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We develop a systematic framework for the study of the initial collision geometry fluctuations in relativistic
heavy-ion collisions and investigate how they evolve through different stages of the fireball history and translate
into final-particle momentum anisotropies. We find in our event-by-event analysis that only the few lowest
momentum anisotropy parameters survive after the hydrodynamical evolution of the system. The geometry of the
produced medium is found to be affected by the pre-equilibrium evolution of the medium and the thermal smearing
of the discretized event-by-event initial conditions, both of which tend to smear out the spatial anisotropies. We
find such effects to be more prominent for higher moments than for lower moments. The correlations between
odd and even spatial anisotropy parameters during the pre-equilibrium expansion are quantitatively studied and
found to be small. Our study provides a theoretical foundation for the understanding of initial-state fluctuations
and the collective expansion dynamics in relativistic heavy-ion collisions.
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I. INTRODUCTION

Experiments at the Relativistic Heavy Ion Collider (RHIC)
have discovered that the strongly interacting matter produced
in these highly energetic collisions exhibits strong collective
flow, which can be well described by relativistic hydrody-
namics [1–8]. In noncentral collisions, the collective flow
is azimuthally asymmetric in the plane transverse to the
beam axis. This has been understood as the consequence
of the initial spatial asymmetry of the medium produced by
the two colliding nuclei, which translates into a momentum
anisotropy of the emitted particles owing to the hydrodynamic
expansion of the matter. The magnitude of this flow anisotropy
is quantified by the Fourier expansion coefficients vn of the
azimuthal angular distribution of the emitted particles in the
transverse plane [9].

The elliptic flow v2 signal has been extensively studied
in Au + Au collisions at RHIC as a function of various
quantities [10]. Hydrodynamic simulations have shown that
elliptic flow v2 is sensitive to various transport properties
of the expanding hot medium, especially the specific shear
viscosity η, the presence of which tends to reduce the
amount of the elliptic flow that can be built up in an ideal
hydrodynamical fluid [11–15]. Considerable effort has been
devoted to the quantitative extraction of the shear viscosity
by comparing the measured elliptic flow v2 with viscous rela-
tivistic hydrodynamic simulation of the fireball evolution and
other Boltzmann transport models that involve the violation of
ideal hydrodynamic behavior [16,17]. These comparisons have
yielded an upper limit for the shear viscosity to entropy density
s ratio: η/s < 0.5 [18,19], the same order of magnitude as the
conjectured Kovtun-Son-Starinets (KSS) bound η/s = 1/(4π )
[20], which was obtained using anti-de-Sitter/conformal field
theory (AdS/CFT) correspondence for certain quantum field
theories similar to QCD.

Current efforts in the extraction of the shear viscosity
from precise v2 measurements are subjected to various un-
certainties in the hydrodynamic simulations, that is, equations

of state, large shear viscosity in late hadronic stage [21],
bulk viscosity [22], and the treatment of the freeze-out
conditions. Among the largest uncertainties is the initial
geometry employed in the hydrodynamical simulations, that
is, the initial fireball eccentricity ε2 = 〈y2 − x2〉/〈y2 + x2〉
[15,23]. In ideal hydrodynamics, the elliptic flow is built up
from pressure gradients and thus is directly proportional to the
initial fireball eccentricity. Unfortunately, there has been no
direct experimental measurements of this quantity owing to
the difficulty of isolating the initial-state contribution from
the later stages of the fireball evolution. Model estimates
of the overlap geometry of two nuclei differ up to 20%–30%
in eccentricity, which turns out to introduce more than a
factor of 2 uncertainty in the extracted values for η/s [12].
Therefore, the precise determination of η/s requires a more
precise knowledge of the initial geometry for the produced
fireball in the collisions.

Recently, significant attention has been paid to initial
geometry fluctuations [24–29], which have been used to
explain the underestimation of elliptic flow calculated in
various ideal and viscous hydrodynamic simulations for the
most central collisions. For example, the geometry fluctuations
of the positions of nucleons in the Monte Carlo Glauber (MCG)
model [30,31] lead to fluctuations of the participant plane from
one event to another, rendering larger eccentricities, which
translates into larger elliptic flow for the final-state particles.
To pursue such studies, one needs to run hydrodynamical
evolution on an event-by-event basis utilizing fluctuating initial
conditions [32–34].

