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Number-conserving theory of nuclear pairing gaps: A global assessment
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We study odd-even mass staggering of nuclei, also called pairing gaps, using a Skyrme self-consistent mean-
field theory and a numerically exact treatment of the pairing Hamiltonian. We find that the configuration-space
Monte Carlo method proposed by Cerf and Martin [Phys. Rev. C 47, 2610 (1993)] offers a practical computational
procedure to carry out the numerical solutions in large-dimensional model spaces. Refitting the global strength of
the pairing interaction for 443 neutron pairing gaps in our number-conserving treatment, we find the correction
to the pairing correlation energies and pairing gaps to have rms values of 0.6 and 0.12 MeV, respectively. The
exact treatment provides a significant improvement in the fit to experimental gaps, although it is partially masked
by a larger rms error due to deficiencies in other aspects of the theory, such as the mean-field energy functional.
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I. INTRODUCTION

Computer resources now make it possible to test theories
of nuclear structure using the entire body of nuclear data.
One interesting aspect of nuclear structure is pairing, which
is important for determining the stability and dynamical
properties of nuclei. The Bardeen-Cooper-Schrieffer (BCS)
theory [1] has been a paradigm for treating nuclear pairing,
but it is not well justified in finite nuclei. Besides its violation
of particle-number conservation, the condensate may collapse
in finite systems. A recent global study of nuclear pairing
gaps [2] found that ∼25% of nuclei lacked a BCS pairing
condensate because of the weakness of the interaction or a
low single-particle density of states. The observed smoothness
of nuclear binding energies calls for a theory that does not
force a discontinuous jump between ground states with and
without pairing condensates. In Ref. [2] it was found that a
small but significant overall improvement in theory could be
achieved by using the Lipkin-Nogami (LN) extension of BCS
to correct for particle-number violation [3]. However, the LN
treatment has its own limitations. For example, it becomes
inaccurate near closed shells when implemented in the usual
way [4,5]. On a practical level, iterative BCS-LN solvers often
have convergence problems near shell closure. There are many
methods other than the LN extension of BCS to treat the pairing
interaction more accurately, including direct diagonalization
in truncated spaces [6]. For methods that emphasize particle-
number conservation, see Ref. [7] and references therein.
We note that the nuclear pairing Hamiltonian can be solved
algebraically for special forms of the interaction following
Richardson’s method [8], but these are not applicable to more
general interactions such as in Eq. (2) below.

Here we address the question of the importance of a
better treatment of pairing correlations by carrying out a
global survey using a numerically exact technique to calculate
pairing correlation energies at fixed particle number. In
particular, we employ the configuration-space Monte Carlo
(CSMC) algorithm of Cerf and Martin [9]. Numerically exact
solutions can also be obtained by direct diagonalization of the
pairing Hamiltonian in configuration spaces of fixed seniority

[10,11], but the CSMC method is more efficient and can be
implemented in much larger spaces.

Since our aim is to assess the relative performance of the
theory with and without an exact treatment of pairing, we
will avoid introducing extraneous elements and closely follow
the methodology of Ref. [2]. In that work the performance
of various methods based on self-consistent mean-field theory
(SCMF) was tested on the neutron and proton pairing gaps
for odd-A nuclei; here we use the same 443 odd-neutron gaps
to assess the importance of an exact treatment of the pairing
interaction.

The neutron pairing gap for an (odd) neutron number N

is defined by the second-order energy difference in neutron
number,

�(3)
o (N ) = − 1

2 [E(N + 1) + E(N − 1) − 2E(N )], (1)

where E(N ) is the ground-state energy of the nucleus with N

neutrons and Z protons. The proton number Z is the same for
all three nuclei in Eq. (1) and is not indicated explicitly in the
formula.

As a prototype of SCMF-based theory we use the en-
ergy density functional constructed from the SLy4 Skyrme
functional [12] for the normal density part and a density-
dependent contact interaction for the pairing part. The Hartree-
Fock + BCS (HF + BCS) equations are solved using the
EV8 code [13]. We construct a pairing Hamiltonian whose
single-particle orbital energies and pairing matrix elements
are extracted from the SCMF calculation of Ref. [2]. Next, we
solve this Hamiltonian exactly using the CSMC method, which
is free of a sign problem when all pairing matrix elements
are attractive. The SCMF interaction energies are also taken
from the calculations of Ref. [2]. The main difference here
is in the treatment of pairing correlation energies and the
strength of the pairing interaction. The performance of the
theory is measured by the root-mean-square (rms) of
the residuals with respect to the experimental data set after
making a least-squared fit of the overall pairing interac-
tion strength. The differences between the Monte Carlo
treatment and the BCS approximation are used to estimate the
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importance of a particle-number-conserving exact treatment
of pairing.

The outline of this paper is as follows. In Sec. II we discuss
our methodology of constructing a pairing Hamiltonian from
the SCMF results and how we use its exact solution to obtain an
improved estimate of the pairing gap. In Sec. III we describe
the CSMC method used to solve the pairing Hamiltonian.
In Sec. IV we present our results for the pairing gaps. Our
conclusions are given in Sec. V.

