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Description of the 2ννββ decay within a fully renormalized proton-neutron quasiparticle
random-phase approximation approach with a restored gauge symmetry
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A many-body Hamiltonian involving the mean field for a projected spherical single-particle basis, the pairing
interactions for alike nucleons, and the dipole-dipole proton-neutron interactions in the particle-hole (ph)
channel and the ph dipole pairing potential is treated by the projected gauge fully renormalized proton-neutron
quasiparticle random phase approximation approach. The resulting wave functions and energies for the mother
and daughter nuclei are used to calculate the 2νββ decay rate and the process half-life. For illustration, the
formalism is applied for the decay 100Mo →100Ru. The calculated half-life is in agreement with the corresponding
experimental data. The Ikeda sum rule is obeyed.
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Double β decay is one of the most exciting topics of
nuclear physics because the rate of the process is obtained by
combining formalisms of electroweak interaction with those
yielding nuclear matrix elements. Owing to this feature, it
represents a sensitive test for both collaborating fields. The
2νββ process is interesting on its own but is also very attractive
because it constitutes a test for the nuclear matrix elements
(MEs) that are used for the process of 0νββ decay. Discovery
of this process may provide an answer to the fundamental
question whether a neutrino is a Mayorana or a Dirac particle.
The subject development is reflected by several review papers
[1–4]. This Brief Report deals with the 2νββ process. The
formalism yielding the closest results to the experimental data
is the proton-neutron random phase approximation (pnQRPA),
which includes the particle-hole (ph) and particle-particle (pp)
interactions [5] as independent two-body interactions. The
second leg of the 2νββ process is very sensitive to changing
the relative strength of the later interaction, denoted hereafter
by gpp. Since the pp interaction is attractive, for a critical value
of gpp the first root of the pnQRPA equation vanishes. This is a
signal that the pnQRPA approach is no longer valid. Moreover,
the gpp value, which corresponds to a transition amplitude that
agrees with the corresponding experimental data, is close to the
mentioned critical value. That means the result is not stable to
adding corrections to the random phase approximation (RPA)
picture. The first improvement for the pnQRPA was achieved
in Ref. [6] by using a boson expansion procedure. Later
on, another procedure showed up, which renormalized the
dipole two-quasiparticle operators [7]. Such a renormalization
is inconsistently achieved because the scattering operators
are not renormalized. This lack of consistency was removed
in Refs. [8,9], where a fully renormalized pnQRPA was
proposed.

Unfortunately, all higher pnQRPA procedures have the
common drawback of violating the Ikeda sum rule (ISR) by
an amount of about 20%–30% [10]. It is believed that such a
violation is caused by the gauge symmetry breaking. A method
for restoring this symmetry was formulated in Ref. [11].

Here the results of Ref. [11] are improved in three respects:

(i) Aiming at providing a unitary description of the
process for spherical and deformed emitters, we use
the projected spherical single-particle basis defined in
Refs. [12–14].

(ii) The space of proton-neutron dipole configurations is
split into three subspaces, one being associated to the
single β−, one to the β+ process, and one spanned by
the unphysical states.

(iii) The correlations for the second leg of the process are
mainly determined by the ph dipole-pairing term.

The numerical application is made for the 2νββ process
100Mo →100Ru. Aiming at a self-content presentation, we give
few details.

According to Ref. [12], the projected spherical basis is

�IM
nlj (d) = N I

nljP
I
MI [|nljI 〉�g] ≡ N I

nlj�
IM
nlj (d), (1)

where P I
MK denotes the angular momentum projection oper-

ator, |nljm〉 is the spherical shell model state, and �g is an
axially deformed coherent state describing the ground state
of a phenomenological core in terms of quadrupole bosons
b
†
2µ, b2µ:

�g = exp[d(b+
20 − b20)]|0〉b. (2)

Here |0〉b denotes the vacuum state for the quadrupole bosons.
The single-particle energies εI

nlj are obtained by averaging a
particle-core Hamiltonian with the corresponding basis states.
To stay close to the Nilsson model, where on each � state one
can distribute two nucleons, here we change the norm of the
projected states such that this restriction holds:〈

