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Partial conservation of seniority in the j = 9/2 shell: Analytic and numerical studies
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Recent studies show that for systems with four identical fermions in the j = 9/2 shell, two special states,
which have seniority v = 4 and total spins I = 4 and 6, are eigenstates of any two-body interaction. These states
have good seniority for an arbitrary interaction. In this work, an analytic proof is given to this peculiar occurrence
of partial conservation of seniority, which is the consequence of the special property of certain coefficients of
fractional parentage. Further calculations did not reveal its existence in systems with other n and/or I for shells
with j � 15/2.
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I. INTRODUCTION

It is well known that seniority remains a good quantum
number for systems with identical fermions in a single-j
shell when j � 7/2, irrespective of (rotationally invariant)
interactions. This property of seniority conservation is no
longer valid in shells with j � 9/2. To conserve seniority, the
acting two-body interaction has to satisfy [(2j − 3)/6] linear
constraints ([n] denotes the largest integer not exceeding n).
For example, for the j = 9/2 shell, the number of conditions
is [(2j − 3)/6] = 1 and the necessary and sufficient condition
for the conservation of seniority is [1]

65V2 − 315V4 + 403V6 − 153V8 = 0, (1)

where VJ = 〈j 2; J |V̂ |j 2; J 〉 are two-body matrix elements
of the interaction V̂ . |j 2; J 〉 denotes a two-particle state
coupled to angular momentum J , which runs over even values
from 0 to (2j − 1). Such conservation conditions are not
satisfied by most general two-body interactions for which
the eigenstates would be admixtures of states with different
seniorities. However, it was noted that in the j = 9/2 shell
some special eigenstates have good seniority for an arbitrary
interaction [2,3]. The states are eigenstates of any two-body
interaction and exhibit partial dynamic symmetry and the
solvability property [4,5]. The partial conservation of seniority
in these states may shed light on the existence of seniority
isomers in nuclei in the 0g9/2 shell [4].

More specifically, for four identical fermions in the j = 9/2
shell, there are three states with total angular momenta I = 4
and I = 6. These states may be constructed so that one state
has seniority v = 2 (denoted as |j 4, v = 2, I 〉 in the following)
and the other two have seniority v = 4 (denoted as |j 4, α1, v =
4, I 〉 and |j 4, α2, v = 4, I 〉, where the index α symbolizes an
additional quantum number needed when there are more than
one state with a given seniority v and total angular momentum
I ). The seniority v = 4 states are not uniquely defined, and any
linear combination of them would result in a new set of v = 4
states. However, in Refs. [2,3] it was found that one special
v = 4, I = 4 (and I = 6) state has an interesting property: it
has vanishing matrix elements with the remaining two states

*chongq@kth.se

orthogonal to it even if an interaction that does not conserve
seniority is used. This indicates that the special state conserves
seniority and is an eigenstate of any two-body interaction.
Zamick and Van Isacker [6] examined the consequences of this
vanishing of nondiagonal matrix elements and showed that it
can be attributed to the special relation of certain one-particle
coefficients of factional parentage (cfp’s) as

[j 4(α1, v = 4, I )jI5|}j 5, v = 3, I5 = j ]

[j 4(α2, v = 4, I )jI5|}j 5, v = 3, I5 = j ]

= [j 4(α1, v = 4, I )jI5|}j 5, v = 5, I5 = j ]

[j 4(α2, v = 4, I )jI5|}j 5, v = 5, I5 = j ]
, (2)

where the states |j 5, v = 5, I5 = j 〉 and |j 5, v = 3, I3 = j 〉
can be uniquely specified. This relation, which was based on
the cfp table of Bayman and Lande [7], should be valid for
any set of v = 4 and I = 4 (and I = 6) states, but an analytic
proof of it is still absent.

The purpose of this paper is to derive an analytic proof of
Eq. (2) and subsequently to prove the partial conservation of
seniority in the j = 9/2 shell. Calculations will also be carried
out to see if such kinds of states exist in systems with other n

or j .
First, in Sec. II we give a brief description to the problem

based on one-particle and two-particle cfp’s. An analytic proof
of the special property of one-particle cfp’s [Eq. (2)] is derived
in Sec.III . In Sec. IV, numerical calculations are carried out
to explore the possible existence of other partial seniority-
conserved solvable states. A summary is given in Sec. V.

