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Fermi’s golden rule applied to the γ decay in the quasicontinuum of 46Ti
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Particle-γ coincidences from the 46Ti(p,p′γ )46Ti inelastic scattering reaction with 15-MeV protons are utilized
to obtain γ -ray spectra as a function of excitation energy. The rich data set allows analyzsis of the coincidence data
with various gates on excitation energy. For many independent data sets, this enables a simultaneous extraction
of level density and radiative strength function (RSF). The results are consistent with one common level density.
The data seem to exhibit a universal RSF as the deduced RSFs from different excitation energies show only
small fluctuations provided that only excitation energies above 3 MeV are taken into account. If transitions to
well-separated low-energy levels are included, the deduced RSF may change by a factor of 2–3, which might be
expected because of the involved Porter-Thomas fluctuations.
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I. INTRODUCTION

Fermi’s golden rule predicts the transition rate from one
state to a set of final states in a quantum system. The theoretical
foundation, which has been successfully applied in many
disciplines of physics, was first established by Dirac in 1927 [1]
and emphasized by Fermi in his book in 1950 [2]. The rule is
based on first-order perturbation theory, where the transition
matrix element is assumed to be small. In nuclear physics, this
assumption is well fulfilled for β and γ decay. Thus, we take
the validity of the Fermi’s golden rule as granted, rather than
testing this rule. In this work, we study the γ decay between
states in the quasicontinuum of 46Ti and apply Fermi’s golden
rule to disentangle the γ strength and level density.

The Oslo nuclear physics group has developed a method to
determine simultaneously the level density and the radiative
strength function (RSF) from particle-γ coincidences. These
quantities provide information on the average properties of
excited nuclei and are indispensible in nuclear reaction theories
as they are the only quantities needed for complete description
of the γ decay at higher excitation energies.

The nuclear level density can be determined reliably up
to a few MeV of excitation energy from the counting of
low-lying discrete known levels [3]. There is also reliable
level-density information from neutron resonances at higher
excitation energies; however, this information is restricted in
energy as well as spin range.

The most rich experimental information on the RSF was
obtained from the study of photonuclear cross sections [4] and
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thus limited to only energies above the particle separation en-
ergy. It was established that the giant electric dipole resonance
(GEDR) dominates the RSF in all nuclei. The information on
RSF below particle separation energy is significantly less. It
has been obtained mainly from the Oslo method and (n,γ ) and
(γ ,γ ′) reactions.

The Oslo method, which is applicable for excitation
energies below the particle separation, is described in detail
in Ref. [5]. In this work, we report on results obtained for
the 46Ti nucleus, which has two protons and four neutrons
outside the doubly magic 40Ca core. The advantages of the
(p,p′) reaction compared to the commonly used (3He,3He′)
and (3He,4He) reactions are much higher cross sections and
better particle resolution. This allows us to make a detailed
study of γ decay as a function of excitation energy.

It can be discussed if the concept of one unique RSF is valid
for light nuclei and in particular at low excitation energies. This
question, together with the applicability of the Oslo method
for light systems such as titanium, is the main subject of this
work.

In Sec. II, the experimental results are described. The
nuclear level density and RSF are extracted in Sec. III, and
in Sec. IV, the applications of Fermi’s golden rule and the
Brink hypothesis are discussed. Summary and conclusions are
given in Sec. V.

II. EXPERIMENTAL RESULTS

The experiment was conducted at the Oslo Cyclotron
Laboratory (OCL) with a 15-MeV proton beam bombarding a
self-supporting target of 46Ti with a thickness of 1.8 mg/cm2.
The target was enriched to 86% 46Ti with 48Ti (11%) as the
main impurity. This small admixture of 48Ti is not expected to
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FIG. 1. (Color online) Singles (a) and coincidence (b) proton
spectra recorded with 15-MeV protons on 46Ti.

play a major role. This is supported by the fact that at low ex-
citation energies where the level density is small, we could not
identify any important contributions of 48Ti into the γ spectra.
In addition, both titaniums are expected to behave similarly.

