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The muon-capture reactions 2H(µ−, νµ)nn and 3He(µ−, νµ)3H are studied with conventional or chiral realistic
potentials and consistent weak currents. The initial and final A = 2 and A = 3 nuclear wave functions are
obtained from the Argonne v18 or chiral next-to-next-to-next-to leading order (N3LO) two-nucleon potential,
in combination with, respectively, the Urbana IX or chiral next-to-next-to leading order (N2LO) three-nucleon
potential in the case of A = 3. The weak current consists of polar- and axial-vector components. The former
are related to the isovector piece of the electromagnetic current via the conserved-vector-current hypothesis.
These and the axial currents are derived either in a meson-exchange or in a chiral effective field theory (χEFT)
framework. There is one parameter (either the N -to-� axial coupling constant in the meson-exchange model, or
the strength of a contact term in the χEFT model) that is fixed by reproducing the Gamow-Teller matrix element
in tritium β decay. The model dependence relative to the adopted interactions and currents (and cutoff sensitivity
in the χEFT currents) is weak, resulting in total rates of 392.0 ± 2.3 s−1 for A = 2, and 1484 ± 13 s−1 for A = 3,
where the spread accounts for this model dependence.
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I. INTRODUCTION

There is a significant body of experimental and theoretical
work on muon capture in nuclei (see Refs. [1,2] for a review).
These processes provide a testing ground for wave functions
and, indirectly, the interactions from which these are obtained,
and for models of the nuclear weak current. This is particularly
important for neutrino reactions in light nuclei [3] and for
processes, such as the astrophysically relevant weak captures
on proton and 3He, the rates of which can not be measured
experimentally, and for which one has to rely exclusively on
theory. Thus, it becomes crucial to study within the same
theoretical framework related electroweak transitions, for
which the rates are known experimentally [4]. Muon captures
are among such reactions.

In this paper, we focus our attention on muon capture on
deuteron and 3He, i.e., on the reactions

µ− + d → n + n + νµ, (1.1)

µ− + 3He → 3H + νµ. (1.2)

Muon capture on 3He can also occur through the two- (nd)
and three-body (nnp) breakup channels of 3H. However, the
branching ratios of these two processes are 20% and 10%,
respectively, and will not be considered in this paper.

These reactions have been studied extensively, both ex-
perimentally and theoretically, through the years. In reaction
(1.1), the stopped muons are captured from two hyperfine
states f = 1/2 or 3/2. The doublet capture rate �D has been
calculated by several groups to be about 40 times larger than
the quadruplet [1,2]. We will therefore consider only �D . The
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first attempt to measure �D was carried out over 40 years
ago by Wang et al.: they obtained �D = 365(96) s−1 [5]. A
few years later, Bertin et al. measured �D = 445(60) s−1 [6].
Measurements performed in the 1980s gave �D = 470(29) s−1

[7] and �D = 409(40) s−1 [8]. These measurements, while
consistent with each other, are not very precise: the errors are
in the 6% –10% range. However, there is hope to have this
situation clarified by the MuSun Collaboration [9], which is
expected to perform an experiment at the Paul Scherrer Institut,
with the goal of measuring �D with a precision of 1%.

The experimental situation for reaction (1.2) is much
clearer: after a first set of measurements in the early 1960s
[10–13], a very precise determination in the late 1990s yielded
a total capture rate �0 = 1496(4) s−1 [14], a value consistent
with those of the earlier measurements, although these were
affected by considerably larger uncertainties.

Theoretical work on reactions (1.1) and (1.2) is just as
extensive, and a list of publications, updated to the late 1990s,
is given in Table 4.1 of Ref. [1], and in Ref. [2]. Here, we
limit our considerations to the calculations of Refs. [15–17].
We also comment on the recent studies of Ando et al. [18] and
Ricci et al. [19].

The calculations of Refs. [15–17] were performed within
the standard nuclear physics approach (SNPA): their authors
used the realistic potential models available at the time
to obtain the nuclear wave functions, and included in the
nuclear weak current operator one- (impulse approximation)
and two-body operators. In Ref. [15], �D was calculated to
be 416(7) s−1, with the uncertainty coming from imprecise
knowledge of the coupling constants, and, in Refs. [16] and
[17], 399 and 402 s−1, respectively. The results of Refs. [16]
and [17] are in good agreement with each other, while that of
Ref. [15] differs by ∼4%. It is important to note, however, that
the meson-exchange-currents (MEC) contributions were not
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constrained to reproduce any experimental observable, such
as the triton half-life, as is now common practice [20–22].

Reference [18] overcame some of the limitations inherent
in the earlier studies. Much along the lines of Ref. [22],
reaction (1.1) was studied within a hybrid chiral effective
field theory (χEFT) approach, in which matrix elements of
weak operators derived in χEFT were evaluated between wave
functions obtained from a realistic potential, specifically the
Argonne v18 (AV18) [23]. The χEFT axial current contains
a low-energy constant, which was fixed by reproducing the
experimental Gamow-Teller matrix element (GTEXP) in tritium
β decay. The calculation, however, retained only the S-wave
contribution in the nn final scattering state (the 1S0 state), and
higher partial-wave contributions were taken from Ref. [16].
This approach yielded a value for �D of 386 s−1, with
�D(1S0) = 245(1) s−1, the theoretical error being related to
the experimental uncertainty in GTEXP.

The latest SNPA calculation of muon capture on deuteron
has been carried out in Ref. [19], and has led to values in the
range of 416–430 s−1 (see Table 1 of Ref. [19]), depending on
the potential used, i.e., the Nijmegen I or Nijmegen 93 [24].
However, the model for the axial current is not constrained by
data, resulting in the relatively large spread in �D values.

Finally, there is a calculation based on pionless EFT [25]
with the objective of constraining the two-nucleon axial-
current matrix element by reproducing the muon-capture rate
on deuterons. This same matrix element enters the pp weak
capture.

Theoretical studies for reaction (1.2) within the SNPA
have been performed in the early 1990s by Congleton and
Fearing [26] and Congleton and Truhlik [27]. In the later
work, the nuclear wave functions were obtained from a realistic
Hamiltonian based on the Argonne v14 (AV14) two-nucleon
[28] and the Tucson-Melbourne (TM) three-nucleon [29]
interactions. The nuclear weak current retained contributions
similar to those of Ref. [19]. The value obtained for the total
capture rate �0 was 1502(32) s−1, with the uncertainty due to
poor knowledge of some of the coupling constants and cutoff
parameters entering the axial current.

A first study of the model dependence of predictions for
the total rate of muon capture on 3He was carried out in
Ref. [30], within the SNPA, but without the inclusion of
MEC contributions. Values for �0 were found to vary by
�100 s−1, depending on the potential model considered.
Both old- (Paris [31], Bonn A and B [32], AV14) and new-
generation (Nijmegen I [24] and CD-Bonn [33]) potentials
were used. However, no three-nucleon forces were included.
This second aspect of the calculation, along with the absence
of MEC contributions, might be the origin of the large model
dependence observed in the results.

A first attempt to study muon capture on 3He in a way
that was consistent with the approach adopted for the weak
proton-capture reactions involved some of the present authors
[34]. The nuclear wave functions were obtained with the
hyperspherical-harmonics (HH) method (see Ref. [35] for a
recent review) from a realistic Hamiltonian based on the AV18
two-nucleon and Urbana IX [36] (UIX) three-nucleon interac-
tions. The model for the nuclear weak current was taken from
Refs. [20,21]. However, two additional contributions were

included: the single-nucleon pseudoscalar charge operator and
the pseudoscalar two-body term in the N -to-� transition axial
current. Both contributions are of order O(q2/m2), where q

is the momentum transfer in the process and m is the nucleon
mass, and were obviously neglected in the pp and hep captures
of Refs. [20,21], for which q � m. The axial coupling constant
for the N -to-� transition was constrained to reproduce GTEXP.
The total capture rate �0 was found to be 1484(8) s−1, where
the uncertainty results from the adopted fitting procedure and
experimental error on GTEXP. A calculation based on the older
AV14-TM Hamiltonian model yielded a �0 of 1486(8) s−1,
suggesting a weak model dependence.

Recently, a hybrid calculation has appeared [37] in which
the nuclear wave functions have been obtained with the
effective interaction HH method [38], and the χEFT weak
current is that of Ref. [22]. It has yielded a value for �0

of 1499(16) s−1, where the error has two main sources:
the experimental uncertainty on the triton half-life and the
calculation of radiative corrections.

