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Bohr Hamiltonian with Davidson potential for triaxial nuclei
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A solution of the Bohr Hamiltonian appropriate for triaxial shapes, involving a Davidson potential in β and
a steep harmonic oscillator in γ , centered around γ = π/6, is developed. Analytical expressions for spectra
andB(E2) transition rates ranging from a triaxial vibrator to the rigid triaxial rotator are obtained and compared
to experimental results. Using a variational procedure, we point out that the Z(5) solution, in which an infinite
square well potential in β is used, corresponds to the critical point of the shape phase transition from a triaxial
vibrator to the rigid triaxial rotator.
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I. INTRODUCTION

The advent of critical point symmetries [1–4], manifested
experimentally [5–7] in nuclei on or near the point of shape
phase transitions, revived interest in special solutions [8,9] of
the Bohr Hamiltonian [10]. While shape phase transitions in
nuclei originally were found [4,11] in the framework of the
interacting boson model (IBM) [12], the first examples of crit-
ical point symmetries, the E(5) symmetry [1] [corresponding
to the second-order phase transition between spherical and
γ -unstable (soft with respect to axial asymmetry) nuclei] and
the X(5) symmetry [2] (appropriate for the first-order phase
transition between spherical and prolate deformed nuclei),
have been developed as special solutions of the Bohr Hamilto-
nian, using an infinite square well potential in the β degree of
freedom (related to the magnitude of the deformation). In E(5),
the potential is independent of the γ degree of freedom, related
to the shape of the nucleus, whereas in X(5) the potential can be
separated into two terms, u(β) + v(γ ), the latter being a steep
harmonic oscillator centered around γ = 0, corresponding to
prolate deformed nuclei. The Z(5) solution [13], developed
later, formally resembles the X(5) case in using a separable
potential and an infinite square well potential in β, but it differs
drastically in using a steep harmonic oscillator potential in the
γ degree of freedom centered around γ = π/6, corresponding
to triaxial shapes.

Triaxial shapes in nuclei have been considered for a long
time, since the introduction of the rigid triaxial rotor [14,15],
despite the fact that very few candidates have been found
experimentally [16,17]. In the framework of the IBM, triaxial
shapes can occur in three different cases:

(i) In the IBM-1 framework, in which no distinction
between protons and neutrons is made, the inclusion
of higher order (three-body) terms is needed [18,19].

(ii) In the IBM-2 framework, in which protons and neutrons
are used as distinct entities, the inclusion of one-body
and two-body terms suffices [20–22].

(iii) In the sdg-IBM framework (using s, d, and g bosons),
the presence of the g boson also suffices [23].

Shape phase transitions involving rigid triaxial shapes have
been studied recently in the IBM-2 framework [20–22], while

in the sdg-IBM framework no transitions toward stable triaxial
shapes have been found so far [23].

In the present work, the Z(5) solution is modified by
replacing the infinite square well potential in β by a Davidson
potential [24],

u(β) = β2 + β4
0

β2
, (1)

where β0 corresponds to the position of the minimum of the
potential. This solution is going to be called Z(5)-D. Similar
studies already exist in the literature for both the E(5) [8,25]
and X(5) [26,27] cases. In addition, other potentials, such as
β2n potentials [28–30] and the Morse [31] and Kratzer [8]
potentials, have been used in the E(5) (γ -unstable) [32] and
X(5) (γ ≈ 0, prolate deformed) [33] frameworks.

In addition to providing results that are easily comparable
to experiment analytical solutions for the spectra and B(E2)
transition rates, the present study leads to an important by-
product. Using a variational procedure applied earlier in the
E(5) and X(5) frameworks [26,27], one can see that the Z(5)
solution can be interpreted as corresponding to the critical
point of a shape phase transition between a triaxial vibrator
and a rigid triaxial rotator.

In Secs. II and III, the β part and the γ part of the spectrum
are considered, and B(E2) transition rates are calculated in
Sec. IV. Numerical results, including results of the previously
mentioned variational procedure, are shown in Sec. V, and in
Sec. VI a brief comparison to experimental results is attempted.
Finally, conclusions and plans for further work are found in
Sec. VII.

II. THE β PART OF THE SPECTRUM

The original Bohr Hamiltonian [10] is

H = − h̄2

2B

[
1

β4

∂

∂β
β4 ∂

∂β
+ 1

β2 sin 3γ

∂

∂γ
sin 3γ

∂

∂γ

− 1

4β2

∑
k=1,2,3

Q2
k

sin2
(
γ − 2

3πk
)
]

+ V (β, γ ), (2)
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where β and γ are the usual collective coordinates, Qk (k = 1,
2, 3) are the components of angular momentum in the intrinsic
frame, and B is the mass parameter.