Particle-γ coincidences were measured with eight Si
�E − E particle telescopes and the CACTUS multidetector
system [6]. The Si detectors were placed in forward direction,
45◦ relative to the beam axis. The front (�E) and end (E)
detectors had thicknesses of 140 and 1500 µm, respectively.
The CACTUS array consists of 28 collimated 5′′ × 5′′ NaI(Tl)
γ detectors with a total efficiency of 15.2% at Eγ = 1.33 MeV.
The singles-proton spectrum and protons in coincidence with
γ rays are shown in Fig. 1.

In total, 110 million coincidence events were collected
in one week with a beam current of 1.5 nA. Using reaction
kinematics, the measured proton energy was transformed into
excitation energy of the residual nucleus. In this way, a set of
γ -ray spectra is assigned to a specific initial excitation energy
Ei in 46Ti. Furthermore, the γ -ray spectra are corrected for the
known response functions of the CACTUS array following
the procedure described in Ref. [7]. The unfolded coincidence
matrix (Ei,Eγ ) of 46Ti is shown in Fig. 2.

The coincidence matrix displays vertical lines that represent
yrast transitions from the last steps in the γ cascades. However,
there are also clear diagonal lines where the γ energy matches
the direct decay to the ground state (Ei = Eγ ) and to the
first and second excited states at 889 keV (2+) and 2010 keV
(4+), respectively. These γ rays are primary transitions in the
γ cascades. By studying the energy distribution of all pri-
mary γ rays originating from various excitation energies,
information on the level density and RSF can be extracted
simultaneously.

An iterative subtraction technique has been developed to
separate out the first-generation (primary) γ transitions from
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FIG. 2. (Color online) The particle-γ coincidence matrix for
46Ti. The γ -ray spectra have been unfolded with the NaI response
functions.

the total cascade [8]. The subtraction technique is based on the
assumption that the decay pattern is the same whether the levels
were initiated directly by the nuclear reaction or by γ decay
from higher lying states. This assumption is automatically
fulfilled when states have the same relative probability to
be populated by the two processes, since γ -branching ratios
are properties of the levels themselves. If the excitation bins
contain many levels, it is likely that the same γ -energy
distribution from this set of levels will be independent of
the type of population. However, the assumption is more
problematic if the decay involves only a few (but not one)
levels within the energy bin.

Fermi’s golden rule predicts that the decay probability may
be factorized into the transition matrix element between the
initial and final states, and the density at the final state [2]:

λi→f = 2π

h̄
|〈f |H ′|i〉|2ρf . (1)

Realizing that the first generation γ -ray spectra P (Ei,Eγ )
are proportional to the decay probability from Ei → Ef =
Ei − Eγ , that is, λi→f , we may write the equivalent expression
of Eq. (1) as

P (Ei,Eγ ) ∝ Ti→f ρf , (2)

where Ti→f is the γ -ray transmission coefficient and ρf =
ρ(Ei − Eγ ) is the level density at the excitation energy Ef

after the primary γ -ray emission. This expression does not
allow us to extract simultaneously Ti→f and ρ from the
experimental P (Ei,Eγ ) matrix. To do that, either one of the
factorial functions must be known or some restrictions have to
be introduced. According to the Brink hypothesis [9], the γ -ray
transmission coefficient is independent of excitation energy;
only the transitional energy Eγ plays a role. Thus, we replace
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FIG. 3. (Color online) Comparison of experimental first-generation spectra (squares) and the ones obtained from multiplying the extracted
T and ρ functions (red line). The initial excitation-energy bins Ei are 118 keV broad. The error bars represent the experimental statistical
errors.

Ti→f with T (Eγ ), giving

P (Ei,Eγ ) ∝ T (Eγ )ρf , (3)

which permits a simultaneous extraction of the two multiplica-
tive functions. We then fit about N2/2 data points of the P

matrix with 2N free parameters. A least χ2 fit is then possible,
because it contains many more data points than fit parameters;
in the present case, we have 150 free parameters to fit 2240
data points.