In light of the previous considerations, it is clear that
still lacking is a calculation that (i) treats reactions (1.1)
and (1.2) simultaneously in a consistent framework, either
SNPA or χEFT; (ii) is based on up-to-date Hamiltonian
models to generate the wave functions; and (iii) reduces the
model dependence of the weak axial current by constraining
it to reproduce GTEXP. The goal of this paper is to fill
this gap. The calculation has been structured as follows.
The nuclear Hamiltonian models considered consist of the
AV18 and next-to-next-to-next-to leading order (N3LO) [39]
two-nucleon interactions for the A = 2 systems, augmented
by the UIX and next-to-next-to leading order (N2LO) [40]
three-nucleon interactions for the A = 3 systems. The nuclear
weak current is derived from either SNPA or χEFT. In both
cases, its axial component is calibrated by fitting GTEXP, while
its vector part is related to the isovector electromagnetic current
by the conserved-vector-current (CVC) hypothesis. The SNPA
version of it reproduces well the static magnetic properties of
few-nucleon systems. In the χEFT electromagnetic current of
Ref. [41], adopted in this paper, the two low-energy constants
are fixed by reproducing the trinucleon magnetic moments.

In closing, we note that the study of Ref. [34] has established
that the total rate of reaction (1.2) scales approximately linearly
with the trinucleon binding energy. Thus, a realistic calculation
of this rate must, at a minimum, include a three-nucleon
potential that can well reproduce these energies (as is the case
here). Finally, we could have adopted the set of two-nucleon
chiral potentials at N3LO derived by the Bonn group [42]
for a range of cutoff parameters � in order to explore the
sensitivity of the results to the short-range behavior of the
potentials. However, the potentials considered in this study
(AV18 and N3LO) have such drastically different treatments of
this short-range behavior that they should provide a meaningful
measure of the model dependence originating from it.

The paper is organized as follows. In Sec. II, we list the
explicit expressions for the observables of interest in terms of
reduced matrix elements of multipole operators. In the case of
reaction (1.2), the derivation is given in Ref. [34]. In Sec. III,
we briefly review the method used to calculate the nuclear wave
functions and summarize the main results for the observables
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of the nuclear systems involved in the reactions of interest. In
Sec. IV, we describe the model for the nuclear weak current,
both its SNPA and χEFT versions. In Sec. V, we present
and discuss the results obtained for the total capture rates of
reactions (1.1) and (1.2), and, finally, in Sec. VI we summarize
our conclusions.

II. OBSERVABLES

The muon capture on deuteron and 3He is induced by the
weak interaction Hamiltonian [43]

HW = GV√
2

∫
dx lσ (x)jσ (x) , (2.1)

where GV is the Fermi coupling constant, GV = 1.149 39 ×
10−5 GeV−2 as obtained from an analysis of 0+ to 0+
β decays [44], and lσ and jσ are the leptonic and hadronic
current densities, respectively. The former is given by

lσ (x) = e−ikν ·x u(kν, hν) γσ (1 − γ5)ψµ(x, sµ), (2.2)

where ψµ(x, sµ) is the ground-state wave function of the muon
in the Coulomb field of the nucleus in the initial state, and
u(kν, hν) is the spinor of a muon neutrino with momentum
kν , energy Eν (=kν), and helicity hν . While, in principle, the
relativistic solution of the Dirac equation could be used, in
practice it suffices to approximate

ψµ(x, sµ) � ψ1s(x)χ (sµ) ≡ ψ1s(x)u(kµ, sµ)

kµ → 0, (2.3)

since the muon velocity vµ � Zα � 1 (α is the fine-structure
constant and Z = 1 or Z = 2 for deuteron or 3He, respec-
tively). Here, ψ1s(x) is the 1s solution of the Schrödinger
equation and, since the muon is essentially at rest, it is
justified to replace the two-component spin state χ (sµ) with
the four-component spinor u(kµ, sµ) in the limit kµ → 0. This
will allow us to use standard techniques to carry out the spin
sum over sµ at a later stage.

In order to account for the hyperfine structure in the initial
system, the muon and deuteron or 3He spins are coupled to
states with total spin f , equal to 1/2 or 3/2 in the deuteron
case, and to 0 or 1 in the 3He case. The transition amplitude
can then be conveniently written as

TW (f, fz; s1, s2, hν) ≡ 〈nn, s1, s2; ν, hν |HW |(µ,d); f, fz〉
� GV√

2
ψav

1s

∑
sµsd

〈
1

2
sµ, 1sd

∣∣∣∣ffz

〉

× lσ (hν,sµ)
〈
�p,s1s2 (nn)

∣∣jσ (q)|�d (sd )〉,
(2.4)

for the muon capture on deuteron, where p is the nn relative
momentum, and [34]

TW (f, fz; s
′
3, hν) ≡ 〈3H, s ′

3; ν, hν | HW | (µ,3He); f, fz〉
� GV√

2
ψav

1s

∑
sµs3

〈
1

2
sµ,

1

2
s3

∣∣∣∣ffz

〉

× lσ (hν, sµ) 〈�3H(s ′
3)|jσ (q)|�3He(s3)〉,

(2.5)

for muon capture on 3He. In Eqs. (2.4) and (2.5) we have
defined

lσ (hν, sµ) ≡ u(kν, hν) γσ (1 − γ5)u(kµ, sµ), (2.6)

and the Fourier transform of the nuclear weak current has been
introduced as

jσ (q) =
∫

dx eiq·x jσ (x) ≡ (ρ(q), j(q)), (2.7)

with the leptonic momentum transfer q defined as q = kµ −
kν � −kν . The function ψ1s(x) has been factored out from
the matrix element of jσ (q) between the initial and final
states. For muon capture on deuteron, ψav

1s is approximated
as [43]

∣∣ψav
1s

∣∣2 ≡ |ψ1s(0)|2 = (α µµd )3

π
, (2.8)

where ψ1s(0) denotes the Bohr wave function for a point charge
e evaluated at the origin, and µµd is the reduced mass of the
(µ, d) system. For muon capture on 3He, ψav

1s is approximated
as [34]

∣∣ψav
1s

∣∣2 ≡ R (2 α µµ3He)3

π
, (2.9)

where, in this case, µµ3He is the reduced mass of the (µ,3He)
system, and the factor R approximately accounts for the finite
extent of the nuclear charge distribution [43]. This factor is
defined as

R =
∣∣ψav

1s

∣∣2

|ψ1s(0)|2 , (2.10)

with

ψav
1s =

∫
dx eiq·xψ1s(x)ρ(x)∫

dx eiq·xρ(x)
, (2.11)

where ρ(x) is the 3He charge density. It has been calculated
explicitly by using the charge densities corresponding to the
two Hamiltonian models considered in this study (AV18/UIX
and N3LO/N2LO), and has been found to be, for both
models, within a percent of 0.98, the value obtained from
the experimental charge density and commonly adopted in the
literature [43].

In the case of muon capture on deuteron, the final-state
wave function is expanded in partial waves as

�p,s1,s2 (nn) = 4π
∑

S

〈
1

2
s1,

1

2
s2

∣∣∣∣SSz

〉

×
∑
LJJz

iLY ∗
LLz

(p̂)〈SSz, LLZ|JJz〉�
LSJJz

nn (p),

(2.12)

where �
LSJJz

nn (p) is the nn wave function, and will be discussed
in Sec. III. In this paper, we restrict our calculation to J � 2
and L � 3 and, therefore, the contributing partial waves are,
in a spectroscopic notation, 1S0, 3P0, 3P1, 3P2–3F2, and 1D2.

Standard techniques [21,43] are now used to carry out the
multipole expansion of the weak charge ρ(q) and current j(q)
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operators. For muon capture on deuteron, we find〈
�

LSJJz

nn (p)
∣∣ρ(q)|�d (sd )〉

=
√

4π
∑
��0

√
2� + 1 i�

〈1sd,�0|JJz〉√
2J + 1

CLSJ
� (q) ,

(2.13)〈
�

LSJJz

nn (p)
∣∣jz(q)|�d (sd )〉

= −
√

4π
∑
��0

√
2� + 1 i�

〈
1sd,�0|JJz

〉
√

2J + 1
LLSJ

� (q) ,

(2.14)〈
�

LSJJz

nn (p)
∣∣jλ(q)|�d (sd )〉

=
√

2π
∑
��1

√
2� + 1 i�

〈
1sd,� − λ|JJz

〉
√

2J + 1

× [ − λMLSJ
λ (q) + ELSJ

� (q)
]
, (2.15)

where λ = ±1, and CLSJ
� (q), LLSJ

� (q),
ELSJ

� (q), and MLSJ
� (q) denote the reduced

matrix elements (RMEs) of the Coulomb (C),
longitudinal (L), and transverse-electric (E) and
transverse-magnetic (M) multipole operators, as defined
in Ref. [21]. Since the weak charge and current operators
have scalar/polar-vector (V ) and pseudoscalar/axial-vector
(A) components, each multipole consists of the sum of V and
A terms, having opposite parity under space inversions [21].
The contributing multipoles for the S, P , and D channels
considered in this paper are listed in Table I, where the
superscripts LSJ have been dropped.