II. VANISHING OF NONDIAGONAL MATRIX ELEMENTS

The problem has been described in Refs. [2–6,8] in a
variety of ways and will only be briefly discussed here for
completeness. For a system with n identical fermions in a
single-j shell (denoted as jn), the matrix elements of the
Hamiltonian can be written as linear combinations of the
interaction terms VJ as

HI
αβ = n(n − 1)/2

∑
J

MI
αβ(J )VJ , (3)
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where I is the total spin of the system and M(J ) are
symmetric matrices. In particular, the nondiagonal matrix
elements between states involving different seniorities can be
written as

HI
v1v2

= CI
v1v2

[ ∑
J

aλJ VJ

]
, (4)

where CI
v1,v2

denotes a coefficient independent of the in-
teraction. By requiring HI

v1v2
= 0 we get the conservation

conditions of seniority [e.g., Eq. (1)], which is known in
algebraic forms [1,4,9]; λ serves as an additional quantum
number when more than one conservation condition is present
[4,10]. The number of seniority conditions can be probed by
decomposing the two-body matrix elements VJ into quasispin
tensors with rank 0 and 2 [1,9]. Because the rank 0 tensors
and the pairing term of rank 2 tensors do not mix seniority, the
number of seniority conservation conditions is related to the
number of linearly independent quasispin rank 2 tensors.

As mentioned previously, there are two v = 4 states
with I = 4 (and I = 6) for the (9/2)4 configuration. The
nondiagonal matrix elements involving the special I = 4 (and
I = 6) state (denoted as |j 4, a, v = 4, I 〉 as in Ref. [6]) satisfy

HI
2a ≡ HI

ab ≡ 0, (5)

where |j 4, b, v = 4, I 〉 denotes the corresponding orthogonal
v = 4 state. Because the state |j 4, a, v = 4, I 〉 is an eigenstate
of any interaction, we should also have

MI
2a(J ) ≡ MI

ab(J ) ≡ 0, (6)

which is valid for any angular momentum J .
The special v = 4 state may be written as a combination of

an arbitrary set of v = 4 states as [6]

|j 4, a, v = 4, I 〉= α|j 4, α1,v = 4, I 〉+ β|j 4, α2,v = 4, I 〉,
(7)

where the amplitudes are denoted by α and β, which can be
easily distinguished from the different states. It is trivial to
construct a special v = 4 state [through Eq. (7)] that satisfies
HI

2a = MI
2a(J ) = 0 by taking into account the fact that in

the j = 9/2 shell there is only one seniority conservation
condition and the nondiagonal matrix elements involving
different seniorities are in the form of Eq. (4). By inserting
Eq. (7) into Eqs. (5) and (6), immediately we have

HI
2α1

HI
2α2

= MI
2α1

(J )

MI
2α2

(J )
= −β

α
, (8)

and

HI
α1α1

− HI
α2α2

HI
α1α2

= MI
α1α1

(J ) − MI
α2α2

(J )

MI
α1α2

(J )
=

[
α

β
− β

α

]
. (9)

These two relations are sufficient in ensuring that the state
|j 4, a, v = 4, I 〉 is an eigenstate of any Hamiltonian H . It is
also an common eigenstate of all matrices MI (J )

MI (J )
∣∣j 4, a, v = 4, I 〉 = EI

J

∣∣j 4, a, v = 4, I 〉, (10)

where we have EI
0 = 0, rank[MI (0)] = 1, and Tr[MI (0)] =

[j 2(I )j 20I |}j 4, v = 2, I ]2.

For four identical nucleons in a single-j shell, the state
can be written as the tensor product of two-particle states as
|j 2(J )j 2(J ′); I 〉, which are obtained by using fermion creation
operators [11–13]. These states are not orthonormal to each
other in general since the Pauli principle is considered only at
the two-particle state level at this stage [11]. For a given angular
momentum I (I �= 0), the seniority v = 2 state is unique and
can be written as (see, e.g., Ref. [4])

|j 4, v = 2, I 〉 = N0I |j 2(0)j 2(J = I ); I 〉, (11)

where N0I is the normalization factor. One of the seniority
v = 4 states can be written as

|j 4[JJ ′], v = 4, I 〉 = NJJ ′ |j 2(J )j 2(J ′); I 〉
−NJJ ′ 〈j 2(J )j 2(J ′)I |j 4, v