In the case in which the potential has a minimum around
γ = π/6, the term involving the components of the angular
momentum can be written [13] in the form 4(Q2

1 + Q2
2 +

Q2
3) − 3Q2

1. By using this result in the Schrödinger equation
corresponding to the Hamiltonian of Eq. (2), introducing
[2] reduced energies ε = 2BE/h̄2 and reduced potentials
u = 2BV/h̄2, and assuming [2] that the reduced potential can
be separated into two terms, one depending on β and the other
depending on γ [i.e., u(β, γ ) = u(β) + v(γ )], the Schrödinger
equation can be approximately separated into two equations,{

− 1

β4

∂

∂β
β4 ∂

∂β
+ 1

4β2
[4L(L + 1) − 3α2] + u(β)

}
ξL,α(β)

= εβξL,α(β), (3)

[
− 1

〈β2〉 sin 3γ

∂

∂γ
sin 3γ

∂

∂γ
+ v(γ )

]
η(γ ) = εγ η(γ ), (4)

where L is the angular momentum quantum number, α is the
projection of the angular momentum on the body-fixed x̂ ′ axis
(α has to be an even integer [34]), 〈β2〉 is the average of β2 over
ξ (β), and ε = εβ + εγ . It should be noticed that the separation
of variables is approximate, since in Eq. (4) the quantity 〈β2〉
appears, which depends on the quantum numbers L and α,
appearing in Eq. (3). Therefore, an approximate separation of
variables is achieved in the adiabatic limit, as in Ref. [35].
As a consequence, the energy relation ε = εβ + εγ is also
approximate.

The total wave function should have the form 	(β, γ, θi) =
ξL,α(β)η(γ )DL

M,α(θi), where θi (i = 1, 2, 3) are the Euler
angles, D(θi) denote Wigner functions of them, L are the
eigenvalues of angular momentum, and M and α are the
eigenvalues of the projections of angular momentum on
the laboratory fixed ẑ axis and the body-fixed x̂ ′ axis
respectively.

Instead of the projection α of the angular momentum on
the x̂ ′ axis, it is customary to introduce the wobbling quantum
number [34,36] nw = L − α, which labels a series of bands
with L = nw, nw + 2, nw + 4, . . . (with nw > 0) next to the
ground-state band (with nw = 0) [34].

Equation (3) has been solved in the case in which u(β) is an
infinite well potential, and the corresponding solution is called
Z(5) [13]. The spectrum is given by roots of Bessel functions,
for which the notation has been kept the same as in Ref. [2],
namely Es,nw,L, with the ground-state band corresponding to
s = 1, nw = 0.

Equation (3) is exactly solvable also in the case in which
the potential has the form of a Davidson potential [24],

u(β) = β2 + β4
0

β2
, (5)

where β0 is the position of the minimum of the potential. When
plugging the Davidson potential into Eq. (3), the β4

0/β2 term
of the potential is combined with the [4L(L + 1) − 3α2]/4β2

term appearing there, and the equation is solved exactly [25,37]

the eigenfunctions being Laguerre polynomials of the form

ξn,nw,L(β) = ξn,α,L(β)

=
[

2n!

�
(
n + a + 5

2

)
]1/2

βaL
a+ 3

2
n (β2)e−β2/2, (6)

where �(z) stands for the � function, n is the usual oscillator
quantum number (which should be distinguished from the
wobbling quantum number nw), La

n(z) denotes the Laguerre
polynomials [38], and

a = −3

2
+

√
4L(L + 1) − 3α2 + 9

4
+ β4

0

= −3

2
+

√
L(L + 4) + 3nw(2L − nw) + 9

4
+ β4

0 . (7)

The energy eigenvalues are then (in h̄ω = 1 units)

E
(nw)
n,L = 2n + a + 5

2

= 2n + 1 +
√

L(L + 4) + 3nw(2L − nw) + 9

4
+ β4

0 ,

(8)

where n = 0, 1, 2, . . . . One can see that a formal correspon-
dence between the energy levels of the Z(5) model and the
present model, to which we refer as the Z(5)-D model, can be
established through the relation n = s − 1, which expresses a
formal one-to-one correspondence between the states in the
two spectra, while the origins of the two quantum numbers are
different, s labeling the order of a zero of a Bessel function and
n labeling the number of zeros of a Laguerre polynomial. For
the energy states, the notation Es,nw,L = En+1,nw,L is used, as
in Refs. [2,13]. Therefore, the ground-state band corresponds
to s = 1 (n = 0) and nw = 0.