In the case of muon capture on 3He, explicit expressions
for the multipole operators can be found in Ref. [34]. Here,
we only note that parity and angular-momentum selection rules
restrict the contributing RMEs to C0(V ), C1(A), L0(V ), L1(A),
E1(A), and M1(V ).

The total capture rate for the two reactions under consider-
ation is then defined as

d� = 2πδ(�E)|TW |2 × (phase space), (2.16)

TABLE I. Contributing multipoles in muon capture on deuteron
for all the nn partial waves with J � 2 and L � 3. The spectroscopic
notation is used. See text for further explanations.

Partial wave Contributing multipoles

1S0 C1(A), L1(A), E1(A), M1(V )
3P0 C1(V ), L1(V ), E1(V ), M1(A)
3P1 C0(A), L0(A),

C1(V ), L1(V ), E1(V ), M1(A),
C2(A), L2(A), E2(A), M2(V )

3P2–3F2 C1(V ), L1(V ), E1(V ), M1(A),
C2(A), L2(A), E2(A), M2(V ),
C3(V ), L3(V ), E3(V ), M3(A)

1D2 C1(A), L1(A), E1(A), M1(V ),
C2(V ), L2(V ), E2(V ), M2(A),
C3(A), L3(A), E3(A), M3(V )

where δ(�E) is the energy-conserving δ function, and the
phase space is dp dkν/(2π )6 for reaction (1.1) and just
dkν/(2π )3 for reaction (1.2). The following notation has been
introduced: (i) for muon capture on deuteron,

|TW |2 = 1

2f + 1

∑
s1s2hν

∑
fz

|TW (f, fz; s1, s2, hν)|2, (2.17)

and the initial hyperfine state has been fixed to be f = 1/2;
(ii) for muon capture on 3He,

|TW |2 = 1

4

∑
s ′

3hν

∑
ffz

|TW (f, fz; s
′
3, hν)|2, (2.18)

and the factor 1/4 follows from assigning the same probability
to the different hyperfine states.

After carrying out the spin sums, the total rate for muon
capture on 3He reads [34] as

�0 = G2
V E2

ν

(
1 − Eν

m3H

) ∣∣ψav
1s

∣∣2[ |C0(V ) − L0(V )|2

+ |C1(A) − L1(A)|2 + |M1(V ) − E1(A)|2], (2.19)

with Eν given by

Eν = (mµ + m3He)2 − m2
3H

2(mµ + m3He)
. (2.20)

In the case of muon capture on deuteron, the differential rate
reads

d�D

dp
= E2

ν

[
1 − Eν

(mµ + md )

] ∣∣ψav
1s

∣∣2 p2dp̂
8π4

|TW |2, (2.21)

where

Eν = (mµ + md )2 − 4m2
n − 4p2

2(mµ + md )
. (2.22)

In Eqs. (2.19)–(2.22), mµ, mn, md , m3H, and m3He are the
muon, neutron, deuteron, 3H, and 3He masses, respectively.
The integration over p̂ in Eq. (2.21) is performed numerically
using Gauss-Legendre points, and a limited number of them, of
the order of 10, are necessary to achieve convergence to better
than 1 part in 103. In order to calculate the total capture rate �D ,
the differential capture rate is plotted versus p and numerically
integrated. Usually, about 30 points in p are enough for this
integration in each partial wave. The differential cross section
for each contributing partial wave will be shown in Sec. V.

III. NUCLEAR WAVE FUNCTIONS

Bound and continuum wave functions for both two- and
three-nucleon systems are obtained with the hyperspherical-
harmonics (HH) expansion method. This method, as imple-
mented in the case of A = 3 systems, has been reviewed in
considerable detail in a series of recent publications [35,45,46].
We will discuss it here in the context of A = 2 systems, for
which, of course, wave functions could have been obtained by
direct solution of the Schrödinger equation.
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The nuclear wave function for a bound system of total
angular momentum JJz can generally be written as

|�JJz〉 =
∑

µ

cµ

∣∣�JJz

µ

〉
, (3.1)

where |�JJz
µ 〉 is a complete set of states, and µ is an index

denoting the set of quantum numbers necessary to completely
specify the basis elements. The coefficients of the expansion
can be calculated by using the Rayleigh-Ritz variational
principle, which states that

〈δc�
JJz | H − E |�JJz〉 = 0, (3.2)

where δc�
JJz indicates the variation of �JJz for arbitrary

infinitesimal changes of the linear coefficients cµ. The problem
of determining cµ and the energy E is then reduced to a
generalized eigenvalue problem∑

µ′

〈
�JJz

µ

∣∣ H − E
∣∣�JJz

µ′
〉
cµ′ = 0. (3.3)

In the case of the deuteron, we first define

ψLSJJz
(r) = FLSJ (r)YLSJJz

(r̂), (3.4)

where

YLSJJz
(r̂) = [YL(r̂) ⊗ χS]JJz

, (3.5)

and r is the relative position vector of the two nucleons.
Obviously, for the deuteron, L = 0 or 2, S = 1, J = 1, and
T = 0 (the isospin state ηT Tz

with T = Tz = 0 has been
dropped for brevity). The radial functions FLSJ (r) are then
conveniently expanded on a basis of Laguerre polynomials as

FLSJ (r) =
∑

l

cLSJ,l fl(r), (3.6)

with

fl(r) =
√

l!

(l + 2)!
γ 3/2 L

(2)
l (γ r) e−γ r/2, (3.7)

where the parameter γ is variationally optimized (γ is in the
range of 3–4 fm−1 for the AV18 and N3LO potentials). The
complete wave function is then reconstructed as

�1Jz =
∑

L=0,2

∑
l

cL11,lfl(r)YL11Jz
(r̂)

≡
∑

µ

cµ�1Jz

µ , (3.8)

and the subscript µ denotes the set of quantum numbers
[L, S = 1, J = 1, l].

The nn continuum wave function is written as

�LSJJz = �
LSJJz

C + �
LSJJz

A , (3.9)

where �
LSJJz

C describes the system in the region where
the two neutrons are close to each other and their mutual
interactions are strong, while �

LSJJz

A describes their relative
motion in the asymptotic region. The function �

LSJJz

C , which
vanishes in the limit of large separations, is expanded on
Laguerre polynomials as before for the case of the deuteron

[see Eq. (3.1)], while the function �
LSJJz

A is the appropriate
asymptotic solution in channel LSJ :

�
LSJJz

A =
∑
L′S ′

[
δLL′δSS ′�R

L′S ′JJz
+ RJ

LS,L′S ′ (p)�I
L′S ′JJz

]
,

(3.10)

where

�
R/I

LSJJz
= R

R/I

L (pr)YLSJJz
(r̂), (3.11)

with

RR
L (pr) ≡ 1

pL
jL(pr),

(3.12)
RI

L(pr) ≡ pL+1 fR(r) nL(pr),

with p being the magnitude of the relative momentum. The
functions jL(pr) and nL(pr) are the regular and irregular
spherical Bessel functions, and fR(r) = [1 − exp(−br)]2L+1

has been introduced to regularize nL(pr) at small values of r .
The trial parameter b is taken as b = 0.25 fm−1.

The matrix elements RJ
LS,L′S ′ (p) and the coefficients cµ

entering the expansion of �
LSJJz

C are determined applying the
Kohn variational principle [47], stating that the functional[

RJ
LS,L′S ′ (p)

]
= RJ

LS,L′S ′ (p) − 2µnn

h̄2 〈�L′S ′JJz |H − p2

2µnn

|�LSJJz〉,
(3.13)

is stationary with respect to variations of the trial parameters
in �LSJJz . Here, µnn is the reduced mass of the nn system.
Performing the variation, a system of linear inhomogeneous
equations for cµ and a set of algebraic equations forRJ

LS,L′S ′ (p)
are derived and solved by standard techniques. From the
RJ

LS,L′S ′ (p), phase shifts, mixing angles, and scattering lengths
are easily obtained.