II. METHODOLOGY

The leading approach in the search for a computationally
tractable theory of nuclear structure starts with an SCMF
theory to construct a set of configurations and then mixes
the configurations through a residual interaction to restore
broken symmetries and add a correlation contribution to the
total energy. By itself, the mean-field theory is straightforward.
However, there are different ways to introduce correlations,
even if we limit ourselves to pairing correlations. The BCS
treatment is the simplest way to introduce pairing correlations
and can be easily implemented once the single-particle wave
functions and energies have been obtained from the mean-field
theory. The Hartree-Fock-Bogoliubov (HFB) approximation
is an extension that is required when the orbital properties
depend on pairing, but like BCS it violates particle-number
conservation. To gain the benefit of the HFB approximation,
the pairing Hamiltonian must be defined in very large model
spaces and with a more general interaction than can be
treated with the present CSMC method. Here we construct
pairing Hamiltonians in which the orbitals are fixed from the
mean-field calculation, as in the BCS approximation, and have
interaction matrix elements that are all attractive. The HFB
might be required in the dripline region. However, since very
few of the known experimental gaps are in this region, our
conclusions should apply to the vast majority of nuclei for
which data exist.

For construction of the pairing Hamiltonian, we follow
closely the treatment of Ref. [14] as implemented in EV8. The
single-particle energies are taken directly from the eigenvalues
of the single-particle SCMF Hamiltonian and the interaction
is chosen as a density-dependent contact interaction,

V (r, r′) = −V0

(
1 − η

ρ(r)

ρ0

)
δ(r − r′), (2)

together with an energy cutoff factor described below. In
Eq. (2), ρ0 = 0.16 fm−3 is the conventional saturation density
of nuclear matter and the parameter η controls the specific
density dependence. We will use η = 0.5, called the “mixed”
density-dependent pairing interaction. The strength V0 is deter-
mined by minimizing the rms of the residuals of the calculated
pairing gaps from their experimental counterparts [2].

As implemented in EV8, the mean-field solution is invariant
under time reversal and the self-consistent single-particle
orbitals appear in degenerate time-reversed pairs i and ī

with energy εi . The total number of orbital pairs is �. The
antisymmetrized pairing matrix elements Vij are taken to be

Vij ≡ fi(〈iī|V |j j̄〉 − 〈iī|V |j̄ j 〉)fj , (3)

where V is given by Eq. (2) and fi are energy cutoff factors
[14],

fi =
[

1

1 + e(εi−a)/b

1

1 + e(−εi−a)/b

]1/2

, (4)

with a = 5 MeV and b = 0.5 MeV. Denoting the single-
particle orbitals by φi(r, σ ), we have

Vij = −fifjV0

∫
dr

(∑
σ

|φi(r, σ )|2
) (∑

σ ′
|φj (r, σ ′)|2

)

×
(

1 − η
ρ(r)

ρ0

)
. (5)

Next we construct the pairing Hamiltonian,

Ĥ = Ĥ1 + Ĥ2 =
�∑
i

εi(a
†
i ai + a

†
ī
aī) +

�∑
i �=j

Vij a
†
i a

†
ī
aj̄ aj . (6)

Note that the Hamiltonian (6) does not include diagonal
matrix elements Vii . We assume that they have already been
incorporated into the mean-field part of the energy density
functional.

A Hamiltonian of the form Eq. (6) was used in a recent
study comparing the BCS approximation with exact matrix
diagonalization results in model spaces of size � = 16 [15].
However, the sizes of the model space required for a global
survey are prohibitively large for direct matrix diagonalization
methods to be practical. We therefore use the CSMC method
which scales much more gently as a function of �. This method
can be used to find the exact ground-state energy ECSMC of the
Hamiltonian in Eq. (6) to within a statistical error.

Our improved estimate for the total ground-state energy is
given by

E = ESCMF − EBCS + ECSMC, (7)

where ESCMF is the SCMF energy calculated with SLy4 plus
the density-dependent contact pairing interaction (2), and
EBCS is the BCS ground-state energy of the Hamiltonian
in Eq. (6). In Eq. (7) we are essentially replacing the BCS
energy of the Hamiltonian in Eq. (6) with its exact CSMC
ground-state energy. Both ESCMF and EBCS are calculated
with an interaction strength V0 determined by minimizing the
rms deviation of the SCMF gaps from the experimental gaps.
However, ECSMC is calculated with a renormalized strength,
determined by minimizing the rms residuals (with respect to
experiment) of the theoretical gaps calculated from Eqs. (7)
and (1).

One problem of using a pairing Hamiltonian from a theory
such as the one discussed in Ref. [2] is that there are diagonal
interaction matrix elements both in the mean-field part as
well as in the pairing part of the energy functional. Since the
pairing interaction is added to describe correlations beyond
those obtained in the SCMF with a single Slater determinant,
it should not add diagonal interactions beyond the mean
field. At an extreme, if the BCS condensate collapses, the
BCS correlation energy should be zero. Because of these
considerations we do not include diagonal interaction matrix
elements Vii in our Hamiltonian (6) for either the CSMC or
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the BCS calculations. Such matrix elements remain, however,
in the pairing part of the SCMF theory.

III. CONFIGURATION SPACE MONTE CARLO SOLVER

The CSMC Hamiltonian solver has been applied to individ-
ual isotope chains [16], but we use it here in a global survey.
To introduce the various parameters of the method and make
our presentation self-contained, we review the algorithm in
Sec. III A. In Sec. III B, we discuss the statistical Monte Carlo
error and demonstrate the computational scaling properties of
the method.

