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Quantum Monte Carlo study of dilute neutron matter at finite temperatures
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We report results of fully nonperturbative, path integral Monte Carlo calculations for dilute neutron matter.
The neutron-neutron interaction in the s channel is parameterized by the scattering length and the effective range.
We calculate the energy and the chemical potential as a function of temperature at density ρ = 0.003 fm−3. The
critical temperature Tc for the superfluid-normal phase transition is estimated from the finite size scaling of the
condensate fraction. At low temperatures we extract the spectral weight function A(p, ω) from the imaginary
time propagator using the methods of maximum entropy and singular value decomposition. We determine the
quasiparticle spectrum, which can be accurately parameterized by three parameters: an effective mass m∗, a
mean-field potential U , and a gap �. Large values of �/Tc indicate that the system is not a BCS-type superfluid
at low temperatures.
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Dilute neutron matter is one of the simplest many-body
nuclear systems. At sufficiently small densities its properties
originate from the two-body s-wave interaction only. It is
known that neutron matter has a positive pressure at all
densities (contrary to nuclear matter) that prevents fragmen-
tation, and it becomes superfluid at low temperatures. From a
theoretical point of view, pure and dilute neutron matter is a
fascinating system, since at a certain density range it becomes
a nearly universal Fermi gas. Such systems are presently of
great interest as a result of extraordinary progress in the field
of cold atoms which has taken place over the last few years
and has in fact opened a new chapter in many-body physics
(see [1] and references therein). By taking advantage of the
Feshbach resonances, experimentalists can control the strength
of the atom-atom interaction and achieve the so-called unitary
regime. This corresponds to the situation where the average
distance between fermionic atoms is large compared to the
interaction range r0, but much smaller than the scattering
length a, i.e., ρr3

0 � 1 � ρ|a|3, where ρ is the particle
number density. In the unitary regime the properties of dilute
Fermi gases are universal, independent of the details of the
interaction. The universality of these systems makes them a
fascinating theoretical playground, and the results obtained
turn out to be relevant to a wide range of fields such as string
theory, the quark-gluon plasma, and high-Tc superconductors.

Since the 1S0 neutron-neutron interaction is characterized
by a large scattering length a ≈ −18.5 fm, the unitary regime
can be thought of as a limiting case of dilute neutron matter at
a density range varying from 0.001 to 0.01 fm−3. One has to
remember, however, that the influence of the effective range
(reff ≈ 2.8 fm) cannot be ignored, since kFreff is of the order
of unity [2]. The importance of other channels, as well as
of three-body forces, increases with density. However, at a
density of 0.003 fm−3, which we study in this paper, their
influence is marginal as compared to uncertainties regarding
the path integral Monte Carlo (PIMC) method and therefore is
neglected [3,4].

Since even for the density ρ = 0.001 fm−3 dilute neutron
matter is a strongly correlated Fermi gas (|kFa| � 1), reli-

able insight into the physics of this system can be gained
only by the use of nonperturbative approaches. Many such
methods, known under the general name quantum Monte
Carlo (QMC), have been used to date, although most of them
concern zero temperature properties [5–7]. Finite temperature
behavior has been studied in [8]. This work presents the first
ab initio, fully nonperturbative evaluation of thermal properties
of low-density neutron matter (at about 2% of nuclear
saturation density) free of uncontrolled approximations within
the PIMC method. We focus on the effects generated by the
finite effective range.

Contrary to cold atomic gases, in order to capture the
physics of dilute neutron matter one has to use more realistic
interaction than a simple contact, deltalike force. In the present
paper we employ two-body potential of the form

V (r − r′) =
⎧⎨
⎩

6g, r − r′ = 0
g, r − r′ ∈ Nb

0, otherwise
, (1)

where Nb = {(±b, 0, 0), (0,±b, 0), (0, 0,±b)} represents the
set of the nearest-neighbor coordinates. This particular form
of the interaction is especially designed for the cubic lattice
with lattice constant b and enables construction of a fully
nonperturbative approach without the sign problem (for more
details see Ref. [9]). It depends on two parameters (g and b) that
are adjusted to correctly reproduce the scattering length and
the effective range of neutron-neutron 1S0 scattering amplitude
[10]. Hence we consider the system on a three-dimensional
spatial cubic lattice of length L = Nsb with periodic boundary
conditions. The lattice spacing b and size L introduce the
natural ultraviolet (UV) and infrared momentum cutoffs given
by pcut = π/b and p0 = 2π/L, respectively. The momentum
space has the shape of a cubic lattice, with size 2π/b and
spacing 2π/L. To simplify the analysis, however, we place
the spherically symmetric UV cutoff, including momenta
p � pcut.