As is known, higher-order moments are also present in
fluctuating initial collision geometry when one performs a
harmonic or multipole analysis. Triangular geometry and flow
have recently been proposed to explain features in the data
such as the ridge and broad away-side correlations observed in
two-particle correlation data in the context of hydrodynamics
and transport models [34–36]. Higher-order flow coefficients
have been measured [37,38] and recent studies show that the

0556-2813/2010/82(6)/064903(14) 064903-1 ©2010 The American Physical Society

http://dx.doi.org/10.1103/PhysRevC.82.064903
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initial-state density fluctuations may play an important role
in understanding the centrality dependence of the ratio v4/v

2
2

[39,40]. To achieve a full understanding of the expansion dy-
namics of the produced fireball therefore requires a systematic
study of initial geometry fluctuations. The main purpose of
our paper is to investigate how harmonic moments of different
order propagate through the different stages of the fireball
history and how they translate themselves into the momentum
anisotropies of the final produced particles.

In Sec. II, we construct the full phase space distribution of
the initial conditions (position and momentum space) obtained
from a MCG model with the inclusion of the nucleon position
fluctuations, as well as fluctuations from individual nucleon-
nucleon collisions. The geometry of such initial conditions is
analyzed in Sec. III. We study the pre-equilibrium evolution
of the system and its effect on the spatial geometry in Sec. IV,
where a detailed analysis of the correlations between odd
and even moments during this period is also presented. In
Sec. V, the discretized initial conditions is smeared with a
Gaussian distribution and, assuming sudden thermalization,
the subsequent evolution of the system is modeled utilizing a
three-dimensional relativistic ideal hydrodynamics [34,41,42].
Numerical results of final-state momentum anisotropies after
the hydrodynamical evolution are presented in Sec. VI,
followed by our summary in the last section.

II. INITIAL CONDITIONS

Our initial conditions are based on the MCG model
but differ from other implementations of that model as we
include the fluctuations of nucleon positions, as well as
the fluctuations originating from individual nucleon-nucleon
collisions. In addition, we account for the full phase space by
constructing the particle momentum distributions as well. We
determine the spatial distribution using the well-established
two-component (binary collision and participant) scaling and
the momentum distribution is obtained by fitting to data on
final-particle momentum spectra. We also treat the early pre-
equilibrium expansion of the system using the free-streaming
approximation prior to the hydrodynamical evolution.

We start with the nuclear distribution function inside a
nucleus taken as the Woods-Saxon form,

ρA(r) = ρ0

1 + exp[(r − R)/d]
, (1)

where the radius R and the diffuse constant d are taken as
R = 6.38 fm, d = 0.535 fm for a Au nucleus. The preceding
distribution is normalized to the atom number

∫
d3rρ(r) = A

with ρ0 = 0.163/fm3. It is convenient to normalize the
preceding distribution function to unity and define the single
nucleon distribution ρ̂A(r) inside a nucleus,

∫
d3rρ̂A(r) = 1.

The normalized thickness function is defined as

T̂A(s) =
∫

dzρ̂A(s, z), (2)

with the normalization
∫

d2sT̂A(s) = 1.
To study the collision between two incoming nuclei at a

given impact parameter b, one may define the probability for a

given nucleon i from nucleus A and a given nucleon j from nu-
cleus B to collide to be P (si , sj , b) = σ̂ (si − sj − b), which is
normalized to the nucleon-nucleon inelastic cross section σNN ,∫

d2sσ̂ (s) = σNN, (3)

where σNN = 42 mb is taken for nucleon-nucleon collisions
at

√
sNN = 200 GeV. From such a probability distribution,

one may compute the numbers of binary nucleon-nucleon
collisions and participating nucleons,

Ncoll =
A∑

i=1

B∑
j=1

∫
d2si T̂A(si)

∫
d2sj T̂B(sj )σ̂ (s),

Npart =
A∑

i=1

∫
d2si T̂A(si)

