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Giant resonances in 23U within the quasiparticle random-phase approximation
with the Gogny force
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Fully consistent axially-symmetric deformed quasiparticle random-phase approximation (QRPA) calculations
have been performed, using the same Gogny D18 effective force for both the Hartree-Fock-Bogolyubov mean field
and QRPA matrix. New implementation of this approach leads to the applicability of QRPA to heavy deformed
nuclei. Giant resonances and low-energy collective states for monopole, dipole, quadrupole, and octupole modes

are predicted for the heavy deformed nucleus **U and compared with experimental data.
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I. INTRODUCTION

The development of a generic approach suitable to de-
scribe the excited states of all nuclear systems with the
same accuracy is still a challenge for theoretical nuclear
physics. Models based on the random-phase approximation
(RPA) [1] are well suited in magic and semimagic nuclei
as they describe on the same footing both individual and
collective excited states. This formalism has been found to
be successful in predicting low-lying multipole vibrations
as well as giant resonances [2]. Pairing correlations have
been included within quasiparticle RPA (QRPA) formalism to
describe excited states of open-shell nuclei [3,4] and deformed
(Q)RPA models have been developed [5-9]. In order to avoid
inconsistencies [10], many calculations are now performed
using the same effective nucleon-nucleon interaction for the
mean field ground state and the (Q)RPA excited states [9—17].
The only parameters of these fully self consistent Hartree-Fock
(-Bogolyubov)+(Q)RPA [HFB+-QRPA] approaches are those
of the effective interaction. Till now such calculations have
been applied to light and medium mass nuclei and to some
heavy spherical nuclei. Heavy deformed nuclei still remain
an open challenge because of the huge configuration space
required to perform a consistent calculation. Recently dipole
responses of some heavy deformed nuclei have been theoreti-
cally studied [18] but by using the approximation of a separable
RPA formalism. The aim of this work is to present the first
application of the fully consistent axially-symmetric deformed
HFB+QRPA approach using a finite-range force—namely the
DIS Gogny force [19,20]—to the description of multipole
responses of 233U, These predictions are quite relevant for the
study of the low-energy collective states as well as of the fission
decay of giant resonances. Furthermore, they could provide
a solution to the longstanding issue related to the theoretical
underestimation of the neutron-induced ?*¥U neutron emission
cross section [21-23].

In order to apply QRPA calculations to such a system, a
new implementation of the numerical code, based on parallel
computation, is needed. It is described in Sec. II. Multipole
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responses for 2>%U are presented and discussed in Sec. III.
Conclusions and perspectives are given in Sec. IV.

II. FORMALISM AND NUMERICAL CODE

In the present work, the QRPA matrix is expressed in
terms of the two-quasiparticle (2qp) states obtained from HFB
calculations at the minimum of the axially deformed potential
energy surfaces. Since the 2qp states are expanded on a basis
composed of harmonic oscillator (HO) states, the continuum
is discretized. The effective force we employ is the DIS
Gogny interaction [19,20], which is known to give reasonable
spectroscopy within the five-dimension collective Hamiltonian
(S5DCH) approach over the entire nuclear map [24,25]. The
use of the same force in the HFB and QRPA calculations
ensures a full consistency of our method once the whole
2qp configuration space is considered. More details about the
formalism of the present approach can be found in a previous
publication [9].

In order to deal with heavy deformed nuclei, the axi-
ally symmetric, deformed QRPA code has been ported and
extended on a massively parallel computer. Calculating the
QRPA matrix for heavy nuclei in a HO basis with 13 major
shells is a big numerical challenge. It implies the calculations
of symmetrical matrices whose sizes range from 23 000 to
26000, that is, a total of around 3 x 10% elements for each
matrix. As each element requires a few seconds of CPU time,
a sequential algorithm is no longer an option. Therefore a
massively parallel master-slave algorithm has been developed
to calculate all the matrix elements. The master process
dispatches individual matrix elements to each slave process
and receives and stores the results in the right place in the
matrix before sending another job to the slave process. This
parallelization scheme has the benefit that only the master
process requires knowledge of the whole matrix, thereby
considerably reducing the total memory requirements. As each
slave spends a few seconds to perform its calculation, the
master process has sufficient time to deal with up to a thousand
slaves simultaneously in a completely scalable scheme.

The matrix is split into three parts depending of the isospin
of 2qp configurations: proton-proton, proton-neutron, and
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FIG. 1. (Color online) Evolution of the first 10 QRPA eigenvalues
obtained in 2%U for (a) K™ = 0% and (b) K™ = 0~ with different
values of the cut in energy in the 2qp configuration basis. The “CUT”
variable is defined as the maximal energy above which the 2qp states
are not taken into account. Evolution of the first 10 eigenvalues for
(¢) K™ = 17 and (d) K™ = 1~ as a function of the a renormalization
factor (see text). Identified spurious states are plotted in red.

neutron-neutron. For each part, only the relevant terms of the
interaction are calculated, thus negating the time-consuming
requirement to check whether the term has to be calculated, as
for instance the Coulomb term.