�IM
α

∣∣�IM
α

〉 = 1 =⇒
∑
M

〈
�IM

α

∣∣�IM
α

〉 = 2. (3)

Thus, the wave functions used to calculate the ME should be
multiplied by

√
2/(2I + 1).
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We suppose that the states describing the nuclei involved
in a 2νββ process are described by a many-body Hamiltonian
which may be written in the projected spherical basis as

H =
∑

τ,α,I,M

2

2I + 1
(εταI − λτα)c†ταIMcταIM

−
∑

τ,α,I,I ′

Gτ

4
P

†
ταIPταI ′ + 2χ

∑
pn;p′
n′;µ

β−
µ (pn)β+

−µ(p′n′)(−)µ

−χ1

∑
pn;p′
n′;µ

[β−
µ (pn)β−

µ (p′n′) + β+
−µ(p′n′)β+

−µ(pn)](−1)1−µ,

(4)

where c
†
ταIM (cταIM ) denotes the creation (annihilation)

operator of one nucleon of the type τ (= p, n) in the state
�IM

α , with α being an abbreviation for the set of quantum
numbers nlj . The Hamiltonian H contains the mean-field
term, the pairing interaction for alike nucleons, and the
Gamow-Teller (GT) dipole-dipole interaction in the ph channel
and the ph dipole pairing, characterized by the strengths χ and
χ1, respectively. Passing to the quasiparticle representation
(a†

τIM, aτIM ), the first two terms of H are replaced by
the independent quasiparticles term,

∑
EτIa

†
τIMaτIM , while

the ph dipole-dipole and ph dipole-pairing interactions are
expressed in terms of the dipole two quasiparticle (qp) and the
qp density operators:

A
†
1µ(pn) =

∑
C

Ip In 1
mp mn µa

†
pIpmp

a
†
nInmn

,
(5)

B
†
1µ(pn) =

∑
C

Ip In 1
mp −mn µa

†
pjpmp

anInmn
(−)In−mn,

and their their Hermitian conjugates. In Ref. [8], we showed
that all these operators can be renormalized, as suggested by
the commutation equations:

[A1µ(k), A†
1µ′(k′)] ≈ δk,k′δµ,µ′

[
1 − N̂n

Î 2
n

− N̂p

Î 2
p

]
,

[B†
1µ(k), A†

1µ′(k′)] ≈ [B†
1µ(k), A1µ′ (k′)] ≈ 0, (6)

[B1µ(k), B†
1µ′(k′)] ≈ δk,k′δµ,µ′

[
N̂n

Î 2
n

− N̂p

Î 2
p

]
, k = (Ip, In).

Indeed, denoting by C
(1)
Ip,In

and C
(2)
Ip,In

the averages of the
right-hand sides of Eqs. (6) with the renormalized RPA
vacuum state, the renormalized operators defined as Ā1µ(k) =

1√
C

(1)
k

A1µ, B̄1µ(k) = 1√
|C(2)

k |
B1µ obey bosonlike commutation

relations:

[Ā1µ(k), Ā †
1µ′ (k′)] = δk,k′δµ,µ′ ,

(7)
[B̄1µ(k), B̄†

1µ′(k′)] = δk,k′δµ,µ′fk, fk = sign
(
C

(2)
k

)
.

Further, these operators are used to define the phonon operator:

C
†
1µ =

∑
k

[X(k)Ā †
1µ(k) + Z(k)D̄†

1µ(k)

−Y (k)Ā1−µ(k)(−)1−µ − W (k)D̄1−µ(k)(−)1−µ], (8)

where D̄
†
1µ(k) is equal to B̄

†
1µ′(k′) or B̄1µ(k) depending on

whether fk is positive or negative. The phonon amplitudes
are determined by the equations supplied by the operator
equations:

[H,C
†
1µ] = ωC

†
1µ, [C1µ, C

†
1µ′ ] = δµµ′ . (9)