At low excitation energy, the γ decay is highly dependent
on the individual initial and final states; therefore, we have
excluded γ -ray spectra originating from excitation-energy bins
below Ei = 5.5 MeV.

It is well known that the Brink hypothesis is violated when
high temperatures and/or spins are involved; see Ref. [10] and
references therein. However, in the present Oslo experiment,
the temperature reached is low (T ∼ 1.5 MeV) and is assumed
to be rather constant. The dependency on spin is of minor
importance. The measured ratios of the γ feeding into the
ground band indicate a low spin window of I ∼ 0 − 6h̄. At
excitation energy E ∼ 8 MeV, the ratios are 57:100:9 for the
2+, 4+, and 6+ states, and at E ∼ 10 MeV they are 55:100:10,
which are equal within the error bars for extracting these
ratios. Of course, at low excitation energy the spin distribution
fluctuates as a result of a few levels (and spins) present within
each 118-keV excitation bin.

In principle, the Brink hypothesis assumed in expression
(3) could bias the analysis, so that the Oslo method in the next
turn validates the Brink hypothesis. This issue is addressed in
Sec. IV, where we find one common level density (according
to Fermi’s golden rule), which in turn results in one universal
RSF in the quasicontinuum of 46Ti.

III. LEVEL DENSITY AND RADIATIVE
STRENGTH FUNCTION

In our first investigations, we rely on the Brink hypothesis
from the expression (3) and factorize the first-generation γ

matrix P (Ei,Eγ ) into one transmission coefficient T (Eγ ) and
one level density ρ(E). Because the decay between states at
low excitation energy cannot be treated within a statistical
approach, a cut of the matrix with Eγ > 1.8 MeV and
5.5 MeV < Ei < 10.0 MeV was used to exclude clear
nonstatistical decay routes.1 The least χ2 fitting of the two
multiplicative functions follows the iterative procedure of
Ref. [5].

To demonstrate how well the procedure works, we compare
in Fig. 3 for some initial excitation energies Ei the experi-
mental first-generation spectra P with the ones obtained by
multiplying the extracted T and ρ functions. The agreement
between calculated and experimental first-generation spectra
is excellent for decay from higher excitations; however, there
are locally strong deviations where the calculated spectra
fall outside of the experimental error bars for populations
of lower excitations energies, as seen in the Ei = 5.6 and
6.4 MeV gates. These deviations could be the consequence of
Porter-Thomas fluctuations [11], which are further discussed
in Sec. IV. The general good agreement holds also for all the
other 40 spectra (not shown) included in the global fit with the
same T (Eγ ) and ρ(E) functions.

1The lower excitation cut concerns only the initial excitation energy
Ei ; one still needs γ spectra originating from excitation regions down
to the ground state in order to subtract higher order generations of
γ rays.
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The experimental statistical errors are very small, as seen
in Fig. 3. Thus, the deviations are due to other sources
of errors. For example for Ei = 6.4 MeV, the T ρ predic-
tion overestimates around Eγ = 3 MeV and underestimates
around Eγ = 5.5 MeV with several standard deviations. Thus,
there are indications that a common T and ρ function
that simultaneously fits the P (Ei,Eγ ) matrix could not be
found. The systematic errors behind these deviations could
be due to several factors as experimental shortcomings,
assumptions behind the Oslo method, the Brink hypothesis [9],
and, most probable, Porter-Thomas fluctuations. Keeping all
these possibilities in mind, the results of Fig. 3 are very
gratifying.

There exist infinitely many T and ρ functions making
identical fits to the data [5], as the examples show in Fig. 3.
These functions can be generated by the transformations

ρ̃(Ei − Eγ ) = A exp[α(Ei − Eγ )] ρ(Ei − Eγ ), (4)

T̃ (Eγ ) = B exp(αEγ )T (Eγ ). (5)

In the following, we try to determine the parameters A, α, and
B. This information is not available from our experiment and
has to be determined from other experimental results.