We list in Tables II and III the binding energies and
scattering lengths calculated with the Hamiltonian models
considered in this work. Note that the A = 3 wave functions
retain both T = 1/2 and T = 3/2 contributions, with T being
the total isospin quantum number. The experimental data are,
in general, quite well reproduced. It should be noted that, by
using only two-nucleon interaction, the triton and 3He binding
energies are 7.624 and 6.925 MeV with the AV18, and 7.854
and 7.128 MeV with the N3LO, respectively.

TABLE II. Deuteron binding energy Bd (in MeV) and D-state
probability (in %), nn and singlet and triplet np scattering lengths
(in fm), calculated with the two-nucleon potentials AV18 and N3LO.
The experimental results are from Ref. [39].

AV18 N3LO Experiment

Bd (MeV) 2.22457 2.22456 2.224574(9)
PD (%) 5.76 4.51
ann (fm) −18.487 −18.900 −18.9(4)
1anp (fm) −23.732 −23.732 −23.740(20)
3anp (fm) 5.412 5.417 5.419(7)
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TABLE III. Triton and 3He binding energies B3H and B3He

(in MeV), and nd doublet and quartet scattering lengths (in fm),
calculated with the two- and three-nucleon potentials AV18/UIX and
N3LO/N2LO. The experimental results are from Ref. [35].

AV18/UIX N3LO/N2LO Experiment

B3H (MeV) 8.479 8.474 8.482
B3He (MeV) 7.750 7.733 7.718
2and (fm) 0.590 0.675 0.645(3)(7)
4and (fm) 6.343 6.342 6.35(2)

Finally, we define

�
LSJJz =

∑
L′S ′

[
δLL′δSS ′ − iRJ

LS,L′S ′ (p)
]−1

�L′S ′JJz , (3.14)

so that �
LSJJz has unit flux. The function �

LSJJz enters in
Eq. (2.12) and in the expression for differential muon capture
rate on deuteron.

IV. WEAK TRANSITION OPERATOR

The nuclear weak charge and current operators consist of
polar- and axial-vector components. In this paper, we consider
two different models, both of which have been used in studies
of weak pp and hep capture reactions in the energy regime
relevant to astrophysics [20–22]. The first model has been
developed within the so-called “Standard Nuclear Physics
Approach” (SNPA) and has been applied also to study weak
transitions for A = 6 and A = 7 nuclei [48], and magnetic
moments and M1 widths of nuclei with A � 7 [49,50].
It will be discussed in Sec. IV A. In the second model,
the nuclear weak transition operators have been derived in
heavy-baryon chiral perturbation theory (HBChPT), carrying
out the expansion up to next-to-next-to-next-to leading order
(N3LO) [22,51]. This same model has been updated and
most recently used in the electromagnetic sector to study
the three-nucleon magnetic moments and np and nd radiative
capture reactions in Ref. [41]. We review it in Sec. IV B.

A. The “Standard Nuclear Physics Approach”

The one-body axial charge and current operators have the
standard expressions [21] obtained from the nonrelativistic
reduction of the covariant single-nucleon current, and include
terms proportional to 1/m2, with m being the nucleon mass.
The induced-pseudoscalar contributions are retained both in
the axial current and charge operators, and are given by

ρ
(1)
i,PS(q; A) = −gPS

(
q2

σ

)
2 m mµ

τi,− (mµ − Eν)(σ i · q) eiq·ri , (4.1)

j(1)
i,PS(q; A) = −gPS

(
q2

σ

)
2 m mµ

τi,−q (σ i · q) eiq·ri , (4.2)

where

τi,− = (τi,x − iτi,y)/2 , (4.3)

and q is the three-momentum transfer, mµ is the muon mass, Eν

is the neutrino energy, and q2
σ is the squared four-momentum

transfer. Note that, since in the present case q is not negligible
(q � mµ), axial and induced-pseudoscalar form factors need
be included. In the notation of Ref. [34], they are taken as

gA

(
q2

σ

) = gA(
1 + q2

σ

/
�2

A

)2 , (4.4)

gPS

(
q2

σ

) = − 2 mµ m

m2
π + q2

σ

gA

(
q2

σ

)
. (4.5)

For the axial-vector coupling constant gA, two values have
been adopted in this study: the first one, gA = 1.2654(42),
is taken from Ref. [52], and has been used widely in
studies of weak processes [21,22,34,48]. The second one,
gA = 1.2695(29), is the latest determination quoted by the
Particle Data Group (PDG) [53]. The two values for gA

are consistent with each other. To compare with the results
of the aforementioned studies, we have adopted the earlier
determination for gA. On the other hand, to estimate the
theoretical uncertainty arising from this source, the calculation
has been carried out also using gA = 1.2695(29) in one specific
case. As it will be shown in the following, the central value
and the theoretical uncertainties of the considered observables
are comparable in both cases.

The value for the cutoff mass �A used in this work is
1 GeVc2, as in Ref. [34]. It is obtained from an analysis
of pion electroproduction data [54] and measurements of
the reaction νµ + p → n + µ+ [55]. Uncertainties in the q2

σ

dependence of the axial form factor, in particular the value of
�A, could significantly impact predictions for the muon rates
under consideration, although the present level of agreement
achieved between theory and experiment (see Sec. V) suggests
that this uncertainty in �A is at the few percent level. This
is at variance with current analyses of neutrino quasielastic
scattering data on nuclear targets [56], which obtain �A values
in the range 1.20–1.35 GeVc2. However, it is important to
emphasize that these analyses are based on rather crude models
of nuclear structure (Fermi gas or local density approximations
of the nuclear matter spectral function) as well as on simplistic
treatments of the reaction mechanism. They should therefore
be viewed with skepticism.

The q2
σ dependence of gPS is obtained in accordance with

the partially conserved-axial-current (PCAC) hypothesis by
assuming pion-pole dominance and the Goldberger-Treiman
relation [43,57]. In Eq. (4.5), mπ is the pion mass.

The two-body weak axial charge operator includes a
pion-range term, which follows from soft-pion theorem and
current algebra arguments [58,59], and short-range terms,
associated with scalar- and vector-meson exchanges. The latter
are obtained consistently with the two-nucleon interaction
model, following a procedure [60] similar to that used to derive
the corresponding weak vector-current operators [21]. The
two-body axial charge operator due to the N -to-� transition
has also been included [21,34], although its contribution is
found to be very small.

The two-body axial current operators can be divided into
two classes: the operators of the first class are derived from
π - and ρ-meson exchanges and the ρπ -transition mechanism.
These mesonic operators, first obtained in a systematic way in
Ref. [61], give rather small contributions [21]. The operators
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in the second class are those that give the dominant two-body
contributions, and are due to �-isobar excitation [20,21]. We
review them here briefly. The N -to-�-transition axial current
is written as (in the notation of Ref. [21])

j(1)
i (q; N → �,A)

= −
[
g∗

A

(
q2

σ

)
Si + g∗

PS

(
q2

σ

)
2 m mµ

q(Si · q)

]
eiq·ri Ti,± ,(4.6)

where Si and Ti are spin- and isospin-transition operators,
which convert a nucleon into a � isobar. The induced-
pseudoscalar contribution has been obtained from a nonrel-
ativistic reduction of the covariant N -to-�-transition axial
current [57].

The axial and pseudoscalar form factors g∗
A and g∗

PS are
parametrized as

g∗
A

(
q2

σ

) = RA gA

(
q2

σ

)
,

(4.7)

g∗
PS

(
q2

σ

) = − 2 mµ m

m2
π + q2

σ

g∗
A

(
q2

σ

)
,

with gA(q2
σ ) given in Eq. (4.4). The parameter RA is adjusted

to reproduce the experimental value of the Gamow-Teller
matrix element in tritium β decay (GTEXP), while the q2

σ

dependence of g∗
PS is again obtained by assuming pion-pole

dominance and PCAC [43,57]. The value for GTEXP, estimated
in Ref. [20], was 0.957(3). This value was determined by
assuming gA = 1.2654(42), 〈F〉2 = 0.9987, where 〈F〉 is the
reduced matrix element of the Fermi operator

∑
i τi,−, and

the triton half-life f T1/2 is (1134.6 ± 3.1) s [62]. We adopt
it also in this work, except for the case in which gA is
taken from the PDG, i.e., gA = 1.2695(29). We then extract
GTEXP = 0.955(2), corresponding to 〈F〉2 = 0.999 26 and
f T1/2 = (1132.1 ± 4.3) s. The new value of 〈F〉2 differs by
less than 0.1% from the older value, presumably due to the
higher accuracy of the present trinucleon wave functions.
The new value of f T1/2 has been obtained by averaging
the previous value of f T1/2 with the new value of Ref. [63]
[i.e., (1129.6 ± 3) s], and summing the errors in quadrature.
The values for RA determined in this paper using trinucleon
wave functions corresponding to the AV18/UIX are RA =
1.21(9), when GTEXP = 0.957(3) and gA = 1.2654(42), and
RA = 1.13(6), when GTEXP = 0.955(2) and gA = 1.2695(29).
The experimental error on GTEXP is responsible for the 5%
–8% uncertainty in RA.