= 2, I 〉|j 4, v = 2, I 〉, (12)

where J and J ′ are the principal parents. The other v = 4
state can be constructed through the Schmidt orthogonalization
procedure in a similar way. The two-particle cfp for these states
can be constructed with the principal-parent scheme [4,14] and
expressed in closed forms in terms of 9j symbols. The special
relations of Eqs. (8) and (9) are demonstrated to be true by
symbolic calculations with these expressions of two-particle
cfp’s. However, the final expressions are rather complex and
cumbersome and will not be given here for simplicity.

The special v = 4 states can be derived by diagonalizing
the Hamiltonian matrix H or matrix M . The two-particle
cfp’s for these special I = 4 and 6 states are given in
Tables I and II, respectively. The two-particle cfp’s of the
corresponding orthogonal v = 2 and 4 states are also listed
for comparison. Although these special v = 4 states cannot be
constructed through the principal-parent procedure in a simple
manner, we found that their overlaps with the normalized
|j 4[22], v = 4, I = 4〉 and j 4[24], v = 4, I = 6〉 states are
rather large, that is,

〈j 4[22], v = 4, I = 4|j 4, a, v = 4, I = 4〉 = 0.998220,

(13)

and

〈j 4[24], v = 4, I = 6|j 4, a, v = 4, I = 6〉 = 0.997704.

(14)

TABLE I. Two-particle cfp [j 2(J )j 2(J ′)I |}j 4, α, I ] for states
|j 4, a, v = 4, I = 4〉, |j 4, b, v = 4, I = 4〉, and |j 4, v = 2, I = 4〉.

J J ′ a b v = 2

0 4 0 0 0.316228
2 2 0.426954 −0.025505 −0.225978
2 4 0.254224 −0.198597 0.103504
2 6 −0.310667 −0.197568 −0.225866
4 4 −0.239508 −0.331279 0.083861
4 6 0.141827 0.224545 −0.194095
4 8 −0.156709 0.387355 −0.135919
6 6 −0.163753 0.564526 0.344947
6 8 −0.031625 0.024706 −0.437779
8 8 −0.565594 −0.108706 0.062138
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TABLE II. Same as Table I but for those of the I = 6 states.

J J ′ a b v = 2

0 6 0 0 −0.316228
2 4 −0.165170 −0.011211 0.187931
2 6 −0.344596 0.169404 0.058551
2 8 0.376631 0.150078 0.135988
4 4 −0.266132 −0.356461 0.161496
4 6 0.037853 −0.214021 −0.287013
4 8 0.233036 −0.380268 0.364254
6 6 0.028697 0.520092 0.140619
6 8 0.213691 0.241247 0.126376
8 8 0.387024 −0.050282 −0.421439

A. The matrices M I ( J = I) in terms of one-particle cfp’s

The algebraic expressions of the matrix elements of H

and M are rather complex in terms of two-particle cfp’s
or 9j symbols. On the other hand, Ref. [6] found that the
nondiagonal matrix elements of MI (J = I ) can acquire a
simple form in terms of one-particle cfp’s,

MI
2a(J = I ) = 5[j 4(v = 2, J )jI5|}j 5, v = 3, I5 = j ]

× [j 4(a, v = 4, J )jI5|}j 5, v = 3, I5 = j ]

(15)

and

MI
ab(J = I ) = 5

∑
v5=3,5

[j 4(a, v = 4, I )jI5|}j 5, v5, I5 = j ]

× [j 4(b, v = 4, I )jI5|}j 5, v5, I5 = j ]. (16)

By requiring M2a(J ) = Mab(J ) = 0, we should have the
relation

[j 4, a, v = 4, I )jI5|}j 5, v = 3, I5 = j ]

= [j 4, a, v = 4, I )jI5|}j 5, v = 5, I5 = j ] = 0, (17)

which will be valid only if Eq. (2) is satisfied. This is because
vanishing of the matrix elements in Eqs. (15) and (16) can
be obtained if the cfp’s [j 4(a, v = 4, J )jI5|}j 5, v = 3, I5 =
j ] and [j 4(a, v = 4, J )jI5|}j 5, v = 5, I5 = j ] vanish. It is
always possible to make the first one vanish by choosing
certain values of the coefficients in Eq. (7). These coefficients
will make also the other cfp’s vanish if and only if Eq. (2) is
satisfied [6].