Calculating the eigenvalues and the eigenvectors is a three-
step procedure as detailed in [9]. The internal diagonalizations
and the matrix multiplications have been parallelized with
functions from the ScaLAPACK library [26]. An extraction
procedure also allows us to diagonalize smaller matrices
tagged by the cut in energy, in order to check the convergence
of the QRPA spectrum. This is illustrated in Figs. 1(a) and
1(b), which show the first 10 QRPA eigenvalues obtained in
238U as a function of the cut in energy of the 2qp configuration
space for K™ = 0" and 0~. Here K represents the projection
of the angular momentum onto the nucleus symmetry axis,
and 7 the parity. Let us note that the maximum energy that
can be reached with the current 13-major-shell HO basis is
145, 155, 135, and 145 MeV for K™ =0, 0=, 17 and 1°,
respectively, and that calculations are quite well converged for
a cut of 80 MeV. For K™ = 07, the two spurious states related
to the restoration of the particle number dive to zero value
and can be easily disentangled from the physical spectrum.
Other multipolarities require more analysis. Related wave
functions of low-energy QRPA bosons have been checked
to identify spurious states (rotation and translation) and to
clean the spectrum. As shown in Figs. 1(c) and 1(d), we can
introduce a small renormalization factor o of the residual
interaction, which affected only the spurious components.
Then the spurious state of translation is identified to be second
eigenstates for K™ = 17, while the spurious state of rotation
is the first eigenstate for K™ = 1. For K™ = 0™, the spurious
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state of translation has been identified with the same procedure
to be the second eigenstate. Let us mention that calculations
performed in a larger base with 15 major shells, for K* = 0~
multipolarity, have confirmed the convergence of the present
results.

III. MULTIPOLE RESPONSES FOR 28U

We have predicted monopole, dipole, quadrupole, and
octupole responses for the heavy nucleus 2*¥U. This nucleus
is well deformed with a prolate shape and self-consistent HFB
calculation gives for the ground state a deformation parameter
B = 0.279 [27] (where the definition of 8 is also given in [25]).
Therefore seven separated calculations have been performed
to generate all QRPA bosons for K™ =0T, 0-, 1+, 17, 2%,
27,and 3.

In Fig. 2 theoretical transition probabilities for dipole
modes are plotted and compared with experimental data of
photoabsorption [28] (in which the dipole QRPA response is
folded with a 2-MeV-width Lorentzian distribution). As for
lighter nuclei, the dipole response is found to be split into
two components: The K™ = 0~ component is located at an
energy lower than the | K™ | = 1~ one, as expected for a prolate
shape [9] and as already illustrated in early works [29,30] using
a long-range correlation model. Predictions overestimate by
2 MeV the energy of the dipole response, a value expected to
be correlated with particle-vibration coupling [31], which is
neglected here. Nonnegligible dipole strengths are predicted
(for ¢ = 1) at low energy: 2.03 MeV for K = 0and 2.12 MeV
for K = 1 with transition probabilities B(E1; Ogs — 17) =
0.102 and 4.207 e? fm?, respectively.

The monopole response is displayed in Fig. 3(a). The
observed splitting is due to the coupling with the K =0
quadrupole strength [Fig. 3(b)]. High strength is also predicted
between 20 and 30 MeV, exhausting 20% of the B(EQ)
energy-weighted sum rule (EWSR). The mean excitation
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FIG. 2. (Color online) Dipole responses for 2**U. Transition
probabilities B(E1) are given in e> fm?. The Lorentzian distribution
of 2-MeV-width folding of the QRPA prediction (full line) shifted by
2 MeV with respect to the simple folding (dashed line) is plotted in
order to compare with photoabsorption data (red triangles).
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FIG. 3. (Color online) (a) Monopole transition probabilities
B(EO0) for 2%U. (b) Quadrupole transition probabilities B(E2) in
e? fm* for 28U,