It is important to note that the value of RA depends
on how the �-isobar degrees of freedom are treated. In
this paper, as in Ref. [34], the two-body �-excitation axial
operator is derived in the static � approximation, using first-
order perturbation theory (PT). This approach is considerably
simpler than that adopted in Ref. [21], where the � degrees of
freedom were treated nonperturbatively, within the so-called
transition-correlation operator (TCO) approach, by retaining
them explicitly in the nuclear wave functions [64]. The results
for RA obtained within the two schemes differ by more than
a factor of 2 [21]. However, the results for the observables
calculated consistently within the two different approaches
are typically within 1% of each other. Finally, because of the
procedure adopted to determine RA, the coupling constant g∗

A

of Eq. (4.7) can not be naively interpreted as the N -to-� axial
coupling constant. The excitation of additional resonances and
their associated contributions will contaminate the value of g∗

A.
The weak vector charge and current operators are con-

structed from the isovector part of the electromagnetic current,
in accordance with the conserved-vector-current hypothe-
sis. The weak charge operator includes the nonrelativistic
one-body term and the relativistic spin-orbit and Darwin-
Foldy contributions, and is obtained from the corresponding
isovector electromagnetic operator, as listed in Ref. [65], by
replacing

τi,z/2 → τi,−. (4.8)

Two-body contributions, arising from π - and ρ-meson ex-
change mechanisms, are also included. Their expressions are
listed in Ref. [65], with the substitutions

(τ i × τ j )z → (τ i × τ j )− (4.9)

and

(τ i × τ j )− = (τ i × τ j )x − i(τ i × τ j )y. (4.10)

Electromagnetic form factors are also included, and available
parametrizations for them all provide excellent fits of the
experimental data at the low-momentum transfer of interest
here.

The weak vector current operator retains the one-body
operator, two-body “model-independent” (MI) and “model-
dependent” (MD) terms, and three-body terms. The MI two-
body currents are obtained from the two-nucleon interaction,
and by construction satisfy current conservation with it. In this
paper, we include the leading two-body “π -like” and “ρ-like”
operators, obtained from the isospin-dependent central, spin-
spin, and tensor nucleon-nucleon interactions. On the other
hand, we have neglected the additional two-body currents
arising from nonstatic (momentum-dependent) interactions,
since these currents are short ranged, and numerically far less
important than those considered here [49]. The MD currents
are purely transverse, and therefore cannot be directly linked
to the underlying two-nucleon interaction. This calculation
includes the isovector currents associated with the ωπγ

transition mechanism [65], and the excitation of � isobars.
The former contributions are numerically negligible, while
the latter are important in order to reproduce the three-
nucleon magnetic moments and elastic form factors [49].
The contributions of the (MD) �-isobar currents have been
calculated in this case with the TCO method [64], and explicit
expressions for these are listed in Ref. [66]. Again, the
substitution of Eq. (4.10) is used.

A three-nucleon interaction requires a corresponding three-
body current. The latter was first derived in Ref. [49] from a
three-nucleon interaction consisting of a dominant two-pion-
exchange component, such as the UIX model adopted in this
work. The charge-changing three-body (weak vector) current
is obtained by applying CVC to the operators listed in Ref. [49],
i.e.,[

1
2 (τi,a + τj,a + τk,a), j(3)

ijk,z(q; γ )
] = i εazb j(3)

ijk,b(q; V),

(4.11)
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TABLE IV. Triton and 3He magnetic moments, in nuclear
magnetons, calculated with the AV18/UIX Hamiltonian model and
compared with the experimental data. The results labeled IA are
obtained with single-nucleon current, while those labeled MI are
obtained by including, in addition, the model-independent two-body
contributions. The results labeled MD/�-PT and MD/�-TCO also
include the model-dependent contributions, with the �-isobar degrees
of freedom treated in perturbation theory or within the TCO approach,
respectively. Lastly, the results labeled FULL retain three-body
contributions. Also shown are the results of Ref. [49].

3H 3He

IA 2.5745 –1.7634
MI 2.8954 –2.0790
MD/�-PT 3.0260 –2.2068
MD/�-TCO 2.9337 –2.1079
FULL 2.9525 –2.1299
Ref. [49] 2.953 –2.125

Experiment 2.9790 –2.1276

where j(3)
ijk,z(q; γ ) are the isovector three-body electromagnetic

currents, and a, b = x, y, z are isospin Cartesian components.
We conclude by emphasizing that the model for the weak

transition operator is the same as that of Ref. [34], except
for two differences relative to its vector component: (i) the
MD two-body currents due to �-isobar degrees of freedom are
treated nonperturbatively with the TCO method, rather than in
first-order PT, and (ii) three-body terms are also included (they
were neglected in Ref. [34]). As shown in Table IV, the present
model for the electromagnetic current provides an excellent
description of the trinucleon magnetic moments, in particular
of their isovector contribution, to better than 1% (row labeled
with “FULL”). This gives us confidence in the accuracy of
the corresponding weak vector currents. We also note that
(i) three-body contributions are important to achieve this level
of agreement between theory and experiment; (ii) the results
obtained with the model of Ref. [34], labeled by MD/�-PT,
are at variance with data at the 3% level; (iii) the difference
between the present “FULL” results and those of Ref. [49]
can be traced back to the fact that here we have used slightly
more accurate wave functions, with a careful treatment of T =
3/2 components. However, we should note that, in contrast to
Ref. [49], MI two-body contributions arising from nonstatic
components of the two-nucleon interaction have been ignored.
They amount to a negligible 0.1% correction.

B. The chiral effective field theory approach

The χEFT weak transition operator is taken from Refs. [22]
and [41], where it was derived in covariant perturbation theory
based on the heavy-baryon formulation of chiral Lagrangians
by retaining corrections up to N3LO. It was recently used
in Ref. [67] to study electromagnetic M1 transitions. Before
reviewing its main features in the following, we note that
the kinematical regime relevant in muon capture, where the
momentum transfer is of the order of the muon mass, is
different from that of the threshold processes to which it

has been applied so far. From this perspective, it would be
interesting to investigate contributions beyond N3LO in order
to assess the convergence pattern of the chiral expansion in
the present context. However, this issue will not be discussed
further in this paper.

The vector and axial-vector one-body operators are the
same as those obtained within the SNPA, and described in
Sec. IV A. These one-body operators are also listed in Eq. (17)
of Ref. [22], except that we also include corrections in the
vector current, which arise when the nonrelativistic reduction
is carried out to next-to-leading order (proportional to 1/m3).
The resulting operator is given (in momentum space) by

j(1)
i (q; V ) = j(1)NR

i (q; V ) + j(1)RC
i (q; V ), (4.12)

where j(1)NR
i (q; V ) is the standard leading-order term

j(1)NR
i (q; V ) = 1

m
τi,−

[
GV

E

(
q2

σ

)
k + iGV

M

(
q2

σ

)
σ i × q

]
, (4.13)

and j(1)RC
i (q; V ) is

j(1)RC
i (q; V ) = − 1

4m3
τi,−

(
GV

E

(
q2

σ

)
k2(2k + iσ i × q)

+ i
[
GV

M

(
q2

σ

) − GV
E

(
q2

σ

)]
× (2k · q σ i × k + k × q σ i · k)

)
. (4.14)

In these equations, k = (p′
i + pi)/2, q = p′

i − pi , with p′
i

and pi momenta of the outgoing and ingoing nucleons,
respectively, and GV

E (q2
σ ) and GV

M (q2
σ ) denote the isovector

combinations of the nucleon electric and magnetic form factors
[65]. Note that Eqs. (4.12)–(4.14) can also be obtained from
Eq. (11) of Ref. [41], with the substitution (4.8) required by
CVC.