First, the level density at high excitation energy is normal-
ized to the level density at the neutron separation energy ρ(Sn).
This data point is calculated from neutron resonance spacings
D0 (see, e.g., Ref. [12]) with a spin distribution given by [13]

g(E,I ) � 2I + 1

2σ 2
exp [−(I + 1/2)2/2σ 2], (6)

where E is excitation energy and I is spin.
There exists no neutron resonance data for 46Ti. We

therefore estimate ρ(Sn) from the parametrizations of von
Egidy and Bucurescu [14] using the back-shifted Fermi gas
(BSFG) model, which reads

ρBSFG(E) = η
exp(2

√
aU )

12
√

2a1/4U 5/4σ
, (7)

where a is the level-density parameter, U = E − E1 is the
intrinsic excitation energy, and E1 is the back-shift energy
parameter. The spin cutoff parameter σ is given by [14]

σ 2 = 0.0146A5/3 1 + √
1 + 4aU

2a
, (8)

A being the nuclear mass number.
Figure 4 shows the extracted total level densities for

titanium isotopes with known resonance spacings D0 at Sn

(filled triangles). The resonance spacings for � = 0 neutrons
only give the level densities for one or two spins and only
one parity. To extract the level density for all spin and
parities, we use Eq. (6) and assume equally many positive and
negative parity states at Sn. This is supported by combinatorial
quasiparticle models [16–18], where the numbers of positive
and negative parity states at Sn are predicted to be the same.

The points connected with lines are based on the semiempir-
ical estimate of von Egidy and Bucurescu [14] with a common
scaling of η = 0.5 to match qualitatively the experimental
ρ(Sn) points. The estimated value for 46Ti is ρ = (4650 ±
1000) MeV−1 at Sn = 13.189 MeV (see Fig. 4). The error
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FIG. 4. Deduced total ρ(Sn) from neutron resonance spacings
(triangles). The data point for 46Ti (square) is estimated by extrap-
olations from the BSFG model with global parametrization of von
Egidy and Bucurescu [14] (circles with lines to guide the eye).

bar chosen reflects roughly the general deviation between the
global estimates and the points derived from neutron resonance
data.

Now the scaling (A) and slope (α) parameters of the
level density can be determined as shown in Fig. 5. The
normalization of the level density is fitted to the known
level density around 3.5 MeV of excitation energy and to
the extrapolation from ρ(Sn) using the BSFG model with
parameters summarized in Table I. By choosing other ρ(Sn)
values (within the assumed uncertainty of ±1000 MeV−1), the
logarithmical slope of the ρ and T will change accordingly,
as the α parameter of Eqs. (4) and (5) has to be adjusted.
The ρ curve is well fixed at ∼3.5 MeV and will rotate around
this point with different choices of α. Level densities in the
14- to 19-MeV excitation region of 46Ti have been measured
from Ericson fluctuations; see Ref. [15] and references therein.
However, the values reported by the various experimental
groups differ within a factor of 10. The measurement of the
Ohio group [15] is shown in Fig. 5 for comparison (see triangle
point at 15.5 MeV).

TABLE I. Parameters used for the extraction of level density and
radiative strength function in 46Ti.

Sn a E1 σ ρ(Sn) 〈�γ (Sn)〉
(MeV) (MeV−1) (MeV) (MeV−1) (meV)

13.189 4.7 −1.0 4.0 4650 (1000) 1200 (500)
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obtained from Ericson fluctuations are shown (black triangle).

One should stress that the level density found from the
experiment is based on the spin and parity levels populated
in the (p,p′) reaction. Thus, the normalization to the total
level density described previously rests on the assumption that
the structure of the level density remains approximately the
same if all spins and parities are included. This assumption
is reasonable fulfilled according to Ref. [17], where the level
density for spin windows of 2 − 6h̄ and 0 − 30h̄ have been
calculated for 46Ti within a combinatorial quasiparticle model
[18]. From these estimates, our measurement includes 70–80%
of the total level density, and the level-density fine structures
for the two spin windows are very similar.