The one-particle cfp’s for these special I = 4 and 6 states
are given in Tables III and IV, respectively. The one-particle
cfp’s of the corresponding orthogonal v = 2 and 4 states are
also listed for comparison.

III. RELATIONS BETWEEN ONE-PARTICLE CFP’S

In this section, I present an analytic proof of Eq. (2).
The seniority scheme can be obtained by introducing states
associated with the irreducible representations of group chain
U(2j + 1) ⊃ Sp(2j + 1) ⊃ O(3) where U, Sp, and O denote
the unitary, symplectic, and orthogonal groups, respectively
[1,9]. In Refs. [2,3,6], the one-particle cfp’s are calculated by

TABLE III. One-particle cfp [j 3(v3I3)jI |}j 4, α, I ] for states
|j 4, a, v = 4, I = 4〉, |j 4, b, v = 4, I = 4〉, and |j 4, v = 2, I = 4〉.

v3 I3 a b v = 2

3 3/2 −0.122187 0.473243 0.284268
3 5/2 0.054772 −0.388546 0.181186
3 7/2 −0.617040 −0.064668 0.176295
3 9/2 0 0.349269 −0.344932
1 9/2 0 0 0.612372
3 11/2 0.404329 0.328164 0.363442
3 13/2 −0.614814 0.203062 −0.156447
3 15/2 0.159749 0.521118 −0.243006
3 17/2 0.185293 −0.280021 −0.381691

using the Bayman-Lande procedure [7] in which the seniority-
classified cfp’s are obtained iteratively by diagonalizing the
Sp(2j + 1) and SU(2j + 1) Casimir operators.

On the other hand, the one-particle cfp can be factorized
into the product of the isoscalar factors of the group chains
U(2j + 1) ⊃ Sp(2j + 1) and Sp(2j + 1) ⊃ O(3) [15] (see
also Ref. [16]). The isoscalar factor is introduced based on
the factorization property of the Clebsch-Gordan coefficient
(Racah’s factorization lemma); that is, the Clebsch-Gordan
coefficients of a group Sn can be factorized into a Clebsch-
Gordan coefficient of the subgroup Sn−1 and an isoscalar factor
specified for the group chain Sn ⊃ Sn−1. The isoscalar factors
of group chain U(2j + 1) ⊃ Sp(2j + 1) are known as analytic
expressions while those of Sp(2j + 1) ⊃ O(3) can be calcu-
lated iteratively by a recurrence formula. Correspondingly, the
v → v − 1 cfp can be factorized as [15]

[jn−1(α1, v − 1, J1)jJ |}jnαvJ ]

=
√

v(2j + 3 − n − v)

n(2j + 3 − 2v)
R(j, v − 1, α1J1; nvαJ ), (18)

where R is the Sp(2j + 1) ⊃ O(3) isoscalar factor. With
the principal-parent procedure, a state α with total angular
momentum J can be written as

|jnαvJ 〉 =
∑
α′

1J
′
1

cα′
1J

′
1
|jnαv(α′

1J
′
1)J 〉, (19)

TABLE IV. Same as Table III but for those of the I = 6 states.

v3 I3 a b v = 2

3 3/2 0.106083 −0.397464 0.144841
3 5/2 −0.309096 −0.315750 −0.246183
3 7/2 −0.622541 0.010517 −0.017630
3 9/2 0 0.330407 −0.305511
1 9/2 0 0 −0.612372
3 11/2 −0.205106 0.313264 −0.161577
3 13/2 −0.408432 0.102112 0.263339
3 15/2 0.109009 −0.567540 −0.442498
3 17/2 0.388116 0.430312 −0.244520
3 21/2 0.366397 −0.131203 0.314194
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and

R(j, v − 1, α1J1; nvαJ )

=
∑
α′

1J
′
1

cα′
1J

′
1
R(j, v − 1, α1J1; nvα(α′

1J
′
1)J ), (20)

where α′
1J

′
1 denotes the principal parents. The coefficients

cα′
1J1 can be determined by the standard orthnormalization

procedure.
The isoscalar factor R is calculated by a recurrence formula,

R(j, v − 1, α1J1; nvα(α′
1J

′
1)J ) = P (α′

1J
′
1α1J1J )√

vP (α′
1J

′
1α

′
1J

′
1J )