In the limit β0 → ∞, one can expand the square root in
Eq. (8) and keep only the lowest order term, thus obtaining

E
(nw)
L = A[L(L + 4) + 3nw(2L − nw)], (9)

where A is a constant, which is the spectrum of the triaxial
rotator obtained in Ref. [34].

In the special case β0 = 0, that is, in the case where a
harmonic oscillator is used, one obtains a parameter-free (up
to overall scale factors), exactly soluble model to which we
refer as the Z(5)-β2 model, in analogy to the E(5)-β2n [28,29]
and X(5)-β2n [30] models. This model represents a triaxial
vibrator.

III. THE γ PART OF THE SPECTRUM

The γ part of the spectrum is obtained from Eq. (4), as
described in Ref. [13], by putting in it a harmonic oscillator
potential having a minimum at γ = π/6, that is,

v(γ ) = 1

2
c
(
γ − π

6

)2
= 1

2
cγ̃ 2, γ̃ = γ − π

6
. (10)

In the case of γ ≈ π/6, a simple harmonic oscillator equation
in the variable γ̃ occurs. Similar potentials and solutions in the
γ variable have been considered in [10,39].
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The total energy in the case of the Z(5)-D model is then

E(n, nw,L, nγ̃ , β0) = E0 + A

[
2n + 1 +

√
L(L + 4) + 3nw(2L − nw) + 9

4
+ β4

0

]
+ Bnγ̃ , (11)

where nγ̃ is the number of oscillator quanta in the γ̃ degree of
freedom, and E0, A, and B are free parameters.

It should be noticed that in Eq. (4) there is a latent
dependence on s, L, and nw “hidden” in the 〈β2〉 term. The
approximate separation of the β and γ variables is achieved
by considering an adiabatic limit, as in the X(5) case [2,35].

IV. B(E2) TRANSITION RATES

The quadrupole operator is given by

T (E2)
µ = tβ

[
D(2)

µ,0(θi) cos

(
γ − 2π

3

)

+ 1√
2

[D(2)
µ,2(θi) + D(2)

µ,−2(θi)] sin

(
γ − 2π

3

)]
,

(12)

where t is a scale factor, while in the Wigner functions, D(2),
the quantum number α appears next to µ, and the quantity
γ − 2π/3 in the trigonometric functions is obtained from γ −
2πk/3 for k = 1, since in the present case the projection α

along the body-fixed x̂ ′ axis is used.
The symmetrized wave function for Z(5)-D reads

	(β, γ, θi) = ξn,α,L(β)ηnγ̃
(γ̃ )

√
2L + 1

16π2(1 + δα,0)

× [
D(L)

µ,α + (−1)LD(L)
µ,−α

]
,

(13)

where the normalization factor occurs from the standard
integrals involving two Wigner functions [40] and is the
same as in [34]. The α has to be an even integer [34],
while for α = 0 it is clear that only even values of L are
allowed, since the symmetrized wave function is vanishing
otherwise.

The calculation of B(E2)’s proceeds as in Ref. [13] and
need not be repeated here. In the calculation of matrix
elements, the integral over γ̃ leads to unity [because of the
normalization of η(γ̃ ), taking into account that γ in Eq. (12)
is fixed to the π/6 value, because of the steep potential used
in γ ], while the integral over β takes the form

Iβ(ni, Li, αi, nf , Lf , αf )

=
∫

βξni ,αi ,Li
(β)ξnf ,αf ,Lf

(β)β4dβ, (14)

where the β factor comes from Eq. (12) and the β4 factor
comes from the volume element [10]. It is worth remembering,
though, that a �α = ±2 selection rule occurs, which results
in vanishing quadrupole moments.

V. NUMERICAL RESULTS

A. Spectra

The lowest bands for the Z(5)-D model are shown in
Table I for the limiting parameter values β0 = 0 [the Z(5)-β2

model] and β → ∞ (the triaxial rotor model [34,39]), as well
as for the intermediate value β0 = 2 (for illustrative purposes).
The levels of Z(5) [13] are also shown for comparison. The
bands shown are as follows:

(i) The ground-state band (gsb), with (s = 1, nw = 0).
(ii) The quasi-γ1 band, composed of the even L levels

with (s = 1, nw = 2) and the odd L levels with (s = 1,

nw = 1).
(iii) The quasi-γ2 band, composed of the even L levels

with (s = 1, nw = 4) and the odd L levels with (s = 1,

nw = 3).
(iv) The quasi-β1 band, with (s = 2, nw = 0).
(v) The quasi-β2 band, with (s = 3, nw = 0).