The measured level density describes nicely the known
level density up to around 4 MeV of excitation energy. The
experimental resolution of ρ is about 0.3 MeV at low excitation
energy, as seen for the 2+ state at 889 keV. At around 3
MeV, we see an abrupt increase in level density due to the
breaking of proton and/or neutron pairs coupled in time-
reversed orbitals (Cooper pairs [19]). This results in ∼10 times
more levels, making it difficult to determine the level density
at higher excitation energies with conventional spectroscopic
methods.

It remains to determine the scaling parameter B of the
transmission coefficient T (Eγ ). Here we use the radiative
width 〈�γ 〉 at Sn assuming that the γ decay is dominated by
dipole transitions. For initial spin I and parity π , the width is
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given by [20]

〈�γ 〉 = 1

2πρ(Sn, I, π )

∑
If

∫ Sn

0
dEγ BT (Eγ )

× ρ(Sn − Eγ , If ), (9)
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FIG. 7. (Color online) Experimental radiative strength function
for 46Ti (squares). The RSFs assuming high (5650 MeV−1) and low
(3650 MeV−1) level density at Sn are also shown. For comparison,
the GEDR data from the (γ,abs) reaction [23] are shown (triangles).
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where the summation and integration run over all final levels
with spin If that are accessible by γ radiation with energy
Eγ and multipolarity E1 or M1. Further details on the
normalization procedure are found in Refs. [5,21].

Because there exists no neutron resonance data, we again
have to rely on systematics from other isotopes. From Fig. 6,
we estimate an average γ width of 〈�γ 〉 = (1200 ± 500) meV
at Sn. The large uncertainty in 〈�γ 〉 gives an absolute
normalization of T (Eγ ) and the RSF within about ±50%.
However, this uncertainty does not influence the energy
dependence.

The deduced RSF for dipole radiation can be calculated
from the normalized transmission coefficient T (Eγ ) by [22]

f (Eγ ) = 1

2π

T (Eγ )

E3
γ

. (10)

The normalized RSF is shown in Fig. 7. For comparison, the
GEDR data from Ref. [23] are also shown, which have been
translated from photoneutron cross section σ to RSF by [22]

f (Eγ ) = 1

3π2h̄2c2

σ (Eγ )

Eγ

. (11)

Unfortunately, there is a large energy gap between our data
ending at a Eγ = 10 MeV and the GEDR data starting
at 14 MeV.

Our data on the RSF display a minimum near 4–6 MeV
and some structures at lower γ -ray energies. The uncertainties
in the value of ρ at Sn will change the slope of the RSF and
thus also the degree of low-energy enhancement. However, the
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lines of Fig. 7 show that the enhancement is not very sensitive
to reasonable choices of the value ρ(Sn).

Such or similar enhancement has been seen in several
light nuclei with mass A < 100; see Ref. [24] and references
therein. There is still no theoretical explanation for this very
interesting phenomenon.

IV. FERMI’S GOLDEN RULE AND BRINK HYPOTHESIS

According to Fermi’s golden rule, it is possible to
factorize out the level density from the γ -decay prob-
ability. Because the level density is a unique property
of the nucleus, the same extracted level density is ex-
pected from the decay probability deduced at different
excitation-energy regions within the experimental restric-
tions, in particular the energy resolution of CACTUS. To
see if the Oslo method gives a unique level density, we
have divided the data set into three statistically independent
initial excitation-energy regions, namely Ei = 5.5–7.0 MeV,
7.0–8.5 MeV, and 8.5–10.0 MeV, and applied the same
methodology as described in Sec. III. The results shown
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FIG. 9. (Color online) γ -ray strength functions extracted from
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upper deduced RSFs are from statistically independent data sets.
The data points in the lower panel are identical with the RSF of
Fig. 7. The RSFs, displayed as red lines, are evaluated from the
ratio P (Ei,Eγ )/ρ(Ef ) (see text). The resemblance between the two
methods confirms that the level density is common for the various
excitation regions, in accordance with Fermi’s golden rule.