To numerically evaluate the expectation values of observ-
ables, we have followed the path integral approach described
in Ref. [11]. Using Trotter expansion and subsequently
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Hubbard-Stratonovich (H-S) transformation, evaluation of the
emerging path integral was performed using the Metropolis
importance sampling. The crucial modification of the pro-
cedure described in [11] consists of construction of the H-S
transformation, which allows the off-site part of the interaction
to be incorporated without generation of the sign problem.
Specifically, we have used the discrete H-S transformation of
the form [9]

e−τ V̂ =
∏

r−r′ ∈Nb

∏
λ=↑↓

1

k

k∑
i=1

eσi (r,r′)[n̂λ(r)+n̂λ(r′)], (2)

where σi are real numbers and n̂λ(r) is the occupation number
operator. The notable feature of this H-S transformation is the
time reversal invariance of the corresponding imaginary time
evolution operator. This property ensures that the probability
measure used in the Metropolis algorithm is always positive
[9,12].

Calculations were performed on a lattice of size Ns = 8,
with the lattice constant b = 3.21 fm. The chemical potential
was chosen in such a way to keep the total number of
particles between 53 and 57, which corresponds to the density
kF 	 0.45 fm−1. The temperatures span the interval from
0.06 εF (0.26 MeV) to 1.0 εF (4.3 MeV), where εF is the Fermi
energy. The number of imaginary time steps required to reach
the convergence of the algorithm varies with temperature.
At the lowest temperature 2360 imaginary time steps have
been applied, whereas for the highest temperature only 216.
The kinetic energy part of the Hamiltonian is defined in the
restricted momentum space (p � pcut) using the dispersion
relation of the form ε(p) = p2/2m. Consequently, during the
imaginary time evolution the fast Fourier transform (FFT)
algorithm was used to switch between momentum and coordi-
nate spaces [11]. The number of generated uncorrelated Monte
Carlo samples allows the statistical error to decrease below
5%. At low temperatures the singular value decomposition
technique was applied to avoid instabilities of the algorithm.
In all runs the single-particle occupation probabilities for the
highest energy states were below 1% at all temperatures. We
have also performed a few exploratory simulations for the
lattice of size Ns = 10. The results were in a good agreement
with those for the Ns = 8 lattice.

In Fig. 1 the low-temperature behavior of the total energy
and chemical potential is presented for two different lattice
sizes. The (shifted) total energy versus temperature for the
free Fermi gas (FFG) at the same particle density has also been
plotted (solid line). Note that after shifting of the free Fermi
gas energy by 0.52 EFFG the curve reproduces Monte Carlo
results for T > 0.15 εF (EFFG = 3

5NεF is the free Fermi gas
energy at T = 0). Below this temperature the deviation from
the free Fermi gas behavior is clearly visible. The chemical
potential is approximately constant for T < 0.1 εF.

The critical temperature of the superfluid-normal phase
transition has been determined using a method based on
the finite size scaling of the correlation function. A similar
technique was used to determine the critical temperature
at the unitary limit (see Refs. [11,13] for details). The
volume-dependent estimation of the critical temperature T