energy values of the first and second peaks are 10.7 and
13.4 MeV, respectively, in good agreement with values ex-
tracted from 23U («, o’ fission) [32,33] and 233U (e, ¢’ fission)
[34] reactions studies. The peak related to the coupling of the
quadrupole mode is the first one, according to the results shown
in Fig. 3(b). As is well known, the theoretical description of the
giant monopole resonance is crucial for the determination of
the value of the incompressibility modulus of infinite nuclear
matter K, [35]. The value corresponding to D1S (K,,,, =
209 MeV) is a little bit low with respect to the admitted range
(220-230 MeV) and the original D1 one (K,,, = 228 MeV)
and to the new parameter sets DIN (K,,, = 230 MeV) [36]
and DIM (K,,,, = 225 MeV) [37]. The mean value of the giant
monopole resonance (GMR) (12.4 MeV when integrated in a
range going from 8.5 to 16.5 MeV) predicted here with D1S
is expected to be underestimated by less than 5% [16]. With
spurious states being extracted, a physical 0" collective state
still remains at 1.26 MeV. This state could be identified with
one of the two experimental states measured at 927.21 and
997.23 keV. The first one decreases with E2 to the first 2+
excited state while the second one decreases with E0 directly to
the ground state. Consequently, we associate the first predicted
monopole state to the experimental one at 997.23 keV. An
experiment-theory discrepancy of roughly 260 keV can be
considered as satisfactory for a microscopic approach.

Figure 3(b) shows the quadrupole response, which is
very fragmented with many collective states predicted below
10 MeV. Let us note that the first K™ = 07 state at 1.26 MeV
also contributes to the quadrupole response with a transition
probability B(E2) = 56 ¢*> fm*. Rotational bands, which are
well reproduced by SDCH using the same Gogny mean field
[25], cannot be described with the present approach. Only
the first 27 K = 17 QRPA state at 1.92 MeV [B(E2;0gs —
2+) = 535 ¢% fm*] and second 2t K = 2% one at 2.00 MeV
[B(E2;0gs — 21) = 657 ¢? fm*] can be compared with the
bandhead state at 1.060 MeV [B(E2) = 1330 ¢? fm*]. As
expected for a prolate shape nucleus, three major strengths
between 10 and 14 MeV are found to be ordered by increasing
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FIG. 4. (Color online) Octupole responses as percentage of the
EWSR for 238U.

K [9]. As in the monopole case, a nonnegligible strength is
located above 20 MeV. The centroid is still ordered by K. In
this region the fragmentation increases with K, broadening the
K =2 peak.

The octupole response as function of percentage of the
total EWSR is shown in Fig. 4. The high-energy octupole
resonance (HEOR) is well identified between 30 and 40
MeV whereas the low-energy octupole resonance (LEOR) is
very fragmented and spreads from very low energy values to
25 MeV with a large mixing between the different K
projections. As in the quadrupole response, many states lie
below 10 MeV. The two strengths observed below 1 MeV
(for K =0 and K = 1) are coupled with dipole modes. The
lowest octupole states are predicted to be K = 0 at 911 keV,
K =1 at 949 keV, and K =2 at 1.72 MeV with transition
probabilities B(E3; Ogs — 37) = 46041, 34613, and 44408
e? fm®, respectively. This sequence is in agreement with the
experimental bandhead one, i.e., K =0at 670 keV, K =1 at
934 keV, and K = 2 at 1.128 MeV. The first octupole state for
K = 3, which is experimentally unknown, is predicted with
our approach to be at 1.772 MeV with a small value of B(E3;
Ogs — 37) = 171 ¢? fm®. This explains why no low-energy
K = 3 state is reported experimentally. The second and third
K = 3 states are predicted at 2.46 and 2.65 MeV, contributing
with transition probabilities B(E3; Ogs — 37) = 1932 and
6901 e fm®, respectively.

IV. CONCLUSION

A fully consistent microscopic axially-symmetric deformed
QRPA approach using a finite-range Gogny force has been
extended using a parallelized procedure on a supercomputer.
This approach has been applied to the heavy deformed
nucleus 2*8U. Dipole, monopole, quadrupole, and octupole
giant resonances as well as low-energy states have been
described. The dipole response is predicted with the right
envelope compared to experimental photoabsortion data but
it is found to be a little bit high in energy. Results for the
first 0T, 2%, and 3~ states have been analyzed and compared
to literature-adopted levels. A prediction is given for the first
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K = 3 octupole state. QRPA calculations offer a unique way
to determine microscopically octupole vibrational headband
states required in combinatorial level density predictions [38].
Indeed, if quadrupole vibrational states can be (and have
been) systematically derived using the D1S interaction [25],
phenomenological approximations are still used for octupole
modes [38] and it would be certainly more accurate to extract
such information from systematical QRPA studies.
Comparison with experimental data gives us enough
confidence to use QRPA collective state wave functions as
an input for microscopic reaction models used in direct
inelastic scattering and preequilibrium studies [23] in or-
der to obtain parameter-free cross sections. Until now a
phenomenological procedure has been used to increase the
neutron emission cross section and match scattering data
[22]. Ad hoc vibrational collective states, which produce
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large inelastic cross sections, have been introduced in the
238U spectrum in the excitation energy range between 0 and
5 MeV, even if such states have not yet been predicted in
nuclear structure calculations. Such collective states are now
predicted within our fully consistent microscopic approach
and work is in progress to check their impact on direct reaction
observables.
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