Since the last two bands go to infinity for β0 → ∞, the
energy levels for β0 = 3 have been shown instead.

In all cases, B = 0 has been used in Eq. (11), that is, the
term involving nγ̄ has been ignored.

For all bands, a uniform raising of the energies from the
triaxial vibrator (β0 = 0) values to the triaxial rigid rotator
(β0 → ∞) values is observed.

A quantity that is very sensitive to structural changes
(since it is a discrete derivative of energies) is the odd-even
staggering in γ bands, described by quantity [16]

S(J ) = E(J+
γ ) + E((J − 2)+γ ) − 2E((J − 1)+γ )

E(2+
1 )

, (15)

which measures the displacement of the (J − 1)+γ level relative
to the average of its neighbors, J+

γ and (J − 2)+γ , normalized to
the energy of the first excited state of the ground-state band, 2+

1 .
It is known [17] that γ -soft shapes exhibit staggering with

negative values at even L and positive values at odd L, while
triaxial γ -rigid shapes exhibit the opposite behavior, that is,
positive values at even L and negative values at odd L. In
Table I, it is clear that the present models exhibit strong
staggering of the triaxial type, with the even-L levels growing
much faster with L than the odd-L levels.

B. Variational procedure

A variational procedure appropriate for locating the behav-
ior of various physical quantities at a critical point has been
introduced [26,27] and applied for recovering the E(5) [1]
and X(5) [2] ground-state bands from Davidson potentials in
the relevant frameworks. The method is applicable in cases
in which one has a one-parameter potential spanning the
region between two limiting symmetries. The method is based
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TABLE I. Energy spectra of the Z(5)-D model (for different values of the parameter β0), and for the Z(5) model [13]. β0 = 0 corresponds
to the Z(5)-β2 model (a triaxial vibrator), while β → ∞ is the rigid triaxial rotator [14,15]. The notation Ls,nw

is used. All levels are measured
from the ground state, 01,0, and are normalized to the first excited state, 21,0. See Subsec. V A for further discussion. In addition, the energy
levels resulting from the variational procedure of Subsec. V B are reported (labelled by “Var”), along with the parameter values β0,m at which
they are obtained. See Subsec. V B for further discussion.

β0 0 2 ∞ β0 0 2 ∞
Ls,nw

β0,m Var Z(5) Ls,nw
β0,m Var Z(5)

01,0 0.000 0.000 0.000 0.000
21,0 1.000 1.000 1.000 1.000
41,0 2.150 2.521 2.667 1.375 2.341 2.350
61,0 3.353 4.424 5.000 1.474 3.956 3.984
81,0 4.579 6.596 8.000 1.562 5.819 5.877
101,0 5.817 8.957 11.667 1.640 7.915 8.019
121,0 7.063 11.450 16.000 1.713 10.237 10.403
141,0 8.313 14.039 21.000 1.780 12.781 13.024
161,0 9.566 16.698 26.667 1.843 15.544 15.878
181,0 10.821 19.410 33.000 1.902 18.523 18.964
201,0 12.077 22.163 40.000 1.960 21.719 22.279

21,2 1.734 1.932 2.000 1.336 1.833 1.837
31,1 2.343 2.807 3.000 1.392 2.586 2.597 41,2 3.649 4.930 5.667 1.496 4.386 4.420
51,1 3.791 5.177 6.000 1.507 4.597 4.634 61,2 5.281 7.917 10.000 1.607 6.981 7.063
71,1 5.169 7.703 9.667 1.600 6.790 6.869 81,2 6.791 10.898 15.000 1.697 9.713 9.864
91,1 6.511 10.333 14.000 1.681 9.182 9.318 101,2 8.234 13.874 20.667 1.776 12.615 12.852
111,1 7.832 13.035 19.000 1.754 11.778 11.989 121,2 9.635 16.847 27.000 1.846 15.703 16.043
131,1 9.140 15.788 24.667 1.822 14.581 14.882 141,2 11.008 19.818 34.000 1.911 18.986 19.443
151,1 10.438 18.579 31.000 1.885 17.593 18.000 161,2 12.360 22.787 41.667 1.972 22.468 23.056
171,1 11.730 21.399 38.000 1.944 20.815 21.341 181,2 13.698 25.755 50.000 2.030 26.154 26.884
191,1 13.017 24.241 45.667 2.001 24.248 24.905 201,2 15.024 28.721 59.000 2.085 30.046 30.928