A. Monte Carlo method

In the following, we assume the particle number N to be
even. The algorithm applies to Hamiltonians of the form in
Eq. (6) for which all pairing interaction matrix elements satisfy
Vij � 0. The overall operation of the algorithm is similar to
many other Monte Carlo methods where a trial state |	〉 is
evolved in imaginary time,

|
(τ )〉 = e−(Ĥ−Et )τ |	〉, (8)

where Ĥ is the system’s Hamiltonian and Et is an energy
parameter adjusted to keep the normalization of |
(τ )〉
approximately fixed. The initial evolution filters out the
ground-state component of the initial trial state, and sub-
sequent evolution is used to obtain better statistics for the
ground-state energy.

The remaining details of the Monte Carlo method relies on
the representation of 
(τ ) as a superposition of pure paired
configurations [9]. Let us label the fully paired eigenstates of
Ĥ1, in Eq. (6), by |n〉 = |n1, n2, . . . n�〉 where ni = 0 or 1
is the pair occupation number of the ith twofold degenerate
level, and

Ĥ1|n〉 = Esp(n)|n〉 (9)

with

Esp(n) = 2
∑

i

εini . (10)

The wave function |
(τ )〉 can be written as a linear combina-
tion of these paired configurations |n〉,

|
(τ )〉 =
∑

n

αn(τ )|n〉. (11)

The coefficients αn(τ ) can be chosen to be all positive and
normalized as ∑

n

αn(τ ) = 1. (12)

Thus the wave function |
(τ )〉 can be represented by an
ensemble of paired configurations |n〉 that are distributed with
probability αn(τ ).

The evolution in imaginary time is carried out as a series of
time evolutions, each of which is over a small time step �τ,

|
(τ + �τ )〉 = e−(Ĥ−Et )�τ |
(τ )〉. (13)

Using the Suzuki-Trotter symmetric decomposition [17–19],
we write the short-time propagator as

e−(Ĥ−Et )�τ = e−(Ĥ1−Et )�τ/2e−Ĥ2�τ e−(Ĥ1−Et )�τ/2 + O(�τ 3).

(14)

We are interested in calculating the matrix elements of Eq. (14)
between two paired configurations |n〉 and |n′〉. Since Ĥ1 is
diagonal in the |n〉 basis, the only nontrivial part is the matrix
elements of e−Ĥ2�τ . Expanding this propagator in a Taylor
series, we have [9]

〈n′|e−Ĥ2�τ |n〉 = eν

∞∑
L=0

P (L)

[
1

ωL

∑
κ

Wκ (n → n′)

]
, (15)

where ω = N
2 (� − N

2 + 1) and ν = ωV̄ �τ defines a dimen-
sionless time step with V̄ = ∑

ij Vij /�2. Here Wκ (n → n′)
represents the weight of a path of L pair hops that takes the
configuration n to n′. Each pair hop describes the transition of
a pair of particles from an occupied twofold level to an empty
twofold level. The probability to have L pair hops in the time
interval �τ is a Poisson distribution P (L) = e−ννL/L!. The
parameter ω represents the total number of possible pair hops
and ν is the average number of pair hops in the time interval
�τ . The weight Wκ (n → n′) is given by

Wκ (n → n′) =
L∏

m=1

∣∣∣∣Vimjm

V̄

∣∣∣∣ , (16)

where (im, īm) and (jm, j̄m) are the orbital pairs whose
occupations are swapped at the mth step of the L-step pair
hop process.

In practice, we carry out the Monte Carlo evolution
as follows. We take the initial state |	〉 to be the
ground-state configuration of Ĥ1 and replicate it Ne times to
generate the initial ensemble. Subsequently, the members of
the ensemble are evolved independently. For each time step
�τ , the time evolution is done stochastically using Eqs. (15)
and (16). The number of pair hops L is drawn from the
Poisson distribution P (L), and an L-step pair hop process
is carried out. At each step we choose an occupied pair
orbital (im, īm) from a uniform distribution, and an orbital
(jm, j̄m) which is either unoccupied or equal to (im, īm),
again from a uniform distribution. The occupation numbers
of (im, īm) and (jm, j̄m) are swapped. The resulting new
configuration is replicated stochastically with a weight of
exp{−[Esp(n) + Esp(n′) − 2Et ]�τ/2} Wκ (n → n′).

We adjust the normalization energy Et during the time
evolution to keep the ensemble size stable. At the kth time
step we define

Et (k) = Et (k − 1) + 1

�τ
ln

[
Ne(k − 1)

Ne(k)

]
, (17)

where Ne(k) is the size of the ensemble at the kth time step.
We repeat the above process Nτ times for the initial evolu-

tion. The resulting ensemble of fully paired configurations nm

(m = 1, . . . , Ne) can be expressed as the wave function

|
1〉 = 1

Ne

Ne∑
m

|nm〉. (18)
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The configurations nm are distributed according to αn in
Eq. (11) and thus (for sufficiently large Nτ ) constitute our
first representative of the ground-state ensemble.