The axial two-body charge and currents are from Ref. [22].
In particular, the axial charge operator is that derived orig-
inally in Ref. [58]. In the SNPA, additional contributions
are considered, which, in a χEFT context, are expected to
appear at higher orders. The two-body axial-current operator
consists of two contributions: a one-pion exchange term
and a (nonderivative) two-nucleon contact term. The explicit
expressions for these terms can be found in Ref. [22]. While
the coupling constants that appear in the one-pion exchange
term are fixed by πN data, the low-energy constant (LEC) dR ,
determining the strength of the contact term, has been fixed
by reproducing GTEXP. The value gA = 1.2654(42) has been
used. The values for dR are presented in Table V and discussed
below.

The two-body vector currents are decomposed into four
terms [41]: the soft-one-pion-exchange (1π ) term, vertex
corrections to the one-pion exchange (1πC), the two-pion
exchange (2π ), and a contact-term contribution. Their explicit
expressions can be found in Eqs. (12)– (18) of Ref. [41], with
the replacements (4.3) and (4.10) in the isospin operators. All
the 1π , 1πC and 2π contributions contain LECs estimated in
Ref. [68], using resonance-saturation arguments. The contact-
term electromagnetic contribution is given by

j(2)CT
ij (q; γ ) = − i

2m
ei q·Rq × [ g4S(σ i + σ j )

+ g4V (τ i × τ j )zσ i × σ j ]δ�(r). (4.15)
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TABLE V. The LECs g4S and g4V associated with the isoscalar
and isovector contact terms in the electromagnetic current [see
Eq. (4.15)], and the LEC dR of the two-body axial-current contact
term, calculated for three values of the cutoff � with triton and
3He wave functions obtained from the AV18/UIX model. For � =
600 MeV, the N3LO/N2LO model is also used.

� (MeV) g4S g4V dR

AV18/UIX 500 0.69(1) 2.065(6) 0.97(7)
600 0.55(1) 0.793(6) 1.75(8)
800 0.25(2) –1.07(1) 3.89(10)

N3LO/N2LO 600 0.11(1) 3.124(6) 1.00(9)

The function δ�(r), as well as the Yukawa functions that
appear in the 1π , 1πC, and 2π operators and in the two-
body axial-current terms, are obtained by performing the
Fourier transform from momentum to coordinate space with a
Gaussian regulator characterized by a cutoff �. This cutoff
determines the momentum scale below which these EFT
currents are expected to be valid, i.e., � = 500 − 800 MeV
[22]. The explicit expression of δ�(r) in Eq. (4.15) is

δ�(r) =
∫

dk3

(2π )3
e−k2/�2

eik·r. (4.16)

The coefficients g4S and g4V of Eq. (4.15) are fixed to
reproduce the experimental values of triton and 3He magnetic
moments for each nuclear interaction and cutoff value. This
procedure is similar to that used to fix the strength dR of
the contact term in the two-body axial current discussed
previously. The results are presented in Table V. A few
comments are in order: (i) while values of both g4S and
g4V are presented, only g4V is relevant in this work, since
CVC relates the isovector electromagnetic current to the
weak vector current. (ii) The uncertainty on g4S and g4V

is not due to the experimental errors on the triton and 3He
magnetic moments, which are, in fact, negligible, but rather
to numerics. We have used a random walk consisting of
1.6 million configurations in order to reduce the numerical
uncertainty on �µ, the difference between the experimental
magnetic moments and the result obtained without the contact
contributions, to less than 1%. In contrast, the experimental

error on GTEXP is primarily responsible for the uncertainty
in dR . (iii) The values reported for dR are different, but
consistent within the error, with those listed in Table II of
Ref. [22]. This is due to differences between the present 3H
and 3He wave functions and those of Ref. [22] (we have already
commented on this in the previous section). (iv) The g4S and
g4V values are rather different from those listed in Ref. [67].
We observe that g4S and g4V are fixed by fitting very small
quantities. In the AV18/UIX case with � = 600 MeV, for
instance, the value �µ is 0.0461(4) for triton and –0.0211(4)
for 3He, where the uncertainties are statistical errors due
to the Monte Carlo integrations. Consequently, the resulting
values will be sensitive to several factors, including numerics.
However, it is worthwhile to point out that the isovector contact
contribution to the muon-capture rates under consideration
turns out to be negligible. Finally, we should point out that
the χEFT model for the weak vector current operator differs
in some of its two-pion exchange parts from that obtained
in time-ordered perturbation theory by some of the present
authors in Ref. [69]. The origins of these differences have been
discussed in Refs. [69,70]. However, for consistency with the
calculations of the pp and hep reactions of Ref. [22], we have
chosen to use the χEFT model illustrated above. We do not
expect these differences to be numerically significant for the
processes under consideration.

V. RESULTS

The results for the total rates of muon capture on deuteron
and 3He are presented in the following two subsections.

A. Muon capture on deuteron

In a partial-wave expansion of the final nn state, all channels
with total angular momentum J � 2 and relative orbital
angular momentum L � 3 have been included, i.e., 1S0, 3P0,
3P1, 3P2, 1D2, and 3F2. Partial waves of higher order contribute
less than � 0.5 % to the rate. Indeed, the 3F2 contribution
turns out to be already below this level.

We present in Table VI the results for the total capture
rate in the doublet hyperfine state. Both models for the nuclear
weak transition operator presented in Secs. IV A and IV B have
been used, labeled SNPA and EFT*, respectively. The nuclear
wave functions have been calculated with the AV18 [23] or the

TABLE VI. Total rate for muon capture on deuteron, in the doublet initial hyperfine state, in s−1. The different partial-wave
contributions are indicated. The numbers within parentheses indicate the theoretical uncertainty arising from the adopted fitting
procedures, as explained in Sec. IV. Such uncertainty is not indicated when less than 0.1 s−1. The label SNPA indicates that the results
have been obtained using the model for the weak transition operator of Sec. IV A, while the label EFT* indicates that the model of
Sec. IV B is used. The AV18 and N3LO interactions have been used to calculate the deuteron and nn wave functions.

1S0
3P0

3P1
3P2

1D2
3F2 Total

SNPA (AV18) gA = 1.2654(42) 246.6(7) 20.1 46.7 71.6 4.5 0.9 390.4(7)
gA = 1.2695(29) 246.8(5) 20.1 46.8 71.8 4.5 0.9 390.9(7)

EFT* (AV18) � = 500 MeV 250.0(8) 19.9 46.2 71.2 4.5 0.9 392.7(8)
� = 600 MeV 250.0(8) 19.8 46.3 71.1 4.5 0.9 392.6(8)
� = 800 MeV 249.7(7) 19.8 46.4 71.1 4.5 0.9 392.4(7)

EFT* (N3LO) � = 600 MeV 250.5(7) 19.9 46.4 71.5 4.4 0.9 393.6(7)
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FIG. 1. (Color online) Differential capture rate d�D/dp, defined
in Eq. (2.21), as a function of the nn relative momentum p in MeV.
The calculation is performed with the SNPA (AV18) model.

N3LO [39] two-nucleon interaction. The label EFT* is used to
denote the results of calculations in which the matrix elements
of χEFT weak operators are evaluated between wave functions
corresponding to both conventional and chiral potentials. The
first approach (based on a conventional potential) is often
referred to in the literature as the “hybrid” approach. The
second, using chiral potentials and currents, is, in principle,
a full-fledged χEFT calculation, except that these potentials
and currents have not (yet) been derived consistently at the
same order in the low-momentum scale. For this reason, we
characterize the corresponding results with the EFT* label.