41,4 4.066 5.663 6.667 1.526 5.012 5.056
51,3 4.939 7.268 9.000 1.585 6.406 6.476 61,4 6.221 9.753 13.000 1.665 8.644 8.767
71,3 6.699 10.711 14.667 1.692 9.537 9.683 81,4 8.075 13.541 20.000 1.767 12.282 12.508
91,3 8.313 14.039 21.000 1.780 12.781 13.024 101,4 9.773 17.143 27.667 1.853 16.021 16.372
111,3 9.841 17.289 28.000 1.856 16.180 16.536 121,4 11.374 20.618 36.000 1.928 19.904 20.396
131,3 11.314 20.486 35.667 1.925 19.752 20.237 141,4 12.910 24.003 45.000 1.996 23.953 24.598
151,3 12.747 23.642 44.000 1.989 23.509 24.137 161,4 14.399 27.320 54.667 2.059 28.182 28.991
171,3 14.152 26.768 53.000 2.049 27.460 28.241 181,4 15.853 30.586 65.000 2.118 32.601 33.581
191,3 15.536 29.871 62.667 2.105 31.611 32.553 201,4 17.281 33.811 76.000 2.174 37.217 38.373

β0 0 2 3 β0 0 2 3
Ls,nw

β0,m Var Z(5) Ls,nw
β0,m Var Z(5)

02,0 2.528 5.921 12.274 3.913 03,0 5.055 11.842 24.548 9.782
22,0 3.528 6.921 13.274 5.697 23,0 6.055 12.842 25.548 12.343
42,0 4.678 8.442 14.903 7.962 43,0 7.205 14.363 27.177 15.506
62,0 5.881 10.345 17.110 10.567 63,0 8.408 16.266 29.384 19.059
82,0 7.107 12.517 19.835 13.469 83,0 9.634 18.439 32.109 22.933
102,0 8.345 14.878 23.015 16.646 103,0 10.873 20.799 35.289 27.103
122,0 9.590 17.371 26.588 20.088 123,0 12.118 23.292 38.862 31.552
142,0 10.840 19.960 30.497 23.788 143,0 13.368 25.881 42.771 36.272
162,0 12.093 22.619 34.692 27.740 163,0 14.621 28.540 46.966 41.258
182,0 13.348 25.331 39.129 31.942 183,0 15.876 31.253 51.403 46.504
202,0 14.605 28.084 43.772 36.390 203,0 17.132 34.005 56.046 52.007

on the fact that if a shape phase transition occurs between
these two symmetries, the rate of change of various physical
quantities should become maximum at the critical point [41].
The parameter value corresponding to the maximum, β0,m, is
determined for each value of angular momentum separately.

The variational procedure used here resembles the standard
Ritz variational procedure of quantum mechanics [42], in
which a trial wave function containing a free parameter is
used, whereas here a potential containing a free parameter
is used, the difference being that in the Ritz approach the
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TABLE II. Intraband and interband B(E2) transition rates, normalized to the one between the two lowest states, B(E2;21,0 → 01,0), are
given for Z(5)-D model (for different values of the parameter β0), for the Z(5) model [13], and for the O(6) limit of the IBM [12]. β0 = 0
corresponds to the Z(5)-β2 model (a triaxial vibrator), while β → ∞ is the rigid triaxial rotator [14,15]. The notation Ls,nw

is used, while the
initial state is labeled by (i) and the final state is labeled by (f ).

β0 0 2 ∞ β0 0 2 ∞
L(i)

s,nw
L(f )

s,nw
O(6) Z(5) L(i)

s,nw
L(f )

s,nw
O(6) Z(5)

21,0 01,0 1.000 1.000 1.000 1.000 1.000 22,0 02,0 1.480 1.284 1.000 0.774
41,0 21,0 1.834 1.493 1.389 1.429 1.590 42,0 22,0 2.440 1.865 1.389 1.192
61,0 41,0 2.919 2.041 1.731 1.667 2.203 62,0 42,0 3.647 2.477 1.731 1.643
81,0 61,0 3.955 2.497 1.912 1.818 2.635 82,0 62,0 4.746 2.955 1.912 1.975
101,0 81,0 4.976 2.934 2.024 1.923 2.967 102,0 82,0 5.804 3.398 2.024 2.242
121,0 101,0 5.989 3.370 2.100 2.000 3.234 122,0 102,0 6.844 3.836 2.100 2.466
141,0 121,0 6.999 3.810 2.155 2.059 3.455 142,0 122,0 7.874 4.277 2.155 2.660
161,0 141,0 8.007 4.257 2.197 2.105 3.642 162,0 142,0 8.897 4.723 2.197 2.829
181,0 161,0 9.014 4.708 2.230 2.143 3.803 182,0 162,0 9.915 5.175 2.230 2.980
201,0 181,0 10.020 5.164 2.256 2.174 3.944 202,0 182,0 10.931 5.630 2.256 3.115