The ground-state energy E can be calculated from the
ground state 
 using E = ∑

n′ 〈n′|H |
〉 (where we have used∑
n′ 〈n′|
〉 = 1). Approximating 
 by 
1 in Eq. (18), we

estimate the ground-state energy to be

E1 = 1

Ne

Ne∑
m=1

[Esp(nm) + Ev(nm)], (19)

where Esp(n) is given by Eq. (10) and

Ev(n) =
∑

n′
〈n′|H2|n〉 =

′∑
ij

Vij . (20)

The prime on the summation in Eq. (20) denotes that the sum
is restricted to those combinations ij where the orbital pair
(i, ī) is occupied in |n〉 and the orbital pair (j, j̄ ) is either
unoccupied in |n〉 or the same as (i, ī).

Additional representatives |
i〉 of the ground-state wave
function are generated by evolving the ensemble an additional
number of time steps NT and taking a representative every
Nc steps to ensure uncorrelated ensembles. Using relations
similar to Eq. (19), we obtain NE = NT /Nc estimators
E1, E2, . . . , ENE

for the ground-state energy. The final esti-
mate for the CSMC ground-state energy is

ECSMC = 1

NE

NE∑
i

Ei, (21)

and its corresponding statistical error is

σ =
√√√√ 1

NE(NE − 1)

NE∑
i

(Ei − ECSMC)2. (22)

So far, we have discussed a system with an even number
of particles N . The generalization to an odd number No is
straightforward. We put a single particle in one of the orbitals
of a degenerate pair. This pair of orbitals becomes effectively
blocked, i.e., it cannot participate in the pair transitions
between orbitals. The energy of the remaining No − 1 particles
is found by applying CSMC to the reduced space in which
the blocked orbital pair is excluded. The total energy of the
No-particle system is then given by

Eb(No) = Eb(No − 1) + εb, (23)

where εb is the single-particle energy of the blocked orbital
and Eb(No − 1) is the energy of No − 1 particle system in the
reduced space. The ground-state energy of the odd-N system
is found by minimizing Eq. (23) over different choices of the
blocked orbital b.

For the calculations in this work, we have taken Nτ =
5000, NT = 50 000 and Ne(0) = 25 000. We have calculated
the energy autocorrelation function for some representative
cases to determine the energy decorrelation length and chose
Nc = 500 to be sufficiently large to ensure that the energy
measurements Ei of the respective ensembles are uncorrelated.
This choice of parameters gives NE = 100 estimators Ei of

the ground-state energy and its error in Eqs. (21) and (22),
respectively.

B. Statistical error

The statistical error σ in the CSMC energy estimate can be
written as

σ =
√

χe

NENe

σin, (24)

where σ 2
in is the intrinsic variance of the energy, i.e., the vari-

ance of the quantity Esp(n) + Ev(n) for paired configurations
n that are distributed according to αn. Here NE = NT /Nc

is the number of uncorrelated ensembles of size Ne used in
the CSMC calculation. The replication process described
in Sec. III A introduces correlations between configurations
in the ensemble at a given time step and Ne/χe (with χe > 1)
represents the effective number of uncorrelated configurations.

In the following, we provide an estimate for the intrinsic
standard deviation σin assuming a constant pairing interaction.
In this case Ev(n) in Eq. (20) is a constant, and σ 2

in is determined
solely by the variance of the Esp(n). With Esp(n) given by
Eq. (10), its average value Ēsp over the various configurations
in the ensemble is

Ēsp = 2
∑

n

�∑
i=1

εiniαn = λN + 2
�∑

i=1

(εi − λ)n̄i , (25)

where n̄i = ∑
n niαn.1 Equation (25) holds for any constant λ

but we choose λ to be the chemical potential to minimize the
particle-number fluctuations.

In the Appendix we use the BCS wave function to estimate
the fluctuations in Esp [see Eq. (A4)]. For a uniform single-
particle spectrum with a bandwidth Ec 	 � (� is the BCS
pairing gap), we find

σ 2
in ≈ 1

2�Ec�. (26)

We can use this expression to estimate the scaling of σin with
the size � of the single-particle space. For weak to moderate
pairing, � ∝ � and σin ∝ �3/2. Our simple estimate (26) is
accurate to within a factor of ∼2 (see Fig. 8 in the Appendix).
We have checked that even in cases when the single-particle
spectrum is nonuniform and the pairing interaction is orbital
dependent (e.g., the nuclear pairing Hamiltonians used in this
work), expression (26) (where � is taken to be an average
pairing gap) provides a reasonable estimate for the intrinsic
error in Esp.

If all Ne configurations of the ensemble at a given time
step were to be uncorrelated, the CSMC error would have
been σin/

√
NENe. Since these configurations are correlated

in the CSMC calculation, the actual statistical error is larger
by a factor of

√
χe [see Eq. (24)]. In Fig. 1 we show

(solid circles) this enhancement factor
√

χe (as determined
empirically from the CSMC statistical error for ν = 0.1)
versus � for a uniform single-particle spectrum with level

1Note that n̄i differs from the quantum-mechanical expectation
value of the pair occupation operator n̂i .
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FIG. 1. The factor
√

χe as a function of � for an equally spaced
single-particle spectrum with level spacing of 1 MeV and pairing
strength of Vij = 0.3 MeV. The dashed line describes the fit χe =
1 + (�/�0)3 with �0 = 15.2.

spacing of 1 MeV at half filling (N = �) and a constant
pairing strength of Vij = 0.3 MeV. The dashed line is a fit
to χe ∼ 1 + (�/�0)3. In general we find that the scaling of χe

with � depends on the strength of the pairing interaction.
To illustrate the scaling of the CSMC computational time

with the size � of the single-particle space, we consider the
same example as in Fig. 1. The results, shown by symbols in
the upper panel of Fig. 2, scale (up to an additive constant) as
� (dashed curve).