,

(21)

where

P (α′
1J

′
1α1J1J )

= δα′
1α1δJ ′

1J1 + (−1)J+J ′
1 (v − 1)

√
(2J ′

1 + 1)(2J1 + 1)

×
∑
α2J2

[{
j J2 J ′

1

j J J1

}
+ (−1)v2δJ2J

(2J + 1)(2j + 5 − 2v)

]

×R(j, v − 2, α2J2; nv − 1, α1J1)

×R(j, v − 2, α2J2; nv − 1α′
1J

′
1). (22)

Equations (18)–(22) are valid for any angular momentum j .
To prove the special relation of Eq. (2), we start by defining

a seniority v = 5 state, denoted as |j 5, v = 5, J = j 〉, in
systems with nucleon number n = 5. It is a unique state for
shells with j = 9/2. In this case, the v = 5 state can be easily
constructed as the tensor product of any n = 4 state and the
single particle. We may take J ′

1 = 0 and |j 4, v = 4, J = J ′
1〉

(which is also uniquely defined for shells with 9/2 � j �
13/2) as the principal parent. For this state, we have

[j 3(v = 3, J1)jJ |}j 4, v = 4, J = 0]

= R(j, v = 3, J1; n = 4, v = 4, J = 0) = δJ1,j . (23)

Taking |α′
1J

′
1〉 = |j 4, v = 4, J ′

1 = 0〉 and J = j and inserting
previous relation to Eq. (22), for shells with j = 9/2, we have

P (α′
1J

′
1α1J1J )

= 4
√

(2J1 + 1)

[{
j j 0

j j J1

}
− 2

(2j + 1)(2j − 5)

]

×R(j, v = 3, j ; n = 4, v = 4, α1J1). (24)

Immediately it can be easily seen that the following relation
holds:

[j 4(v = 4, α1, I )jJ |}j 5, v = 5, J = j ]

[j 4(v = 4, α2, I )jJ |}j 5, v = 5, J = j ]

= R(j, v = 4, α1, I ; n = 5, v = 5, J = j )

R(j, v = 4, α2, I ; n = 5, v = 5, J = j )

= R(j, v = 4, α1, I ; n = 5, v = 5(J ′
1 = 0)J = j )

R(j, v = 4, α2, I ; n = 5, v = 5(J ′
1 = 0)J = j )

= P (α′
1J

′
1α1I, J = j )

P (α′
1J

′
1α2I, J = j )

= R(j, v = 3, j ; n = 4, v = 4, α1I )

R(j, v = 3, j ; n = 4, v = 4, α2I )

= [j 3(v = 3, J1 = j )jI |}j 4, v = 4, α1I ]

[j 3(v = 3, J1 = j )jI |}j 4, v = 4, α2I ]
, (25)

This relation is valid only for shells with j = 9/2 where the
n = 5, v = 5 state is uniquely defined. As shown in Ref. [6],
it is equivalent to the relation defined by Eq. (2).

IV. NUMERICAL CALCULATIONS FOR OTHER SYSTEMS

As mentioned before, the two special v = 4 and I = 4 and
6 states have solvable eigenvalues and are eigenstates of any
two-body interaction. The eigenvalue can be expanded in terms
of two-body matrix elements as (see, e.g., Ref. [13])

EI = CI
J VJ , (26)

where CI
J = XT MI (J )X and X are the expansion amplitudes

of the wave function. CI
J are independent of interaction if

the state is an eigenstate of any interaction. Moreover, it
can be easily recognized that any eigenstate of any two-body
interaction should have a definite seniority because admixtures
of states with different seniorities cannot yield an eigenstate
of any two-body interaction [8]. It may be interesting to see
if such kind of state exists in other systems. Such calculations
have been done for systems with n = 4 in Ref. [4] in which no
other case was found for j > 9/2.