41,2 21,2 0.912 0.682 0.595 0.873 0.736 31,1 21,2 2.731 2.006 1.786 1.190 2.171
61,2 41,2 1.583 0.986 0.734 1.240 1.031 51,1 41,2 1.991 1.244 0.955 0.434 1.313
81,2 61,2 2.816 1.617 1.051 1.462 1.590 71,1 61,2 2.183 1.262 0.851 0.231 1.260
101,2 81,2 4.038 2.215 1.278 1.614 2.035 91,1 81,2 2.247 1.241 0.746 0.145 1.164
121,2 101,2 5.231 2.786 1.446 1.726 2.394 111,1 101,2 2.265 1.214 0.657 0.100 1.069
141,2 121,2 6.395 3.339 1.574 1.813 2.690 131,1 121,2 2.265 1.189 0.585 0.073 0.984
161,2 141,2 7.535 3.877 1.674 1.882 2.938 151,1 141,2 2.258 1.168 0.526 0.056 0.910
181,2 161,2 8.655 4.406 1.755 1.938 3.151 171,1 161,2 2.247 1.149 0.478 0.044 0.846
201,2 181,2 9.759 4.927 1.822 1.985 3.335 191,1 181,2 2.236 1.133 0.437 0.036 0.790

21,2 21,0 1.865 1.520 1.429 1.429 1.620 31,1 41,0 1.618 1.147 1.000 0.476 1.243
41,2 41,0 0.459 0.323 0.273 0.794 0.348 51,1 61,0 1.449 0.917 0.714 0.430 0.972
61,2 61,0 0.292 0.187 0.143 0.579 0.198 71,1 81,0 1.351 0.796 0.556 0.374 0.808
81,2 81,0 0.211 0.127 0.088 0.462 0.129 91,1 101,0 1.287 0.724 0.455 0.327 0.696
101,2 101,0 0.165 0.094 0.059 0.386 0.092 111,1 121,0 1.243 0.676 0.385 0.291 0.614
121,2 121,0 0.135 0.074 0.043 0.332 0.069 131,1 141,0 1.211 0.643 0.333 0.261 0.551
141,2 141,0 0.114 0.061 0.032 0.292 0.054 151,1 161,0 1.186 0.619 0.294 0.237 0.507
161,2 161,0 0.099 0.052 0.025 0.261 0.043 171,1 181,0 1.167 0.601 0.263 0.216 0.459
181,2 181,0 0.087 0.045 0.020 0.236 0.035 191,1 201,0 1.151 0.587 0.238 0.199 0.425
201,2 201,0 0.078 0.040 0.017 0.215 0.030

51,1 31,1 1.667 1.147 0.955 0.955 1.235
71,1 51,1 2.891 1.778 1.310 1.319 1.851
91,1 71,1 4.061 2.338 1.535 1.528 2.308
111,1 91,1 5.191 2.865 1.690 1.668 2.665
131,1 111,1 6.292 3.374 1.802 1.771 2.952
151,1 131,1 7.373 3.873 1.887 1.850 3.190
171,1 151,1 8.440 4.366 1.954 1.913 3.392
191,1 171,1 9.496 4.856 2.007 1.965 3.566

parameter is determined by minimizing the energy, whereas
here the parameter is found to maximize the rate of change
of the relevant physical quantity. L-dependent potentials, like
the ones occurring here, have been used in nuclear physics
in optical model potentials [43–45], as well as in the study of
quasimolecular resonances [46]. The method is also analogous
to the variable moment of inertia model (VMI) [47], in which
the energy is minimized with respect to the moment of inertia
(which depends on the angular momentum) separately for each
value of the angular momentm L.

In the present case, as seen in Subsec. II A, the Davidson
potentials of Eq. (1) lead to a triaxial vibrator Z(5)-β2 for

β0 = 0, while they give the rigid triaxial rotator [14,15,34] for
β0 → ∞. Applying the variational procedure to the energy
ratios E(L)/E(2) of the ground-state band (s = 1, nw = 0) of
the Z(5)-D model, where β0 is the free parameter serving to
span the region between the two limiting cases, we are led
to the results shown in Table I, where for each value of the
angular momentum L the location of the maximum, β0,m, and
the corresponding energy (normalized to the energy of the first
excited state) are given. It is clear that the band determined
through the variational procedure agrees very well with the
ground-state band of the Z(5) model. The agreement remains
equally good for the s = 1, nw = 1, 2, 3, 4 bands, also shown in
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Table I, thus indicating that the Z(5) model is possibly related
to a shape phase transition from a triaxial vibrator to the rigid
triaxial rotator.