(ij )
c

was obtained by finding the crossing point of the rescaled
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FIG. 1. (Color online) Total energy E and chemical potential µ

as a function of temperature for dilute neutron matter at density
ρ = 0.003 fm−3 (kF 	 0.45 fm−1). The total energy is denoted by red
squares (83 lattice) and blue circles (103 lattice). The red up triangles
and blue down triangles correspond to the chemical potential for the
83 and 103 lattice, respectively. The solid line represents the energy of
the noninteracting Fermi gas, shifted by a constant value. The dashed
line shows an extrapolation of the energy and the chemical potential
to T = 0 limit. For comparison the total energy of the unitary Fermi
gas is also plotted (open red squares). The dashed area for T = 0
denotes the range where the results of other QMC results are located
(see, for example, Ref. [6]). In the inset the rescaled condensate
fraction is shown as a function of temperature, and red squares and
blue circles denote 83 and 103 lattices, respectively. The crosspoint
determines the critical temperature of the superfluid-normal phase
transition, Tc ≈ 0.09 εF.

condensate fraction for two different lattice sizes Ni,j . As
Ni,j → ∞, the series T

(ij )
c converges to Tc and one can extract

the limiting value. We have determined Tc using results for
two lattices, Ni,j = 8, 10. Such large lattices and rather small
filling factors, which in both cases reads ν = N/2N3

s ≈ 5%,

are enough to estimate the critical temperature with uncertainty
smaller than 20%. (In fact, this procedure applied to the
unitary gas gives estimation of Tc with a relative error of
less than than 10%.) The estimate of the critical temperature
reads Tc ≈ 0.09 εF. Note that Tc is considerably lower than the
temperature for the onset of deviation from the free Fermi gas
behavior.

Within the PIMC framework one cannot directly reach the
T = 0 limit. However, the ground-state energy can be obtained
by performing an extrapolation of results to zero temperature
limit. In our case this procedure provides the ground-state
energy E/EFFG = 0.46(2) [E/N = 1.22(5) MeV]. This value
is considerably lower (by about 20%–40%) than values
obtained by other MC calculations (see, for example, Ref. [6]).
This is most likely because our approach is based on fully
unrestricted path integral calculations and, within statistical
errors due to the Monte Carlo procedure, gives essentially
exact results.
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The gap in the fermionic spectrum, related to superfluidity,
has been computed from the spectral weight function A(p, ω)
by performing the analytic continuation of the imaginary time
propagator G(p, τ ) to real frequencies [14]. This procedure is
equivalent to solving the integral equation

G(p, τ ) = − 1

2π

∫ +∞

−∞
dωA(p, ω)

exp(−ωτ )

1 + exp(−ωβ)
, (3)

where G(p, τ ) is known from the Monte Carlo calculations for
51 different values of τ ∈ [0, β = 1/T ]. The inverse problem
is, however, numerically ill-posed, i.e., there is an infinite
class of solutions for A(p, ω) which satisfy Eq. (3) within
uncertainties generated by the Monte Carlo method. Therefore
we have used two independent methods based on completely
different mathematical approaches.

The first one, the maximum entropy method, is based
on Bayes’ theorem [15]. It treats the values of G̃(p, τi)
(i = 0, 1, . . . , 50) provided by QMC simulation as normally
distributed random numbers, around the true values G(p, τi),
and searches for the most probable solution assuming some a
priori knowledge concerning the spectral function. As a priori
information we have used the following constraints:

A(p, ω) � 0,

∫ +∞

−∞

dω

2π
A(p, ω) = 1, (4)

∫ +∞

−∞

dω

2π
A(p, ω)

1

1 + exp(ωβ)
= n(p), (5)

and we have assumed a Gaussian-like structure for A(p, ω).
In the formula (5) n(p) represents the occupation probability
of the state with momentum p that is known from the Monte
Carlo simulation.

The second method is based on the singular value decom-
position (SVD) of the integral kernel K of Eq. (3), which
can be rewritten in operator form as G(p, τi) = (KA)(p, τi).
The operator K possesses the singular system, which forms
a suitable basis for the expansion of the projected spectral
weight function Ã(p, ω) onto a subspace where the inverse
problem is well-posed [16]. Since the method provides only
a projection of the “true” solution, it does not require any
a priori information, contrary to the maximum entropy
method. However, since G(p, τi) includes statistical errors due
to the Monte Carlo procedure, the projected solution Ã(p, ω)
is also affected by this uncertainty. One can use this flexibility
by choosing the solution satisfying the constraints (4) [17].
The details of both methods will be discussed elsewhere [18].