014312-6



FERMI’s GOLDEN RULE APPLIED TO THE γ . . . PHYSICAL REVIEW C 83, 014312 (2011)

0 2 4 6 8 10

-810

 = 5.4-5.9 MeViE

0 2 4 6 8 10

-810

 = 6.6-7.1 MeViE

0 2 4 6 8 10

)
-3

R
S

F
 (

M
eV

-810

 = 7.8-8.3 MeViE

0 2 4 6 8 10

-810

 = 9.0-9.4 MeViE

 (MeV)γE
0 2 4 6 8 10

-810

Two last RSFs

0 2 4 6 8 10

 = 6.0-6.5 MeViE

0 2 4 6 8 10

 = 7.2-7.7 MeViE

0 2 4 6 8 10

 = 8.4-8.9 MeViE

0 2 4 6 8 10

 = 9.6-10.0 MeViE

 (MeV)γE
0 2 4 6 8 10

All RSFs

FIG. 10. (Color online) Deduced RSFs from various initial excitation bins Ei . The RSFs are evaluated from the ratio P (Ei,Eγ )/ρ(Ef ) as
described in the text.

in Fig. 8 are very satisfactory. The different data sets give
approximately the same level density. Thus, the disentan-
glement of level density and transmission coefficient from
γ -particle coincidences seems to work very well according to
Eq. (2).

The fact that we measure approximately the same level-
density function for primary γ -ray spectra taken at different
excitation regions indicates that the RSF depends on only
γ -ray energy and not excitation energy. This seems to indicate
the validity of the Brink hypothesis, which will be tested
more thoroughly in the following. In principle, the test
could be performed by dividing the data set into even more
initial excitation-energy regions. However, the statistics of the
experiment does not permit such an approach, and a different
approach has been used.

By accepting the level density obtained with the global fit
of all relevant data (see lowest curve in Fig. 8), we may further
investigate the transmission coefficient in detail and thus the
validity of the Brink hypothesis. We first adopt the solutions
T and ρ from Sec. III and write

N (Ei)P (Ei,Eγ ) ≈ T (Eγ )ρ(Ei − Eγ ). (12)

The normalization factor for each initial excitation bin is
defined by

N (Ei) =
∫ Ei

0 dEγ T (Eγ )ρ(Ei − Eγ )∫ Ei

0 dEγ P (Ei,Eγ )
. (13)

The degree of correctness of the approximation (12) is
typically illustrated by the fits in Fig. 3.

In the following, we investigate the dependency of the
deduced RSF on initial and final excitation energy. If the
Brink hypothesis is valid, there exists the same RSF for all
excitation energies in this nucleus. We call it the universal RSF.
In reality, the Porter-Thomas fluctuations involved influence
the RSF obtained from different excitation regions. We use the
term deduced RSF in the following for the quantity obtained
from experimental data. The deduced RSFs are expected to
fluctuate around the universal RSF, and the fluctuations are
expected to be stronger if the number of transitions used in
the determination of the deduced RSF is smaller. Thus, the
deduced RSFs extracted from data sets involving initial and
final regions of high level density should be much closer to
the universal RSF than the RSFs deduced from regions of low
level density.

Because there exists only one unique level density, we
construct the counterpart to Eq. (12) in the case that the
transmission coefficient depends on the initial excitation
energy:

N ′(Ei)P (Ei,Eγ ) ≈ T (Eγ ,Ei)ρ(Ei − Eγ ), (14)

where N ′ is determined analogously to Eq. (13). We expect
that T (Ei,Eγ ) fluctuates on the average around T (Eγ ).
Thus, it is reasonable to expect that N ′ ≈ N , which gives a
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FIG. 11. (Color online) Deduced RSFs populating various final excitation bins Ef . The RSFs are evaluated from the ratio
P (Ef + Eγ ,Eγ )/ρ(Ef ) as described in the text. It should be noted that there are no final states at Ef = 1.2–1.8 MeV; however, the experimental
resolution (see Fig. 5) is responsible for including the 2+ and 4+ ground band states in this gate.

transmission coefficient of

T (Ei,Eγ ) ≈ N (Ei)
P (Ei,Eγ )

ρ(Ei − Eγ )
. (15)

Similarly, the transmission coefficient as a function of the final
excitation energy Ef = Ei − Eγ is given by