The lower panel of Fig. 2 shows the statistical error
calculated from Eq. (22). It appears to scale as �3 (dashed
line).2 Spaces as large as � = 30 are easily computed and
we shall argue below that the accuracy achieved is adequate
for our purposes. In contrast, if the calculations were done
by conventional matrix diagonalization, one would have to
deal with a matrix of dimension 1.6 × 108 and � = 50
(corresponding to a matrix of dimension 1.3 × 1014) would
be completely out of reach.

The CSMC calculations for the global survey were carried
out using two values of ν (0.05 and 0.10) and averaging their
respective energy estimates. We checked that the correspond-
ing time steps were sufficiently small to avoid a significant
systematic error from the Suzuki-Trotter decomposition in
Eq. (14). To test for other biases in the CSMC algorithm,
we compared with the matrix diagonalization of the Hamilto-
nian (6) for two cases presented in Ref. [15], namely 118Sn and
206Pb. The pairing Hamiltonians were obtained from Ref. [2];
Ĥ1 is derived from SCMF with the Skyrme SLy4 energy
functional and Ĥ2 is of the contact form as in Eq. (2) with
η = 0 (and no cutoff factors fi). The single-particle space in
these examples has a size � = 16, which requires matrices
of dimension ∼13 000 for the direct diagonalization. The
calculated correlation energies (measured relative to the HF
ground-state energy) are shown in Table I for two values of
the pairing strength, V0 = 360 and 450 MeV fm3. From the

2This error seems to depend on the parameters of the pairing
Hamiltonian and for a stronger pairing interaction we find a more
moderate scaling of �2.
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FIG. 2. Scaling of computational effort with the number of
orbitals � for an equally spaced single-particle spectrum with level
spacing of 1 MeV and a constant pairing interaction Vij = 0.3 MeV:
(a) single-processor CPU time for a single CSMC calculation (the
dashed line is a fit describing a scaling of �); (b) statistical error of
Eq. (22) (the dashed line corresponds to a scaling of �3). See text for
the values of the CSMC parameters.

results we see that there are no discernible systematic errors
in the CSMC calculations.

For the CSMC calculation in our global survey, it is
important that the Monte Carlo statistical error does not
degrade the accuracy of the calculated pairing gaps to a
point where the performance measure would be affected.
The maximal permissible statistical error is estimated as
follows. We take a typical rms of the residuals (deviations
between theory and experiment) in the range 0.25–0.30 MeV,
and demand that the Monte Carlo statistical contribution,
calculated in quadratures, be less than 0.01 MeV. This requires
that the average statistical error for the pairing gap be smaller

TABLE I. Comparison of pairing correlation energies calculated
by CSMC and by exact diagonalization method (Lanczos algorithm).
The interaction strength V0 is in units of MeV fm3 and the correlation
energies in units of MeV.

V0 = 360 V0 = 450

Lanczos CSMC Lanczos CSMC

118Sn 2.564 2.569 ± 0.006 4.553 4.546 ± 0.006
206Pb 0.363 0.365 ± 0.004 0.626 0.626 ± 0.005
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than
√

0.252 − 0.242 ≈ 0.07 MeV. In fact, with our choices
of the numerical parameters in the global calculation, the
maximal statistical error (∼0.05 MeV) satisfies this upper
bound for all cases.

IV. RESULTS

For our global survey of odd neutron gaps, we take the same
nuclei as in Ref. [2], where 443 odd neutron pairing gaps were
calculated and compared with experiment. Our procedure for
obtaining a new set of theoretical gaps involves the following
steps:

(i) We start with the full SLy4+pairing energies as calcu-
lated in Ref. [2] and construct the pairing Hamiltonian
Ĥ in Eq. (6) using the converged SCMF single-particle
energies and wave functions. The diagonal interaction
matrix elements Vii are not included in Eq. (6).

(ii) We calculate the BCS ground-state energy of Ĥ , taking
the same interaction strength V0 as in the original
calculations (i.e., V0 = 700 MeV fm3), and subtract
it off the total SCMF energy.

(iii) We calculate the exact ground-state energy of Ĥ by
CSMC and add it back to obtain our new estimate of
the ground-state energy. The overall interaction strength
is renormalized in the CSMC calculation, and its value
is determined by minimizing the rms residuals of the
newly calculated pairing gaps. The results are reported
in Table II as “refitted: CSMC.”

(iv) To make a fair comparison, we repeat step 3 but with
the BCS energy replacing the CSMC energy (excluding
diagonal interaction matrix elements as in the CSMC),
and refitting the overall strength of the interaction to
minimize the rms residuals. The results of this refit are
referred to as “refitted: BCS” in Table II and BCS in
Figs. 3–7. The fitted results of Ref. [2] (which we found
to not be optimal), are reported as SCMF in Table II
and Fig. 3.