The spectral weight function for the lowest temperature
T = 0.06 εF obtained for an Ns = 10 lattice is shown in the
Fig. 2. The same outcome has been generated by both methods
(maximum entropy and SVD) independently. The presence of
a “pairing” gap is clearly visible for this temperature.

Figure 3 presents the quasiparticle excitation spectrum
extracted from the spectral weight function for T = 0.06 εF.
We have found that the quasiparticle excitations can be
accurately parameterized by the BCS-like formula,

E(p) = ±
√(

p2

2m∗ − µ + U

)2

+ �2, (6)

FIG. 2. (Color online) Spectral weight function A(p, ω) at the
temperature T = 0.06 εF and lattice size Ns = 10 obtained by the
maximum entropy method. Points indicate localizations of maxima
for fixed values of momenta. Dashed lines correspond to the fit of
the BCS-type formula given by (6). In the inset the spectral weight
function at the Fermi level is presented.

where m∗ is an effective mass, U the mean field potential, and
� is the “pairing” gap. The values of these parameters were
estimated as m∗/m = 1.1(1), U/εF = −0.26(6), and �/εF =
0.25(5).

Note that the ratio �/Tc ≈ 2.8 is significantly higher than
the well-known value 1.76 predicted by BCS theory. The
similar deviation from the BCS value is typical for high-
temperature superconductors [19] and also for cold atomic
gases in the unitary regime [11]. Therefore we conclude that
the dilute neutron matter at this density is not a BCS-type
superfluid. Note also that to estimate the value of �/Tc we
have used the value of the energy gap at the temperature
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FIG. 3. (Color online) Quasiparticle energies E(p) (squares)
extracted from the spectral weight function A(p, ω) at T = 0.06 εF.
The line denotes results obtained under the assumption that the
system is composed of independent quasiparticles. The dashed line
corresponds to quasiparticle energies at the unitary limit.
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T = 0.06 εF, which is expected to be slightly lower than the
value of the gap at zero temperature.

It is instructive to compare quasiparticle excitation energies
with those extracted from the susceptibility function under
the assumption that the system is composed of independent
quasiparticles. Under this assumption the imaginary time
propagator is simply given by

G(p, τ ) = − e−τE(p)

1 + e−βE(p)
, (7)

and one can easily evaluate the susceptibility

χ (p) = −
∫ β

0
dτ G(p, τ ) = 1

E(p)

eβE(p) − 1

eβE(p) + 1
. (8)

From the calculated one-body propagator within the Monte
Carlo algorithm one can extract the spectrum of the elementary
fermionic excitations by inverting Eq. (8). The extracted
spectrum of quasiparticle energies turns out to reproduce very
well (within error bars) the quasiparticle spectrum derived
from the spectral function (see Fig. 3). The same property is
shared by unitary cold atomic gas at temperatures below the
critical temperature [20].

Comparison of our results with those obtained in the
limit reff → 0 provides information about the influence of
the effective range. From the data reported in Ref. [11]
we infer that the effects of the effective range do not

significantly alter the ground-state energy. The value of the
energy gap and the critical temperature decreases considerably
(at reff → 0: �(0)/εF ≈ 0.41 and T (0)

c /εF ≈ 0.13). However,
surprisingly the ratio �(0)/T (0)

c ≈ 3.2 remains approximately
constant (taking into account the uncertainties of our esti-
mation) when increasing reff to the value associated with
1S0 neutron-neutron interaction. Note also that the equation
of state exhibits the existence of the second temperature
scale, which can be attributed to the onset of deviations of
E/EFFG from the (shifted) energy of the free Fermi gas.
It bears similarity to the case of the unitary Fermi gas,
where the existence of the so-called “pseudogap” above Tc is
reported [20].

Summarizing, our results do not indicate the presence of
qualitative changes in comparison to the case of zero effective
range. In conclusion, the main aspects of physics at the unitary
regime survive within the limit of dilute neutron matter.
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