitions predicted
in SCRPA+D1S calculations at an excitation energy near
Ex ∼ 9.8 MeV.

The multipolarity decomposition of the spectra is next
extended to the 14.1-MeV data shown in Figs. 11(a) and 11(b)
for the 208Pb target. At Eout � 9 MeV, the cross-section
components arising from excitation of low-lying 2+ and
3− states [Fig. 11(a)] and from 4+, 5−, and 6+ levels
[Fig. 11(b)] add up to form broad peaks shown as solid
curves. At lower outgoing energies, all depicted spin and parity
contributions are required to describe neutron emission. We
notice that the J � 6 component is quite strong, as shown as
the dot-dashed curve in Fig. 11(b). This arises from J � 6
collective strength, especially that for J� = 6+ excitations
below Ex ∼ 7 MeV (details not shown).

Excitation of giant resonances also contributes to the
calculated spectra. For example, contributions from ISGQR
excitations are shown as dotted curves with maxima at Eout �
4 MeV in Fig. 10(a) and at Eout � 3 MeV in Fig. 11(a). For

both targets, the components arising from the ISGQR and
IVGDR excitations are too weak to be seen in the present
spectra, as they both are calculated at Ex ∼ 13.5 MeV (208Pb)
and Ex ∼ 17.8 MeV (90Zr). At incident energies as low as
14.1 and 18 MeV, their excitation is small as compared to
compound nuclear emission. However, ISGQR and IVGDR
excitations will become of key importance in the interpretation
of spectra measured at higher incident energies.

The contribution of the non-natural parity transitions to the
calculated spectrum is shown as a full curve in Fig. 10(b)
for 18-MeV neutrons incident on 90Zr, where this component
amounts to approximately 30% of the total one-step emission
for Eout � 13 MeV, that is, for Ex � 5 MeV. Another example
of non-natural parity transition contributions to differential
spectra at Eout = 10 MeV is shown as a dotted curve in
Fig. 7(c). The dashed curve is for natural-parity transitions.
This latter component is 30% smaller than the angular distri-
bution for the full emission spectrum (full curve). The same
analysis for 208Pb leads to similar conclusions, as suggested
considering the spectrum in Fig. 11(b) and the angular
distribution in Fig. 9. These specific examples illustrate in
a quantitative way the typical portion of the emission spectra
originating from non-natural parity excitations. Their relative
amount remains stable, with outgoing energies corresponding
to Ex = Ein − Eout, with Ex � 5 MeV for both targets.

E. Consistent treatment of p-h and collective excitations

We now provide a detailed discussion of the approximations
adopted in the previous MSD model implementations [5–7],
which we contrast to the present model approach.

Analyses of the 14- and 18-MeV neutron-induced reactions
on 90Zr and 208Pb were performed previously in [5–7]. In these
works it was assumed that direct reactions can proceed follow-
ing two distinct mechanisms, namely, inelastic scattering to
discrete collective states and direct pre-equilibrium emission.
Collective discrete cross sections for isoscalar natural parity
transitions were calculated within the macroscopic collective
model using deformation parameters βL deduced from proton
inelastic-scattering data analyses. These discrete contribu-
tions were then incoherently added to the pre-equilibrium
component, calculated within the MSD model implemented
with incoherent p-h excitations [5,6], or within the exciton
model [7].

Applying this procedure raises two main concerns. First,
an accurate calculation of the direct cross section with the
macroscopic collective model relies on a very precise knowl-
edge of the βL values for all collective excitations of levels
lower than incident energies. This requirement can hardly be
fulfilled in general, as many collective states above the first
few low-lying states that significantly contribute to emission
spectra are not experimentally well known, even for closed-
and near-closed-shell nuclei. Phenomenological procedures
have been used so far to take into account this collectivity
for multipoles L � 4, and possible collective contributions for
higher multipoles have not been considered. For instance, the
LEOR contribution has been included in [5–7], considering
a βL value based on an assumed fraction of the EWSR, the
amount of which greatly varies between the different analyses.
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In [6], collectivity at excitation energy above a few MeV
for multipoles other than L = 3 is neglected. In the works
of [7,9], collective contributions with multipoles up to L = 4
are considered using an approximate procedure to fully exhaust
the EWSRs, but these are neglected for L > 4 transitions.

A second concern is that the incoherent sum of direct
collective and MSD cross sections can lead to double counting
for the collective and incoherent p-h excitations. This prob-
lem has been handled through different phenomenological
procedures. In Ref. [5], the pre-equilibrium contribution was
gradually introduced from excitation energies above which
collective contributions were assumed to vanish. Double
counting was more precisely analyzed in [9], where the EWSR
corresponding to both collective and incoherent p-h excitations
was calculated for each multipole L and was shown to exceed
the EWSR limit for transitions with L � 4. Double counting
was then prevented, assuming that (i) for L � 4 transitions,
contributions to the direct emission process are exclusively
attributed to collective excitations, with corresponding EWSRs
within theoretical bounds, and (ii) for L > 4, collectivity
is small and smeared out enough so the direct emission
can be calculated with the MSD model using incoherent
p-h excitations.

The present microscopic reaction model overcomes these
deficiencies by construction. First, it consistently describes
the so-called collective direct and the one-step contributions to
neutron emission. As a consequence, double counting is not an
issue, as all the target states excited in the one-step mechanism
are described within a unique structure model that properly
exhausts the EWSRs [15]. Moreover, the SCRPA+D1S model
ensures that the collectivity content of the target spectrum is
accurately accounted for in the one-step cross section. For
instance, the sums of the predicted fractions of the J� = 3−
EWSR for low-lying states and the LEOR are 34% and 36% for
90Zr and 208Pb, respectively, values that are in good agreement
with estimates based on previous Hadron scattering data
analyses [37,38]. Finally, quite large collectivity for multipoles
as high as L = 6 is also predicted by the SCRPA+D1S model,
as discussed in Secs. III C and III D, and their contributions
to the neutron emission are automatically included here as
well.