Interesting properties for these equations and their solutions
are discussed in our previous publications [8,9]. Here we
mention one of these features. The renormalized ground state
is a superposition of components describing the neighboring
nuclei (N − 1, Z + 1), (N + 1, Z − 1), (N + 1, Z + 1), and
(N − 1, Z − 1). The first two components conserve the total
number of nucleons (N + Z) but violate the third component
of isospin, T3. By contrast, the last two components violate
the total number of nucleons but preserve T3. Actually, the
last two components contribute to the violation of the ISR.
One can construct linear combinations of the basic operators
A†, A, B†, and B which excite the nucleus (N,Z) to the
nuclei (N − 1, Z + 1), (N + 1, Z − 1), (N + 1, Z + 1),and
(N − 1, Z − 1), respectively. These operators are actually the
images of

A†
1µ(pn) = −[c†pcñ]1µ, A1µ(pn) = −[c†pcñ]†1µ,

A†
1µ(pn) = [c†pc†n]1µ, A1µ(pn) = [c†pc†n]†1µ,

through the Bogoliubov-Valatin (BV) transformation. The
later operators are involved in the proton-neutron pp inter-
action. At the gauge-projected RPA level, these terms do not
contribute at all and therefore they are ignored in the present
work. In terms of the new operators, H becomes

H =
∑
τjm

Eτja
†
τjmaτjm

+ 2χ
∑

pn,p′n′;µ

σpn;p′n′A†
1µ(pn)A1µ(p′n′)

−χ1

∑
pn;p

′
n

′ ;µ

σpn;p′n′(A†
1µ(pn)A†

1,−µ(p′n′)

+A1,−µ(p′n′)A1µ(pn))(−)1−µ,

σpn;p′n′ = 2

3ÎnÎn′
〈Ip||σ ||In〉〈Ip′ ||σ ||In′ 〉. (10)

Here EτI denotes the quasiparticle energy. The equations of
motion of the operators defining the phonon operator are
determined by the commutation relations:

[A1µ(pn),A†
1µ′(p′n′)]

≈ δµ,µ′δjp,jp′ δjn,jn′

×
(

U 2
p − U 2

n + U 2
n − V 2

n

ĵ 2
n

N̂n − U 2
p − V 2

p

ĵ 2
p

N̂p

)
. (11)

The average of the right-hand side of this equation with the
projected gauge fully renormalized proton-neutron quasipar-
ticle random phase approximation (PGFRpnQRPA) vacuum
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state is denoted by

D1(pn) = U 2
p − U 2

n + 1

2In + 1

(
U 2

n − V 2
n

)〈N̂n〉

− 1

2Ip + 1

(
U 2

p − V 2
p

)〈N̂p〉. (12)

The equations of motion show that the two qp energies are
renormalized too:

Eren(pn) = Ep

(
U 2

p − V 2
p

) + En

(
V 2

n − U 2
n

)
. (13)

The space of pn dipole states, S, is written as a sum of three
subspaces, defined as

S+ = {(p, n)|D1(pn) > 0, Eren(pn) > 0, },
S− = {(p, n)|D1(pn) < 0, Eren(pn) < 0, },
Ssp = S − (S+ + S−). (14)

In S+ one defines the renormalized operators

Ā†
1µ(pn) = 1√

D1(pn)
A†

1µ(pn), Ā1µ(pn) = (Ā†
1µ(pn))†,

(15)

while in S− the renormalized operators are

F̄†
1µ(pn) = 1√|D1(pn)|A1µ(pn), F̄1µ(pn) = (F̄†

1µ(pn))†.

(16)

Indeed, the operator pairs A1µ,A†
1µ and F1µ,F†

1µ satisfy
commutation relations of boson type. An RPA treatment within
Ssp would yield either vanishing or negative energies. The
corresponding states are therefore spurious.