Some remarks are in order regarding our CSMC refit.
The CSMC calculations were performed at two different
values of V0 (560 and 700 MeV fm3). We used a linear
interpolation to obtain the ground-state energy for interaction
strengths between these two values. The new value of V0

is determined by minimizing the rms of the residuals using
a linear least-squared fit. The model space for our CSMC
calculation consists of all orbitals for which f 2

i > 0.01 [see

TABLE II. The rms residuals of the calculated pairing gap. The
first line is the SCMF theory reported as “HF + BCS” in Ref. [2]. The
second and third lines are our own refits based on the single-particle
orbitals and energies of the SCMF calculation, as described in Sec. IV.

Method V0 rms
(MeV fm3) (MeV)

SCMF 700 0.30
Refitted: BCS 667 0.28
Refitted: CSMC 627 0.24
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FIG. 3. (Color online) Pairing gaps of Sn isotopes: predictions of
various theories (SCMF, BCS, and CSMC) are compared with the
experimental gaps.

Eq. (4)]. We verified the convergence of our calculations by
repeating them for a model space with f 2

i > 0.001. The largest
model space used in these calculations is � = 64 for the
nucleus N = 156 and Z = 100. For this nucleus each CSMC
calculation takes less than 5 min on a single processor.

The results in Table II indicate that the fitted value of the
interaction strength V0 is smaller for the CSMC gaps than its
fitted value for the BCS gaps by about 6%. It is not surprising
that the required strength is higher in a theory (e.g., BCS)
that is subject to pairing collapse and gives a zero correlation
energy in some of the nuclei. In fact, the differences between
correlation energies comparing the CSMC and BCS can be
quite large. We find that the rms correlation energy of the ∼900
nuclei in our data state is 0.6 MeV larger in the CSMC than
in the BCS, despite the lower fitted interaction strength in the
CSMC calculation. Even larger differences have been reported
in other studies [8]. However, the observable quantities are
not the correlation energies but the pairing gaps, for which
the differences are much smaller. The rms of the differences
between the CSMC and the BCS pairing gaps is 0.12 MeV.
Given that the total rms residuals of the theory with respect
to experiment is of the order 0.25–0.30 MeV, this difference
between CSMC and BCS appears to be quite significant.
However, one must realize that when there are independent
sources of error, the larger ones can effectively mask the others.
This can be seen in the third column of Table II, reporting
the rms residuals of the CSMC and BCS pairing gap with
respect to experiment. The corresponding values, 0.28 and
0.24 MeV, only differ by 0.04 MeV. However, adding the errors
in quadrature, we would require that the error associated with
the BCS approximation have the value 0.12 MeV (see above)
and the other sources contribute the remainder, 0.24 MeV. We
also note that the values for the fitted strength and the rms
residuals reported in Ref. [2] are somewhat higher than their
corresponding values in our BCS fit, to which it should be
compared.

To illustrate the performance of the theory locally, we
compare in Fig. 3 the theoretical and experimental pairing
gaps for the chain of Sn isotopes (Z = 50). All three theories
(SCMF, BCS, and CSMC) overestimate the gap but follow
correctly its overall dependence on neutron number, including
the the dip at N = 65 and the sharp drop near the N = 82
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FIG. 4. (Color online) The rms residuals of the pairing gap in
nuclei for which the absolute deviation of the SCMF pairing gap
from the experimental value is greater than the value shown on the
horizontal axis. The inset shows the rms of the CSMC correction to
the BCS gap, the horizontal axis being the same as in the main graph.

shell closure. When compared with the experimental gaps, the
CSMC shows a modest but systematic improvement over the
SCMF and BCS theories, except for the N = 77–81 nuclei in
the vicinity of the shell closure.

It would be useful to know whether there are any systematic
criteria for identifying nuclei for which the improved treatment
of pairing has the most benefit. One criterion could be the
magnitude of the error (i.e., residual) comparing the SCMF or
BCS pairing gaps with their experimental values. To examine
the dependence on the SCMF error we take subsets of gaps
whose SCMF residual is larger (in absolute value) than some
given value and calculate the rms of the subset as a function
of the lower cutoff. The results are shown in Fig. 4. The rms
error of the subset increases with cutoff but in the CSMC
approach it does so at a lower rate than in the BCS treatment.
For example, when we keep only those nuclei whose SCMF
rms residual is greater than 0.5 MeV, we find that the BCS rms
increases to 0.68 MeV while the CSMC rms is only 0.52 MeV,
an improvement of 0.16 MeV. The inset of Fig. 4 shows the
rms of the CSMC correction to the BCS residual versus the
lower cutoff of the SCMF residual. This rms exhibits a gradual
increase from about 0.12 MeV when all the nuclei are included
to about 0.19 MeV when we include only those nuclei whose
SCMF residual is greater than 0.5 MeV. Thus there is a mild
increase in the benefit derived from the exact treatment when
the residual error is large.