T (Ef ,Eγ ) ≈ N (Ef + Eγ )
P (Ef + Eγ ,Eγ )

ρ(Ef )
. (16)

The validity of the approximations (14) and (15) is
demonstrated in Fig. 9 by comparing the deduced RSF from
this approximation (lines) with the independent fits of T and
ρ (data points). The RSFs determined for the whole energy
region, 5.5–10 MeV, are very similar, especially for low Eγ , as
shown in the lower panels. Also, the similarity in the detailed
structures of the two methods is recognized, although some
differences are present. The deviations are largest for the high
γ -energy part of the RSFs populating the lowest 0+, 2+, and
4+ states, where large Porter-Thomas fluctuations are expected
(these fluctuations are not included in the error bars). However,
the overall good resemblance encourages us to study the
detailed evolution of the RSFs as a function of initial excitation
energies using the approximations (14) and (15). Because
the approximation (16) is a simple transformation using

Ef = Ei − Eγ , we may also investigate the dependencies
of the RSF on final excitation energy Ef .

In Figs. 10 and 11, the RSFs f (Ei,Eγ ) and f (Ef ,Eγ )
are shown for eight excitation regions. For all these deduced
RSFs, we use one common level density in the evaluation
of the approximations (15) and (16). The data points of the
experimental P matrix cover only a certain region in Ei and
Eγ , making restrictions on the deduced RSFs. Thus, f (Ei,Eγ )
is limited to 5.5 MeV < Ei < Sn and 1.8 MeV < Eγ < Ei .
The limits for f (Ef ,Eγ ) are 0 < Ef < Sn − 1.8 MeV and
1.8 MeV < Eγ < Sn − Ef . For a consistency check, we have
tested that the average RSF for all Ef energies equals the one
for all Ei energies (not shown here).

Figure 10 shows that the deduced RSF changes as a function
of Ei , when low excitation energy is populated after the γ

emission. The lower left panel, where two consecutive RSFs
are plotted together, illustrates this. Here, the bumps seen at
high γ -ray energies are the artifacts of the decay to specific
isolated levels below 3 MeV of excitation. This is also the
reason why apparently the fluctuations are typically a factor of
2–3 in the panel where all deduced RSFs are plotted together
(lower right panel). In the plot of all deduced RSFs, we see a
minimum at about 4–6 MeV and some interesting structures
at low γ -ray energies. These structures and the minimum are
independent of the uncertainty in the log-slope of the level
density, as shown in Fig. 7.
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The various f (Ef ,Eγ ) plots in Fig. 11 are difficult
to compare because of different limits appearing at both
low and high γ -energies for the various Ef regions. For
example, the first three spectra do not reveal the region of
low γ -energy enhancement because Eγ > 5.5 MeV − Ef >

3.7 MeV. These spectra represent the decay to the 0+,
2+, and 4+ ground band states, respectively, where the
experimental-energy resolution makes some overlap between
these states. In general, the various spectra show strong
fluctuations in the deduced RSFs when the γ emission ends
up at low excitation energy, typically Ef < 3 MeV. The
panel with all deduced RSFs plotted together (lower right
panel) shows approximately the same scattering of data points
as in Fig. 10.

It is thus clear that the experimentally deduced RSFs
for which states below 3 MeV of excitation energy are
involved in the γ decay are very different. Figure 5 shows
that this excitation region coincides with a region of few and
well-separated low-lying levels with specific structures. The
bumps in the deduced RSFs are specific to the low energy level
scheme, and the changes between the various deduced RSFs
are large as a result of the Porter-Thomas fluctuations.

To show the similarity of the deduced RSFs in the case
of strongly suppressed Porter-Thomas fluctuations, we have
compared the two uppermost excitation-energy gates Ei and
Ef in the lower left panels of Figs. 10 and 11, respectively.
The deduced RSFs are here extracted for γ decay between
states in quasicontinuum, except for the data points with
Eγ > 7 MeV in Fig. 10 where the final excitation energy is
<3 MeV. The deduced RSFs extracted from the quasicontin-
uum region behave similarly to the deduced RSF from the
all-over fit displayed in Fig. 7.