The operator equations

[H,�
†
1µ] = ω�

†
1µ, [�1µ, �

†
1µ′ ] = δµ,µ′ , (17)

define the new pnQRPA equation for the phonon amplitudes:

�
†
1µ =

∑
k

[X(k)Ā†
1µ(k) + Z(k)F̄†

1µ(k)

−Y (k)Ā1−µ(k)(−)1−µ − W (k)F̄1−µ(k)(−)1−µ]. (18)

To solve the equations for the phonon amplitudes, we
need to know D1(pn) and, therefore, the averages of the
qp’s number operators, N̂p and N̂n. These are written first in
particle representation and then the particle number conserving
term is expressed as a linear combination of A†A and F†F
chosen such that their commutators with A†,A and F†,F are
preserved. The final result is

〈N̂p〉 = V 2
p (2Ip + 1) + 3

(
U 2

p − V 2
p

)
×

⎛⎜⎜⎝ ∑
n′ ,k

(p,n′)∈S+

D1(p, n′)[Yk(p, n′)]2

−
∑

n′ ,k
(p,n

′ )∈S−

D1(p, n′)[Wk(p, n
′
)]2

⎞⎟⎟⎠ ,

〈N̂n〉 = V 2
n (2In + 1) + 3(U 2

n − V 2
n )

×

⎛⎜⎜⎝ ∑
p
′
,k

(p′,n)∈S+

D1(p′, n)[Yk(p′, n)]2

−
∑

p′,k
(p′,n)∈S−

D1(p′, n)[Wk(p′, n)]2

⎞⎟⎟⎠ . (19)

The pnQRPA equations and Eqs. (19) are to be solved
iteratively. Note that, using the qp representation for the
basic operators A†

1µ, F†
1µ, A1,−µ(−1)1−µ, and F1,−µ(−)1−µ,

one obtains that �
†
1µ involves the scattering pn operators.

Thus, the present description is, indeed, a PGFRpnQRPA
approach.

The formalism presented above was used to describe
the 2νββ process. If the energy carried by leptons in the
intermediate state is approximated by the sum of the rest
energy of the emitted electron and half the Q value of the
double β decay process, �E = 1

2Qββ + mec
2, the reciprocal

value of the 2νββ half-life can be factorized as (T 2νββ

1/2 )−1 =
F |MGT(0+

i → 0+
f )|2, where F is an integral on the phase

space, independent of the nuclear structure, while MGT

stands for the Gamow-Teller transition amplitude and has the
expression

MGT =
√

3
∑
k,k′

i〈0||β+
i ||1k〉i i〈1k|1k′ 〉f f 〈1k′ ||β+

f ||0〉f
Ek + �E + E1+

.

(20)

In Eq. (20), the denominator consists of three terms:
(a) �E, which was already defined; (b) the average value of
the kth PGFRpnQRPA energy normalized to the particular
value corresponding to k = 1; and (c) the experimental
energy for the lowest 1+ state. The indices carried by the
β+ operators indicate that they act in the space spanned by
the PGFRpnQRPA states associated to the initial (i) or final
(f ) nucleus. The overlap ME of the single phonon states in
the initial and final nuclei, respectively, are calculated within
PGFRpnQRPA. In Eq. (20), the Rose convention for the
reduced ME is used. Note that if we restrict the pn space toS+,
MGT vanishes due to the second leg of the transition. Also, we
remark that the operator Ā†

1µ plays the role of a β− transition

operator, whereas when F̄†
1µ is applied on the ground state of

the daughter nucleus, it induces a β+ transition. Therefore, the
2β decay cannot be described by considering the β− transition
alone. The 2νββ is allowed even if the χ1 interaction is missing
but N− 
= 0.

For illustration, we present the results for the transition
100Mo→100Ru. For this case the energy corrections involved
in Eq. (20) are �E = 2.026 MeV, E1+ = 0.0 MeV.

The parameters defining the single particle energies are
those of the spherical shell model, the deformation parameter d

and the parameter k relating the quadrupole coordinate with the
quadrupole bosons. These are fixed as described in Ref. [14].
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FIG. 1. (left) One third of the single β− strength for 100Mo and
(right) one third of the β+ strength for 100Ru, folded by a Gaussian
with a width of 0.5 MeV, are plotted as functions of the corresponding
energies yielded by our approach. The difference B

′(−)
GT − B

′(+)
GT is to

be compared with the ISR value (i.e., N − Z).