Within each Hamiltonian model, the parameters present in
the SNPA and EFT* axial-current models have been fitted to
reproduce GTEXP in tritium β decay, as discussed in Sec. IV.
Furthermore, the LECs in the EFT* weak vector current have
been fitted to reproduce the A = 3 magnetic moments. The
three-nucleon wave functions have been generated, in this
fitting procedure, from two- and three-nucleon interactions,
either AV18 and UIX [36], or N3LO and N2LO [40].
Inspection of Table VI shows that the 1S0 contribution is
the leading one, but L � 1 contributions are significant and
account for ∼37% of the total rate. By comparison between
the first and second rows of the table, we conclude that there
is no difference in the results, within uncertainties, when the
older value for gA, gA = 1.2654(42), or the most recent one,
gA = 1.2695(29), is used. This reflects the fact that the factor
RA (see Sec. IV A) has been constrained by GTEXP in both
cases. The model dependence due to interactions, currents, and
the cutoff � (present in the χEFT version of these currents)
is at the 1% level in the total rate and hence very weak. It is
a bit larger, i.e., 2%, in the 1S0 channel, for which two-body
current contributions are larger (see Tables VII and VIII) . In
conclusion, a total capture rate in the range

�D = (389.7 − 394.3) s−1 (5.1)

can be conservatively ascribed to reaction (1.1). This result
is in agreement with the measurements of Refs. [5,6,8], but
not with that of Ref. [7]. The differences with the theoretical
results of Refs. [16–18] are also very small. In particular, the

TABLE VII. Cumulative contributions to the total rate for muon
capture on deuteron in s−1, when the model of Sec. IV A is used for
the weak transition operator. The deuteron and nn wave functions are
calculated using the AV18 interaction. Only the 1S0 and 3P2 partial
waves are considered, since they give the leading contributions. The
labels IA + RC, PS, and Mesonic indicate the results obtained by
retaining the impulse approximation plus relativistic corrections, the
induced-pseudoscalar, and the purely mesonic contributions. The
label �-PT(A-w/o PS) is used to indicate that the axial charge and
current contributions due to � isobars are retained perturbatively,
but the induced-pseudoscalar contribution in the one-body � current
is not included, while the label �-PT(A-w PS) is used when the
N -to-� induced-pseudoscalar contribution is also included. Finally,
the labels �-PT(V ) and �-TCO(V ) are used when the vector-current
contributions due to � isobars are treated perturbatively and within
the TCO scheme, respectively. The value gA = 1.2654(42) is used.
The numbers in parentheses indicate the theoretical errors arising
from the fitting procedure adopted for RA. This uncertainty is not
shown if less than 0.1 s−1.

1S0
3P2

IA + RC 293.0 82.6
PS 233.2 71.6
Mesonic 237.5 71.4
�-PT(A-w/o PS) + �-PT(V ) 248.3(8) 71.6
�-PT(A-w/o PS) + �-TCO(V ) 247.7(8) 71.6
�-PT(A-w PS) + �-TCO(V ) 246.6(7) 71.6

authors of Ref. [18] find that �D(1S0) = 245 s−1, in contrast
to the �D(1S0) = 250 s−1 reported here. We have explicitly
verified that this difference is mainly due to the inclusion in this
work of mesonic two-body contributions in the weak vector
current beyond the soft-one-pion-exchange term discussed in
Sec. IV B. On the other hand, the results of Refs. [15,19]
are significantly larger than those listed here, presumably
because these authors have not constrained their weak current
to reproduce GTEXP and the isovector magnetic moment of
the trinucleons. We observe that our approach also provides
a value for muon capture on 3He in excellent agreement with
the experimental data.

For future reference, we show, in Fig. 1, the differential
capture rate d�D/dp, defined in Eq. (2.21), as function of the
nn relative momentum p, calculated with the SNPA (AV18)
model. Integrating each partial-wave contribution leads to the
values listed in the first row of Table VI.

The cumulative contributions to the leading 1S0 and 3P2

capture rates of various terms in the nuclear current operator
are given in Table VII for the SNPA and in Table VIII
for the EFT*. Table VII shows that (i) the (one-body)
induced-pseudoscalar contribution is significant, as expected,
and reduces the rate of ∼20% (∼13%) in 1S0 (3P2) capture;
(ii) the mesonic contributions are very small; (iii) the �-isobar
contributions are significant only in S-wave capture, and
differences in the vector two-body current originating from
treating the �-isobar degrees of freedom either perturbatively
or within the TCO approach are negligible; (iv) the �-isobar
induced pseudoscalar axial-current contribution of Eqs. (4.6)
and (4.7) is of the order of 1 s−1 for 1S0 capture.
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TABLE VIII. Same as Table VII, but with the nuclear current
model of Sec. IV B. The labels IA + RC, PS, and Mesonic indicate
the results obtained by retaining the impulse approximation plus
relativistic corrections, the induced-pseudoscalar, and the mesonic
contributions. The relativistic corrections to the one-body vector
current operator include the additional terms of Eq. (4.14). The
numbers in parentheses indicate the theoretical errors arising from
the fitting procedure adopted for dR and g4V . This uncertainty is not
shown if less than 1 s−1.

1S0
3P2

� = 500 MeV IA + RC 292.5 82.5
PS 232.7 71.6

Mesonic 250.0(8) 71.2

� = 600 MeV IA + RC 292.5 82.5
PS 232.7 71.6

Mesonic 250.0(8) 71.1

� = 800 MeV IA + RC 292.5 82.5
PS 232.7 71.6

Mesonic 249.7(7) 71.1

From inspection of Table VIII, we can conclude the
following. (i) The one-body contributions (labeled IA + RC
and PS) are slightly different from those reported in the SNPA.
While the EFT* one-body axial charge and current, and vector
charge, operators are the same as in the SNPA, the EFT*
one-body vector current includes the relativistic corrections
of Eq. (4.14), ignored in the SNPA. On the other hand, the
differences between SNPA and EFT* one-body contributions
remain well below the 1% level, and therefore within the
theoretical uncertainty. However, it would be interesting to
study the contributions of these relativistic corrections to the
many electromagnetic observables analyzed within the SNPA
over the years [49,50]. A first step in this direction has been
done in Ref. [71]. (ii) The � dependence is very weak, well
below the 1% level. (iii) The 3P2 term does not show any
� dependence nor any sensitivity to the dR and g4V fitting
procedure. This is easily understood by observing that the
contact terms in the vector and axial currents are proportional
to (τ i × τ j )−(σ i × σ j ) [see Ref. [22] and Eq. (4.15)], the
matrix elements of which vanish when calculated between the
deuteron state and 3PJ nn states.

By comparison of the results listed in Tables VII and
VIII, we observe that the main source for the 2% theoretical
uncertainty in the 1S0 channel quoted above is the �-isobar
induced-pseudoscalar contribution; if it were neglected, the
SNPA and EFT* 1S0 results would agree at the 1% level. We
observe that the strength of the associated operator, which is
only included in the SNPA calculation and plays no role in
tritium β decay (being proportional to the momentum trans-
fer q), follows from PCAC and pion-dominance arguments
(see Sec. IV A).

B. Muon capture on 3He

We present in Table IX the results for the total capture
rate �0 defined in Eq. (2.19). The theoretical uncertainties due
to the fitting procedure of RA (SNPA) or dR and g4V (EFT*)

TABLE IX. Total rate for muon capture on 3He in s−1. The
numbers in parentheses indicate the theoretical uncertainties due to
the adopted fitting procedure (see Sec. IV). The label SNPA (EFT*)
indicates that the results have been obtained using the model for the
weak transition operator of Sec. IV A (Sec. IV B). The triton and 3He
wave functions are obtained from the AV18/UIX and N3LO/N2LO
Hamiltonians.

�0

SNPA (AV18/UIX) gA = 1.2654(42) 1486(8)
gA = 1.2695(29) 1486(5)

EFT* (AV18/UIX) � = 500 MeV 1487(8)
� = 600 MeV 1488(9)
� = 800 MeV 1488(8)

EFT* (N3LO/N2LO) � = 600 MeV 1480(9)

Experiment 1496(4)

are in parentheses. The results in the first two rows have been
obtained in the SNPA, using the AV18/UIX Hamiltonian and
the two available values for gA. These results are the same,
since a change in gA is compensated by a corresponding one
in RA. The results of the next three rows have been obtained
within the hybrid approach EFT* (AV18/UIX). They show
a very weak � dependence, and are in excellent agreement
with those reported in SNPA. The result in the last row is with
the EFT* (N3LO/N2LO). The EFT* (AV18/UIX) and EFT*
(N3LO/N2LO) differ by 8 s−1, or less than 1%. In view of
this, we quote conservatively a total capture rate for reaction
(1.2) in the range

�0 = (1471 − 1497) s−1 , (5.2)

by keeping the lowest and upper bounds in the values of
Table IX.