To narrow further the conditions under which an exact
treatment is beneficial, we go back to the symmetries that are
broken in mean field and BCS theory, namely particle-number
conservation and rotational symmetry. A measure of the BCS
violation of particle-number conservation is given by

(�N )2 ≡ 〈(N̂ − 〈N̂〉)2〉 = 4
∑
i>0

(
1 − v2

i

)
v2

i , (27)

where v2
i are the BCS occupation numbers. We divide the

nuclei with the odd number of neutrons into bins of width
1 according to their particle-number fluctuation �N (nuclei
with �N = 0 have their own bin). Figure 5 shows the rms of
the residuals for the nuclei in each bin versus the midpoint of
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FIG. 5. (Color online) The rms residuals of the pairing gap as
a function of particle-number fluctuation �N [see Eq. (27)]. The
nuclei were divided into bins of width 1 according to the values of
�N obtained from the v amplitudes of the SCMF theory (�N = 0
nuclei have their own bin). The points are positioned at the center of
the bins and the lines are drawn to guide the eye.

the bin. The bin with �N = 0 consists of all nuclei for which
the BCS pairing has collapsed. Clearly the CSMC treatment is
needed in that situation. The CSMC also gives an improvement
for the bin centered at �N = 3.5 having the strongest pairing
condensate. This is likely due to the too-large pairing strength
V0 required for the global BCS fit. Thus when compared to
the exact CSMC results, the BCS approximation seems to be
adequate when 1 � �N � 3. If we use in the BCS treatment
the lower value of the CSMC interaction strength, we find
the BCS performance to improve gradually with increasing
�N and to become comparable to the CSMC performance for
�N � 2.

The violation of rotational symmetry in a nucleus is often
characterized by the mass quadrupole deformation parameter
β2 defined by

β2 =
√

π

5

Q0

A〈r2〉 , (28)

where A, 〈r2〉, and Q0 are, respectively, the mass number, rms
radius, and intrinsic quadrupole moment of the nucleus. We
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FIG. 6. (Color online) The rms residuals of the pairing gap as a
function of deformation β2 [see Eq. (28)]. The nuclei were divided
into bins according to their β2 value in the SCMF treatment. The
points are positioned at the center of the bins, and the lines are drawn
to guide the eye.
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FIG. 7. (Color online) The ratio (δECSMC − δEBCS)/δECSMC as
a function of particle-number fluctuation �N for nuclei with odd
and even numbers of neutrons N . This ratio decreases as the BCS
approximation becomes better at larger �N . The case �N = 1.5 is
a borderline case: the odd N behaves more like �N = 0 while the
even N is closer to �N 	 1.

divide the odd-N nuclei into bins of width 0.1 according to
their deformation β2 in the SCMF treatment. The rms of the
residuals are calculated for the nuclei in each bin and their
values (in both BCS and CSMC) are plotted versus the bin
centers in Fig. 6. We observe that there is almost no difference
between the two treatments for oblate nuclei. For spherical and
strongly deformed prolate nuclei, the CSMC gives a moderate
improvement over BCS while for moderately deformed prolate
nuclei there is a significant improvement in the CSMC method
as compared with the BCS approximation.

In Fig. 7 we show the average value of the ratio between the
CSMC correction to the BCS correlation energy and the CSMC
correlation energy, (δECSMC − δEBCS)/δECSMC, versus �N

(here δEBCS ≡ EHF − EBCS and δECSMC ≡ EHF − ECSMC).
At �N = 0 the BCS solution collapses to the HF solution
and this ratio is just 1. We observe the above ratio to decrease
monotonically versus �N as the BCS approximation becomes
better.

V. CONCLUSION

Starting from an SCMF theory of the pairing gaps and
treating pairing correlations exactly beyond the BCS approxi-
mation (with a renormalized pairing interaction strength), we
found a significant improvement in the theory as measured by
the rms residuals of the pairing gaps. The exact calculations
were carried out by constructing a pairing Hamiltonian from
the SCMF output and using the configuration space Monte
Carlo (CSMC) method.

We found the improvement in the rms residuals of the
pairing gaps to be most significant in nuclei for which the
BCS condensate was weak, as measured by the smallness
of particle-number fluctuation �N . Based on our results, the
BCS seems to be adequate if one limits the theory to nuclei
for which 1 � �N � 3. The artificially high value of the BCS
interaction strength in a global fit leads to pairing gaps that
are on average too large in nuclei with �N � 3. We also
found the improvement to be larger in moderately deformed
(β2 ∼ 0.1–0.2) prolate nuclei.

The total residual in the SCMF treatment of pairing gaps
can be thought of as coming from two parts: the inadequacy
in the mean field and the approximate treatment of pairing.
Since in the CSMC method the pairing part is treated
exactly, the CSMC residuals are wholly due to the inadequacy
of the mean-field approximation. The rms of the residuals
of the pairing gaps in the BCS treatment over their values in the
CSMC treatment is then an estimate of the error involved in the
BCS approximation. We find this rms value to be ∼0.12 MeV
(see inset of Fig. 4), and propose it as the bound on the accuracy
that can be achieved in an SCMF theory that treats pairing
correlations approximately.