The core system is defined by (Z,N ) = (20, 20). Labeling the
states according to their energies’ ordering, the single particle
space is defined by the indices interval [11, 55]. The dimen-
sions for the spaces (S+,S−) are (137, 1) and (139, 2) for the
mother and daughter nuclei, respectively. The dimension for
S is 163 for the mother and 175 for the daughter nucleus.
The strengths of the dipole pn and the ph dipole-pairing
interactions were taken so that the calculated log f t values
for the single β decay of 100Tc are close to the corresponding
experimental data. Using these input data, we calculated the
distribution of the β± strengths with the result shown in Fig.
1. The energy intervals where both distributions are large
contribute significantly to the double β transition amplitude.

Calculating first the GT transition amplitude and then the
Fermi integral with GA = 1.254, as in Ref. [2], we obtained
the following result: |MGT| = 0.221, T1/2 = 8.79 × 1018 yr.
This result should be compared with the experimental results
[15,16]: T1/2 = (8.0 ± 0.16) × 1018 yr, T1/2 = (0.115+0.03

−0.02) ×
1020 yr. Another experimental result concerns the summed
strength for the β− transition:

∑
BGT− = 26.69. Quenching

the theoretical result by a factor of 0.6 to account for the miss-
ing strength, one obtains the value of 28.96. The intermediate
odd-odd nucleus, 100Tc, can perform the transition β+/EC,
feeding 100Mo, or the β− transition to 100Ru. The measured
log f t values for these transitions are given in Table I. The

TABLE I. The strengths for pairing interactions (Gp and Gn),
the GT dipole (χ ), and the ph dipole-pairing interaction (χ1), given
in MeV, used in our work. We also give the scaling factor k involved
in the boson expression of α2µ as well as the resulting log f t values
characterizing the β+/EC and β− transitions of 100Tc.

k Gp Gn ISR log f t χ χ1

100Mo 5.5 0.18 0.288 15.995 100Mo
β+/EC← 100Tc 0.232 1.406

4.45+0.18
−0.30 4.65

100Ru 5.5 0.15 0.255 12.002 100Tc
β−
→100Ru 0.232 1.406

4.66 4.12

theoretical results are obtained by

f t∓ = 6160

[l〈11||β±||0〉lgA]2
, l = i, f. (21)

To take account of the effect of distant states responsible for
the “missing strength” in the giant GT resonance [2], we chose
gA = 1.0.

Two GT resonances, centered at 13.3 and 8 MeV, respec-
tively, and carrying a B (GT) strength of 23.1 ± 3.8 and
2.9 ± 0.5, were identified in Ref. [17]. Here the two centroids
are at 11.25 and 8.0 MeV and the corresponding quenched
strengths are 11.16 and 4.23. Thus, the centroid energy and
the corresponding strength of the main GT resonance are only
qualitatively explained. The data reflect a relative large χ1

interaction, which transfers a large amount of strength to the
resonance shown at 5 MeV. We do not know yet whether this
weak point in the calculations could be removed after a more
careful fitting of the model parameters or if it is a price to pay
for restoring the gauge symmetry.

Summarizing, one may say that, by restoring the gauge sym-
metry from the fully renormalized pnQRPA, one obtains a re-
alistic description of the transition rate and moreover the ISR is
obeyed. The attractive interaction of the ph dipole-pairing type
is responsible for the ground-state correlations. To a lesser ex-
tent, these are caused by the F components of the new phonon
operator. The projection of gauge is essential for restoring
the ISR. The gauge projection of the pnQRPA was previously
achieved in Ref. [18], where the ISR was satisfied anyway
within pnQRPA. Therein the effect of projection is small.

This work was supported by CNCSIS, Contracts No. ID-
33/2007 and No. ID-1038/2009.
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