The contributions of the different components of the weak
current and charge operators to the total rate and to the
reduced matrix elements of the contributing multipoles are
reported in Table X for SNPA and Table XI for EFT*.
The HH wave functions have been calculated using the
AV18/UIX Hamiltonian model. In Table X, RA has been
fixed to its central value 1.21, and in Table XI we use
� = 600 MeV and consequently dR = 1.75 and g4V = 0.793
(see Table V). The notation in these tables is the same as that of
Tables VII and VIII of Sec. V A, with the only exception of
the label �-TCO(V), which here indicates that the two-body
� currents are treated with the TCO method, and that the
three-body current, constructed consistently with the UIX
three-nucleon interaction, are also included. In Table X, we
observe that the induced-pseudoscalar term gives a significant
contribution to the L1(A) and C1(A) RMEs, although the
latter is much smaller than L1(A) in magnitude. The mesonic
contributions to C0(V ), C1(A), L1(A), and E1(A) are small,
while they provide a 15% correction to M1(V ), as expected
(in the isovector magnetic moments of the trinucleons, these
mesonic currents give a 15% contribution relative to the one
body). Contributions due to � isobar excitations in the weak
vector and axial currents are at the few percent level. We
note that the result for �0 is in excellent agreement with
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TABLE X. Cumulative contributions to the total rate �0 for muon capture on 3He, in s−1, and to the reduced matrix elements (RMEs)
C0(V ), C1(A), L1(A), E1(A), and M1(V ) (see Sec. II), when the model of Sec. IV A is used for the weak transition operator (RA = 1.21). The
HH wave functions have been calculated using the AV18/UIX Hamiltonian. Notation is the same as in Table VII, except for �-TCO(V ), which
here is used to indicate that the �-isobar contributions are treated with the TCO method, and, in addition, three-body weak vector-current
contributions are included. Note that C0(V ) is purely real, while the other RMEs are purely imaginary.

�0 C0(V ) C1(A) L1(A) E1(A) M1(V )

IA + RC 1530 –0.3287 0.7440 × 10−2 –0.4056 –0.5516 0.1127
PS 1316 0.3986 × 10−2 –0.2589
Mesonic 1385 –0.3283 0.4024 × 10−2 –0.2619 –0.5562 0.1315
�-PT(A-w/o PS) + �-PT(V ) 1501 0.4287 × 10−2 –0.2811 –0.5821 0.1370
�-PT(A-w/o PS) + �-TCO(V ) 1493 0.1376
�-PT(A-w PS) + �-TCO(V ) 1486 –0.2742

that of the earlier study of Ref. [34]. This agreement comes
about because of two compensating effects. On one hand, the
L1(A) and E1(A) RMEs are, in magnitude, slightly larger, as
a consequence of the fact that the parameter RA is slightly
larger here than in Ref. [34], because of the more accurate
wave functions employed. On the other hand, the M1(V )
RME corresponding to �-TCO(V ) is slightly smaller than
that calculated in Ref. [34], i.e., M1(V ) = 0.1355 in Ref. [34]
versus M1(V ) = 0.1346. This last value results from dividing
the value listed in Table X by the factor 1.022, arising from
the normalization correction of the trinucleon wave functions
due to the presence of explicit �-isobar degrees of freedom,
i.e., N� = √〈�N+�|�N+�〉/〈�Nonly|�Nonly〉, where �N+�

(�Nonly) is the nuclear wave function with both nucleon and
� (nucleon only) degrees of freedom. Indeed, the �-TCO(V )
M1(V ) RME should be compared with M1(V ) corresponding
to �-PT(V ) in Table X.

In Table XI, we observe the following: (i) the one-body
vector-current contribution to the M1(V ) RME is different
than in SNPA. This is due to the presence of the additional
relativistic corrections of Eq. (4.14). (ii) The mesonic con-
tributions are significant for the L1(A), E1(A), and M1(V )
RMEs, and bring their values closer to those in the SNPA.
(iii) The 1πC, 2π , and contact terms in the mesonic vector
current are important. If they were to be neglected, the total
M1(V ) RME would be equal to 0.1201 and consequently �0 =
1453 s−1. (iv) The results of Table XI should be compared with
those of Table 2 of Ref. [37]. We find significant differences in
all the RMEs, both for the one-body contribution (here labeled
PS and in Ref. [37] IA) and the complete calculation. Only the
results for the M1(V ) RME appear to be similar to each other,
although it is unclear whether in Ref. [37] the vector 1πC, 2π ,
and contact-term contributions are included.

TABLE XI. Same as Table X, but with the nuclear current model
of Sec. IV B. The value for the cutoff � has been fixed to 600 MeV,
and dR = 1.75 and g4V = 0.793. Notation is the same as in Table VIII.

�0 C0(V ) C1(A) L1(A) E1(A) M1(V )

IA + RC 1517 –0.3287 0.7440 × 10−2 –0.4056 −0.5516 0.1082
PS 1303 0.3986 × 10−2 –0.2589
Mesonic 1488 0.3978 × 10−2 –0.2810 −0.5833 0.1317

Finally, we observe that when the N3LO/N2LO Hamil-
tonian model is used, C0(V ), C1(A), L1(A), E1(A), and
M1(V ) are –0.3288, 0.4130 × 10−2, –0.2773, –0.5810, and
0.1329, respectively, when the mesonic contributions are
included. Comparing these results with the AV18/UIX results
of Table XI, we see that all the RMEs are comparable at the
1% level. This fact is reflected in the ∼1% difference between
the AV18/UIX and N3LO/N2LO results for �0. Therefore, it
does not seem possible to identify a particular source for this
1% difference.

VI. SUMMARY AND CONCLUSIONS

Total rates for muon capture on deuteron and 3He have been
calculated within a consistent approach, based on realistic
interactions and weak currents consisting of vector and
axial-vector components with one- and many-body terms.
Two different approaches have been used to derive these
operators. The first one goes beyond the impulse approx-
imation by including meson-exchange-current contributions
and terms arising from the excitation of �-isobar degrees of
freedom. This approach, labeled SNPA, has been widely and
successfully used in studies of electroweak processes (see,
for instance, Refs. [20,21,34,46,49]). The second approach,
labeled EFT*, includes two-body contributions, beyond the
impulse approximation, derived within a systematic χEFT
expansion, up to N3LO. The only parameter in the SNPA
nuclear weak current model is present in the axial current and
is determined by fitting the experimental value for the triton
half-life. In the case of the EFT* approach, two LECs appear,
one in the vector and one in the axial-vector component (note
that the LEC appearing in the isoscalar electromagnetic contact
term does not contribute here). They are fixed to reproduce,
respectively, the A = 3 isovector magnetic moment and triton
half-life.

Our final results are summarized in Eqs. (5.1) and (5.2).
The very accurate experimental datum of Ref. [14] for the
total rate in muon capture on 3He is very well reproduced.
For the muon capture on deuteron, a precise measurement
should become available in the near future [9]. The depen-
dence of the results on the input Hamiltonian model, or on
the model for the nuclear transition operator, is weak, at
less than the 1% level. This weak model dependence is a
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consequence of the procedure adopted to constrain the weak
current.

We conclude by noting the following. (i) Within the EFT*
approach, the two-body vector-current operators beyond the
one-pion-exchange term give significant contributions to the
total rate, especially for muon capture on 3He. These terms
have been included in the study of weak processes here
for the first time. However, since they are proportional to
the momentum transfer, their contribution is expected to be
negligible in the pp and hep reactions [22]. (ii) Some of the
radiative corrections are accounted for in these predictions for
the muon rates, since the value adopted for the Fermi coupling
constant GV is that extracted from an analysis of superallowed
β decays [44]. The size of these corrections (roughly 2.4%
on G2

V ) is in agreement with that calculated independently
in Ref. [72] for the muon capture on hydrogen and helium.
The additional radiative corrections, originating from vacuum
polarization effects on the muon bound-state wave function,
have also been estimated by the authors of Ref. [72]. In the case
of the muon capture on 3He, they increase the predicted rates
by about 0.68%, leading to 1496 s−1 for the AV18/UIX model,
and to 1490 s−1 for the EFT∗(N3LO/N2LO) model, and thus
bringing them into closer agreement with experiment. (iii) The

value for the induced-pseudoscalar coupling used in this
study, gPS = −8.28 at the four-momentum transfer relevant
for muon capture on 3He (q2

σ = 0.954m2
µ), is consistent with

that predicted by PCAC and chiral perturbation theory [73].
The agreement between the calculated and experimental muon
capture rates confirms the validity of these predictions. (iv) The
agreement between our final results for the muon capture rate
on 3He and those of Ref. [37] confirms the tight limits obtained
there on possible contributions from second-class currents.

Finally, we remark that it would be interesting to extend
these calculations to the processes µ− + 3He → n + d + νµ

and µ− + 4He → n + 3H + νµ, for which experimental data
are also available [12,74,75].
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