C. B(E2) transition rates

Both intraband and interband B(E2) transition rates for the
same models are reported in Table II. In addition, results for the
O(6) limit of the IBM [12] are shown for comparison, derived
from the expressions given in Ref. [12], the final results reading

Rg,g(L + 2 → L)

= B[E2; (L + 2)g → Lg]

B(E2; 2g → 0g)

= 5

2

(L + 2)

(L + 5)

(2N − L)(2N + L + 8)

4N (N + 4)
, (16)

Rγeven,g(L → L)

= B(E2; Lγ → Lg)

B(E2; 2g → 0g)

= 10(L + 1)

(L + 5)(2L − 1)

(2N − L)(2N + L + 8)

4N (N + 4)
, (17)

Rγodd,g(L → L + 1)

= B[E2; Lγ → (L + 1)g]

B(E2; 2g → 0g)

= 5(L − 1)(2L + 3)

L(L + 6)(2L + 1)

(2N − L − 1)(2N + L + 9)

4N (N + 4)
,

(18)

Rγeven→γeven (L + 2 → L)

= B[E2; (L + 2)γ → Lγ ]

B(E2; 2g → 0g)

= 5L(2L + 7)

2(L + 7)(2L + 3)

(2N − L − 2)(2N + L + 10)

4N (N + 4)
,

(19)

Rγodd→γodd (L + 2 → L)

= B[E2; (L + 2)γ → Lγ ]

B(E2; 2g → 0g)

= 5(L− 1)(L+ 3)(L+ 4)

2(L+ 1)(L+ 2)(L+ 8)

(2N − L− 3)(2N + L+ 11)

4N (N + 4)
,

(20)

Rγodd→γeven (L → L − 1)

= B[E2; Lγ → (L − 1)γ ]

B(E2; 2g → 0g)

= 30(L + 2)

(L − 1)(L + 6)(2L + 1)

(2N − L − 1)(2N + L + 9)

4N (N + 4)
.

(21)

In all of the previous equations, N stands for the boson
number. Numerical results for N → ∞ are reported in
Table II. We remark that the O(6) predictions for N → ∞ are
very similar to the ones of the rigid triaxial rotator [14,15],
that is, to those of the Z(5)-D model for β0 → ∞.

TABLE III. Comparison of theoretical predictions of the Z(5)-
D model, labeled by the relevant β0 value, to experimental spectra of
128Xe [48], 130Xe [49], and 132Xe [50]. In each column, all energies
are normalized to the energy of the relevant 2+

1 state. The quality
measure σ of Eq. (22) is used. See Sec. VI for further discussion.

Ls,nw
128Xe 128Xe 130Xe 130Xe 132Xe 132Xe
exp β0 = 1.32 exp β0 = 1.11 exp β0 = 0

41,0 2.333 2.323 2.247 2.255 2.157 2.150
61,0 3.922 3.805 3.627 3.621 3.163 3.353
81,0 5.674 5.372 5.031 5.040
101,0 7.597 6.986 6.457 6.489
121,0 7.867 7.956
141,0 9.458 9.434

21,2 2.189 1.830 2.093 1.793 1.944 1.734
41,2 3.620 4.180 3.373 3.961 2.940 3.649
61,2 5.150 6.284

31,1 3.228 2.555 3.045 2.471 2.701 2.343
51,1 4.508 4.360 4.051 4.125 3.246 3.791
71,1 6.165 6.138

02,0 3.574 3.452 3.346 3.028 2.771 2.528
22,0 4.515 4.452

σ 0.495 0.297 0.422

VI. COMPARISON TO EXPERIMENT

As seen from Table I, one should look for nuclei having
ground-state bands characterized by R4/2 = E(4)/E(2) ratios
between 2.150 and 2.667, while the γ1 bandhead (normalized
to the 2+

1 state) should be between 1.734 and 2.000 and the
β1 bandhead (normalized in the same way) should be above
2.528. The Xe isotopes 128−132Xe, lying below the N = 82
shell closure, nearly fulfill these conditions. Results of one-
parameter (β0) rms fits are shown in Table III, with σ being
the quality measure

σ =
√∑n

i=1[Ei(exp) − Ei(th)]2

(n − 1)E(2+
1 )2

. (22)

TABLE IV. Comparison of theoretical predictions of the Z(5)-
D model, labeled by the relevant β0 value, to experimental B(E2)
values of 128Xe [48] and 132Xe [50]. In each column, all B(E2)’s
are normalized to the 2+

1 → 0+
1 transition. See Sec. VI for further

discussion.