To explore the properties of states with other n, I , and/or
j , we start from the Hamiltonian matrix of Eq. (3) with an
arbitrary interaction. The Hamiltonian matrix is diagonalized
numerically by employing the usual shell model diagonaliza-
tion procedure [17] for symplicity. If an state is an eigenstate
of any interaction, the energy expression [Eq. (26)] will be
uniquely defined and remain the same with the variation
of the two-body matrix elements VJ . It provides a simple
criterion for the searching of state that exhibits partial seniority
conservation.

TABLE V. States in j = 9/2 and 11/2 shells that cannot be
uniquely defined by the seniority v and total spin I .

Configuration I Dimension v

(9/2)4 4, 6 3 2, 4
(11/2)3 9/2, 15/2 2 3
(11/2)4 2, 10 3 2, 4
(11/2)4 4, 6, 8 4 2, 4
(11/2)4 5, 7, 9, 12 2 4
(11/2)5 5/2, 21/2, 23/2 3 3, 5
(11/2)5 7/2, 9/2, 13/2, 17/2, 19/2 4 3, 5
(11/2)5 11/2 5 1, 3, 5
(11/2)5 15/2 5 3, 5
(11/2)5 25/2 2 5
(11/2)6 2 4 2, 4, 6
(11/2)6 7, 9, 12 4 4, 6
(11/2)6 3, 5 3 4, 6
(11/2)6 4, 8 6 2, 4, 6
(11/2)6 6 7 2, 4, 6
(11/2)6 10 5 2, 4, 6
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TABLE VI. Same as Table V but for shells with j = 13/2 and
15/2. Only states with particle numbers n = 3 and 4 are shown for
simplicity.

Configuration I Dimension v

(13/2)3 9/2, 11/2, 15/2, 17/2, 21/2 2 3
(13/2)4 2, 12 4 2,4
(13/2)4 4, 6, 10 5 2,4
(13/2)4 5, 7, 9, 11, 14 3 4
(13/2)4 8 6 2,4
(13/2)4 12, 16 2 4
(15/2)3 9/2-13/2, 17/2-23/2, 27/2 2 3
(15/2)3 15/2 3 1, 3
(15/2)4 0 3 0, 4
(15/2)4 2 4 2, 4
(15/2)4 3, 17, 20 2 4
(15/2)4 4 6 2, 4
(15/2)4 5, 15, 18 3 4
(15/2)4 6, 8, 10, 12 7 2, 4
(15/2)4 7, 11, 13, 16 4 4
(15/2)4 9 5 4
(15/2)4 14 5 2, 4

A few trivial cases exist that we are not interested in
here. For example, the state is an eigenstate of any two-body
interaction if there is only one state for a given angular
momentum I . These trivial cases have been discussed in
Refs. [4,8] and will not be detailed here for simplicity.

We concentrate on systems that have at least two states for
a given total spin I , especially states that cannot be uniquely
defined by the total spin I and seniority v. These states are
listed in Tables V and VI. Calculations are done for systems

with nucleon numbers up to n = (2j + 1)/2 and j values up
to 15/2. Systems with a higher j values, which are of less
physical relevance comparatively, can be studied in the same
manner.

Calculations did not find any other fermionic system that ex-
hibits partial seniority conservation for shells with j � 15/2.

V. SUMMARY

Seniority is not conserved by most general two-body
interactions in single-j shells with j � 9/2. However, recent
studies [2–4] show that for systems with four identical
fermions in the j = 9/2 shell, two special states, with seniority
v = 4 and total spins I = 4 and 6, have good seniority for
an arbitrary interaction and are eigenstates of any two-body
interaction. This peculiar occurrence of partial conservation of
seniority is the consequence of a special property of certain
one-particle cfp’s of Eqs. (2) [6].

In this paper, the partial conservation of seniority in
j = 9/2 shell is studied with the help of two-particle cfp’s
and one-particle cfp’s. Although the two special I = 4 and
6 states cannot be constructed as a simple form within the
principal-parent procedure, it is found that their overlaps with
the normalized |j 4[22], v = 4, I = 4〉 and |j 4[24], v = 4, I =
6〉 states are more than 99.5%. The special relation of Eq. (2) is
also analytically proven with the principal-parent procedure.

If any state is the eigenstate of any interaction, the
corresponding expression [Eq. (26)] will be uniquely specified
and be independent of two-body interactions. Except the
special I = 4 and 6 states mentioned previously, calculations
did not find its existence in any other fermionic system for
shells with j � 15/2.
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