The good agreement between the deduced RSFs at higher
energies is consistent with the expectation of suppressed
Porter-Thomas fluctuations due to more initial and final levels
in the evaluation of the γ strength. These results strongly
indicate that the concept of an RSF, which is independent of
excitation energy, is valid already at relatively low excitation
energies in 46Ti. At the same time, the results give us
confidence that the Oslo method works reasonably well. The
differences in deduced RSFs from lower energies indicate that
the Porter-Thomas fluctuations are so poorly suppressed that
it is difficult to predict the shape of the universal RSF. This is
not very surprising, and the differences in the deduced RSFs
seem to be consistent with the expected fluctuations.

To display the small differences in the deduced RSFs
obtained from regions of higher level density, we have taken
the four highest gates shown in Fig. 10 and only considered
γ energies up to 5.1 MeV. Thus, these statistically inde-
pendent RSFs are evaluated in quasicontinuum with initial
and final excitation energies of roughly Ei = 8–10 MeV and
Ef = 3–7 MeV, respectively. The deduced RSFs are presented
in the upper panel of Fig. 12.

For this data set, we evaluated the relative deviations by

rij = fij − 〈fi〉
〈fi〉 , (17)

where the index i represents the γ energy and j is the initial
excitation energy. The average strength at each γ energy is
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FIG. 12. (Color online) (a) Radiative strength functions for
γ transitions between states in quasicontinuum. Data from the
four highest excitation-energy gates of Fig. 10 have been cho-
sen. (b) Ratios of the deviation from the average RSF at each
γ energy; see text.

estimated from the four individual RFSs:

〈fi〉 = 1

nj

∑
j

fij . (18)

In the lower panel of Fig. 12, the rij values are plotted showing
the relative fluctuations from the mean value at each γ energy.
The average ratio for all data points (ni = 28 and nj = 4) is
taken as

r = 1

ninj

∑
ij

|rij |, (19)

giving r ∼ 6%. The differences in the deduced RSFs can easily
be interpreted as remnants of the Porter-Thomas fluctuations.
However, a quantitative estimate of the fluctuations is difficult
to determine because the experimental statistical errors (see
error bars) are also of the same order.

V. CONCLUSIONS

The level density and radiative strength function for
46Ti have been determined using the Oslo method. Similar
level-density functions have been extracted from statistically
independent data sets covering different excitation energies.
This gives confidence to the Oslo method, because the
disentanglement of the level density by Fermi’s golden rule
predicts one and only one unique level density, independent of
the data set.
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The deduced RSF displays an enhancement at low γ -ray
energy where we see a bump around 3 MeV and another
structure at energies near 2 MeV. A similar enhancement has
been seen in several other light mass nuclei and is still not
accounted for by present theories.

A method to study the evolution of the deduced RSFs as a
function of initial and final energy regions has been described.
The deduced RSFs are found to display strong variations for
different initial and final excitation energies if transitions to
the lowest excitations are involved. The reason for the violent
fluctuations of a factor of 2–3 is that only a few isolated
levels are present at low excitation energies with Ef < 3 MeV.
The differences in the RSFs obtained from a few transitions,
that can be explained as a consequence of Porter-Thomas
fluctuations of individual intensities, show that this energy
region cannot be used for determination of the universal RSF,
even though the deduced RSFs based on a restricted number
of transitions still indicate that the decay is governed by a
universal RSF.

However, the present work shows that it is possible to get
more precise experimental information on the universal RSF.
By imposing restrictions on the initial and final excitation ener-
gies, the RSFs for the decay between states in quasicontinuum
can be extracted (i.e., for Ef � 3 MeV). The results from this
selected data set show that the decay is consistent with an RSF
that is independent of excitation energy within less than ∼6%
already at these relatively low excitations.

In summary, the observation of almost identical level den-
sities and RSFs extracted from different data sets in quasicon-
tinuum indicates that the Oslo method works well. Provided
that we use data from the quasicontinuum, a universal RSF in
the light mass region of the 46Ti nucleus can be extracted.
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