L(i)
s,nw

L(f )
s,nw

128Xe 128Xe 132Xe 132Xe
exp β0 = 1.32 exp β0 = 0

41,0 21,0 1.468 ± 0.201 1.648 1.238 ± 0.180 1.834
61,0 41,0 1.940 ± 0.275 2.464
81,0 61,0 2.388 ± 0.398 3.228

21,2 21,0 1.194 ± 0.187 1.673 1.775 ± 0.288 1.865
21,2 01,0 0.016 ± 0.002 0.000 0.003 ± 0.001 0.000
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The overall agreement is good, with the notable exception
of the even-L levels of the quasi-γ1 band, which grow too
fast, as already remarked at the end of Subsec. V A. As a
result, the theoretical predictions exhibit strong triaxial odd-
even staggering, which is not seen experimentally. Indeed,
the Xe isotopes are known [17] to exhibit staggering of the
γ -soft type, in contrast to the strong triaxial γ -rigid staggering
shown here by the theoretical values. The only nuclei found
in the extended recent search of Ref. [17] to possess γ1 bands
with triaxial shapes are 112Ru, 170Er, 192Os, 192Pt, and 232Th,
all of them located in the nuclear chart far from the Xe isotopes
considered here.

In Table IV the existing B(E2) transition rates of the same
nuclei are compared to the Z(5)-D model predictions for the
parameter values obtained from fitting the spectra. No fitting
of the B(E2) values has been performed. The theoretical
predictions are in general higher than the experimental
values, but in most cases lie within or near the experimental
error bars.

VII. CONCLUSIONS

Z(5) [13] is a solution of the Bohr Hamiltonian similar to
the X(5) [2] solution, with the notable difference that it regards
triaxial shapes (γ ≈ π/6) instead of prolate deformed shapes
(γ ≈ 0). Predictions for spectra and B(E2) transition rates are
parameter independent (up to overall scale factors).

In the present Z(5)-D solution, the infinite square well
u(β) potential, used in Z(5), is replaced by the Davidson
potential [24], involving a free parameter, β0. As a result,
Z(5)-D can cover the region between a triaxial vibrator and
the rigid triaxial rotator [14,15]. In addition to providing easily
comparable to experiment analytical solutions for spectra and
B(E2) values within this wide region, the present solution
has an interesting by-product. Using a variational procedure
[26,27], we point out that the Z(5) solution corresponds
to the critical point of the shape phase transition from a

triaxial vibrator to the rigid triaxial rotator. However, the Z(5)
solution is not a special case of Z(5)-D, obtained for a specific
parameter value, or a limiting case of Z(5)-D. By using the
Davidson potential, one can cover the whole way from triaxial
vibrator to triaxial rotator, but one cannot get the critical point
as a special case. This is due to the shape of the Davidson
potential, which is not flat, as the potential is expected to be at
the critical point. The same situation has occurred in the ESD
model [51], in which the Davidson potential is used in order
to interpolate between a vibrator and the prolate axial rotator
with γ ≈ 0. By using the Exactly Separable Davidson (ESD)
model, one can obtain very good fits of many nuclei from the
prolate rotator limit down to close to the critical point, but one
cannot describe the nuclei very close to the critical point [51].

Concerning the separation of variables, which allowed for
analytical solutions, a potential of the form u(β) + v(γ ) has
been used, bringing in the approximations used in X(5) [2].
These approximations can be avoided in two ways:

(i) Using potentials of the form u(β) + v(γ )/β2, which are
known [8] to allow for exact separation of variables without
any approximations.

(ii) Using the powerful techniques of the algebraic col-
lective model [52–54], which allow for the exact numerical
diagonalization of any Bohr Hamiltonian.

The first path has been used for a detailed study of the
Davidson potential plugged in the Bohr Hamiltonian for γ ≈ 0
[51]. The main advantage of this solution is that all bands are
treated on equal footing with respect to the influence of the
v(γ ) potential, while in the present solution only the quasi-γ
bands are affected. A similar study for γ ≈ π/6 case would be
interesting. The analytical solution and a brief comparison to
experiment in the Os region has already been given in Ref. [55].

The second path has been recently used for the description
of a triaxial symmetry top [54], as well as for the study the
onset of rigid triaxial deformation [56]. Further investigations
of triaxial shapes using this powerful tool should also be
revealing.
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