From the computational perspective, the most notable
aspect of this work is the use of the CSMC algorithm in a
global survey.
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APPENDIX

In this Appendix we derive an estimate of the intrinsic sta-
tistical error σin based on the BCS wave function and show that
it reduces to Eq. (26) in the limit of a large bandwidth Ec 	 �

(assuming a uniform single-particle spectrum). Using Eq. (25)
and assuming the pair occupation ni to be uncorrelated, we
have

σ 2
in = 4

∑
i

(εi − λ)2σ 2
ni
, (A1)

where σ 2
ni

is the variance of the pair occupation ni . To
demonstrate the validity of Eq. (A1), we compare in Fig. 8
the exact intrinsic variance σ 2

in (solid circles) with the right-
hand side of Eq. (A1) (open circles). These quantities can
be calculated directly in CSMC. The results shown are for
a uniform single-particle spectrum with a level spacing of
1 MeV at half filling and a constant pairing interaction of
Vij = 0.3 MeV using a time step of ν = 0.1. We have checked
that Eq. (A1) remains a good approximation for the intrinsic
error in more general cases, e.g., away from half filling and for
a nonuniform spectrum. Since ni can take only two values 0
or 1, the variance σ 2

ni
of a given pair occupation is completely

determined by its average,

σ 2
ni

= n̄i(1 − n̄i). (A2)

Next, we use the BCS wave function to estimate

n̄i = vi

ui + vi

, (A3)
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FIG. 8. The intrinsic error σin as a function of � for a uniform
single-particle spectrum with level spacing of 1 MeV and a constant
pairing interaction Vij = 0.3 MeV. The exact intrinsic error (solid
circles) calculated directly from CSMC (using a time step of ν = 0.1)
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ni
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in CSMC (open circles). The solid squares describe the BCS estimate
Eq. (A4) while the open squares correspond to Eq. (26). The various
lines are fits describing a scaling of �3/2.

where ui and vi are the usual BCS amplitudes. Combining
Eqs. (A1)–(A3), we have

σ 2
in = 4

∑
i

(εi − λ)2 uivi

(ui + vi)2

= 2
∑

i

�i(εi − λ)
ui − vi

ui + vi

, (A4)

where �i are the level-dependent BCS pairing gaps. The BCS
estimate (A4) for σin is shown in Fig. 8 by solid squares.

The BCS expression (A4) for the intrinsic variance can be
further simplified for a uniform single-particle spectrum (in
which case the gap � is level independent) with a bandwidth
Ec 	 �. In this limit most single-particle levels satisfy
|εi − λ| 	 � and the BCS amplitudes can be replaced by
their noninteracting values. This leads to the simple expression
in Eq. (26).

In Fig. 8 we also compare the BCS estimate (A4) (solid
squares) with its simplified version (26) (open squares).
The latter slightly overestimates the BCS expression; both
underestimate the exact intrinsic variance but provide a
reasonable estimate within a factor of ∼2. All cases in Fig. 8
scale as �3/2 (the respective fits are shown by lines).

In the remaining part of this Appendix we show that
Eq. (A1) (with λ being the chemical potential) is a good
approximation, i.e., that the covariance contribution to σ 2

in in
Eq. (A1) is small.

Equation (25) holds for an arbitrary parameter ζ replacing
λ. Since the number of particles N is conserved, we have in
general

σ 2
in = 4

∑
i

(εi − ζ )2σ 2
ni

+ A(ζ ), (A5)

where

A(ζ ) = 4
∑
i �=j

(εi − ζ )(εj − ζ )cov(ni, nj ), (A6)

and cov(ni, nj ) = ninj − n̄i n̄j is the covariance of ni and nj .
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FIG. 9. The variation of the fractional error A/σ 2
in [see Eq. (A6)]

as a function of ζ for a uniform single-particle spectrum (level
spacing of 1 MeV) with � = 20 at half filling and a constant pairing
interaction Vij = 0.3 MeV.

The covariance contribution to Eq. (A5) vanishes for
values of ζ for which A(ζ ) = 0, a quadratic equation in ζ .
Using particle-number conservation 2

∑
j ni = N = 2

∑
j n̄i ,

we have

ni − n̄i = −
∑
j �=i

(nj − n̄j ). (A7)

Equation (A7) implies that

σ 2
ni

= −
∑
j �=i

cov(ni, nj ). (A8)

Using Eq. (A8), we can express the coefficients of ζ 2 and ζ

in the quadratic equation A(ζ ) = 0 in terms of the variances
alone. We then find the following two solutions:

ζ± = ζ0 ±
√

1 +
∑

i �=j εiεj cov(ni, nj )

ζ 2
0

∑
i σ

2
ni

, (A9)

where

ζ0 =
∑

i εiσ
2
ni∑

i σ
2
ni

=
∑

i εi n̄i(1 − n̄i)∑
i n̄i(1 − n̄i)

(A10)

is the midpoint between the two solutions.
As an example, we show in Fig. 9 the quantity A/σ 2

in as
a function of ζ for a uniform single-particle spectrum. In
general, the zeros ζ± of A are not known without performing
a full CSMC calculation. However, we observe that |A/σ 2

in|
is rather small in the region between ζ− and ζ+ as compared
with its typical value outside this region. Thus taking ζ ≈ ζ0

in Eq. (A5) and ignoring A leads to a good approximation
to σ 2

in.
The sums on the right-hand side of Eq. (A10) are dominated

by those levels i for which n̄i is close to 1/2, i.e., by levels in
the vicinity of the chemical potential λ. Thus we expect ζ0 to
be in proximity to the chemical potential. We can also estimate
ζ0 directly from Eq. (A10) using the BCS expressions for n̄i

in Eq. (A3).
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