F. Model uncertainties

Our calculations with no adjustable parameter are in good
overall agreement with experimental data. We consider that
an uncertainty of the order of 30% can be associated with
normalization of the calculated cross section due to limited
knowledge of the residual two-body interaction. However,
different approximations used in our model may further
increase this uncertainty.

First, we used the ansatz of local optical potential to
generate the distorted waves, but it was demonstrated [39]
that compared to the result obtained with a nonlocal optical
potential, an equivalent local potential increases the prob-
ability amplitude of the distorted wave inside the nucleus
(Perey effect). This leads to overestimation of the probability
transition amplitudes of Eq. (3). Nonlocality corrections
were introduced [39] to correct for this effect and used in

MSD pre-equilibrium calculations [40]. As a result, one-step
cross sections decreased by 35%. Here the phenomeno-
logical optical potential used in our calculations is energy
dependent, which partly accounts for nonlocal properties.
For this reason, and considering that the nonlocal potential
to which the phenomenological local potential should be
equivalent remains unknown, any estimation of the genuine
nonlocality corrections becomes uncertain. Consequently, this
correction was not included in our calculation, but it could
significantly affect the normalization of the calculated cross
sections.

Another source of uncertainty is tied with the many-body
description of the target excitations. While the RPA method
provides a good representation of both coherent (collective)
and incoherent p-h excitations, it is not appropriate for the
description of excitations with more complicated structure. A
nuclear structure model that explicitly treats couplings to two
or more p-h components and continuum states should be used,
as these couplings will change the spectroscopic properties
of the target excitations, and thus the associated inelastic
cross sections, beyond the simple spreading and shifting
described in Sec. II B and used in the present calculation.
Pairing correlations, which are neglected in the HF and RPA
approaches, should also be taken into account for single-
closed-shell nuclei, as they would most likely impact both
excitation energies and strength functions. Including pairing
in the description could improve the description of low-lying
positive parity states in 90Zr and thus the predictions for
associated pre-equilibrium emission at high energy.

Finally, other components of pre-equilibrium emission,
namely, the two-step direct and the multistep compound
processes, may have some contributions even at emission
energies where the one-step process seems to dominate.
Although we believe their impact on the current analysis
could be small, these contributions should be considered to
better assess the quality of our one-step calculation during
comparison with data. However, as these components have so
far been calculated only with phenomenological ingredients
and adjusted together with the one-step direct component
to match experimental cross sections, their exact individual
contributions to the pre-equilibrium emission remain difficult
to assess.

IV. CONCLUSION AND OUTLOOK

We have performed quantum-mechanical calculation of
the one-step direct component of the pre-equilibrium (n, n′)
emission using an effective two-body residual interaction
and a microscopic description of the target states based on
RPA calculations implemented with the D1S force. Density-
dependent M3Y forces have been considered for the residual
two-body interaction between projectile and target nucleons.
Our reaction model does not contain any adjustable param-
eters, and the calculated cross sections have been directly
compared to the data. For a 14- and 18-MeV neutron-induced
reaction on 90Zr and 208Pb targets, the predicted neutron spectra
and angular distributions are in overall good agreement with
the data.
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The collective content of the target spectra described within
the RPA approach is shown to be appropriate to correctly de-
scribe the measured neutron emission. Calculations performed
with incoherent particle-hole excitations, which neglect col-
lectivity, underestimate the data at high emission energy.
The present one-step calculation automatically accounts for
contributions of collective and noncollective states, giant
resonances, and non-natural parity excitations. Consequently,
our model does not consider any arbitrary distinction between
the pre-equilibrium one-step process and direct excitation of
collective states. This removes some modeling ambiguities
present in previous more phenomenological analyses, such as
(i) double counting between collective states and incoherent
p-h excitations, and (ii) incomplete and/or inaccurate eval-
uation of the collective states’ contributions to the neutron
emission. Our model also shows that collective transitions
with multipolarity as high as L = 5 (90Zr) and L = 6 (208Pb)
are required to fully account for calculated spectra. It was also
found that non-natural parity excitations contribute up to 30%
of the double-differential one-step cross section.

We have discussed uncertainties inherent to our model
prescription, namely, those tied with residual interactions.
This discussion is far from being closed, as we are still using
phenomenological potentials in the incoming and outgoing
reaction channels.

These concerns could be alleviated if one considers mi-
croscopic one-step calculations for proton-induced reactions
at higher energy (E > 50 MeV), since microscopic nonlocal

optical potentials can be built [12,27], and the effective
two-body force to be used as a residual interaction is more
precisely known [27]. Calculated spectra at incident energies
higher than 20 MeV will reveal the growing importance of
exciting giant resonances that lie in the spectra of targets
between approximately 10 and 40 MeV. These excitations
are expected to significantly contribute to the direct pre-
equilibrium emission in this energy regime.

The present study will be extended in the near future to
spherical open-shell nuclei using the self-consistent quasi-
particle RPA (QRPA) nuclear-structure approach implemented
with the Gogny force [41]. The impact of collectivity predicted
by this QRPA model on pre-equilibrium cross sections will
also be studied for open-shell nuclei such as 238U [42,43].
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S. Karataglidis, and S. Péru, in Proceedings of the Second
International Workshop on Nuclear Compound Reactions and
Related Topics, edited by L. Bonneau, N. Dubray, F. Gunsing,
and B. Jurado (EPJ Web of Conferences, vol. 2, Les Ulis, 2010),
p. 11001.
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