×
{

1 −
B∏

j=1

∫
d2sj T̂B(sj )[1 − σ̂ (s)]

}
+ (A ↔ B),

(4)

wheres = si − sj − b.
To simulate a collision of two nuclei using the Monte

Carlo approach, one first samples the positions of all nucleons
in the nucleus according to a Woods-Saxon distribution and
obtains discrete nucleon distributions with each single nucleon
corresponding to a δ function. The probability function
σ̂ (si − sj − b) for two nucleons to collide is taken to be
geometrical in form:

σ̂ (si − sj − b) = 1, |si − sj − b| �
√

σNN/π,
(5)

σ̂ (si − sj − b) = 0, |si − sj − b| >
√

σNN/π.

With this, one returns to the classical picture of collisions:
two nucleons with transverse distance d⊥ = |si − sj − b| �√

σNN/π will collide with each other. Note that the assumption
of linear trajectories of participant nucleons is still maintained
after they collide with each other. With the preceding probabil-
ity distribution, one reduces the calculation of Ncoll and Npart

to counting the pairs of binary collisions and the number of
participating nucleons.

After determining the profiles of two colliding nuclei,
the produced particle multiplicity in a collision for a given
centrality class (or impact parameter b) and rapidity range
�η can be obtained from the following phenomenological
two-component formula [43]:

NAA(b,�η) =
[
αNcoll(b) + 1 − α

2
Npart(b)

]
NNN (�η), (6)

where NNN (�η) is the particle multiplicity in a nucleon-
nucleon collision at the same collision energy. The variable
α controls the balance between two components: participant
scaling and binary collision scaling. With the value of α =
0.13, one may obtain a nice description of the centrality depen-
dence of average charged-particle multiplicity at midrapidity
|η| < 0.5 in Au + Au collisions at

√
sNN = 200 GeV [44] (see

Fig. 1).
As is well known, the particle multiplicity in high-energy

collisions is fluctuating from one event to another. The
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FIG. 1. (Color online) Charged-particle multiplicity at midrapid-
ity |η| < 0.5 as a function of centrality in Au + Au collisions at√

sNN = 200 GeV.

distribution of particle multiplicities N (�η) for a given
rapidity range �η may be well described by a negative
binomial (NB) distribution [45–47],

P (N,µ, k) = 	(N + k)

	(N + 1)	(k)

(µ/k)N

(µ/k + 1)N+k
, (7)

where µ is the mean of the distribution and k is related
to the shape of the distribution. The variance is given by
σ 2 = µ(µ/k + 1) and the scaled invariance is defined as
ω = σ 2/µ = µ/k + 1. With the values of µ = 2.35 and
k = 1.9, one obtains a good description of the charge-particle
multiplicity measurements for both p + p̄ collisions from
UA5 [45] and p + p collisions from STAR [46] at midrapidity
|η| < 0.5 (see Fig. 2).

For high energy nucleus-nucleus collisions, we include
particle multiplicity fluctuations by evaluating Eq. (6) on an
event-by-event basis, with the distribution of NNN (�η) given
by Eq. (7). The balance factor α of binary collision and
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FIG. 2. (Color online) Charged-particle multiplicity distribution
at midrapidity |η| < 0.5 in p + p̄ collisions and p + p collisions at√

sNN = 200 GeV.

participant scaling in Eq. (6) is implemented by randomly
keeping only a fraction α of particles from a binary collision
and a fraction (1 − α)/2 of particles originating from a par-
ticipating nucleon. In general, the positions of particles might
be sampled according to a smeared distribution around the
positions of binary collisions or participant nucleons. Here we
take the positions of particles as the same positions as binary
collisions or participant nucleons. We note that the inclusion
of additional individual nucleon-nucleon fluctuations changes
the spatial distribution of produced matter and increases the
spatial anisotropy parameters as computed in Sec. III by less
than 10% depending on centrality (not shown). The Lorentz
contraction in the longitudinal direction is taken into account
by contracting the longitudinal position z of each particle by a
factor of 100 for Au + Au collisions at

√
sNN = 200 GeV.

With the number of produced particles and their positions
fixed, we also assign momenta to each particle. In this work,
particle transverse momenta pT are sampled according to the
following power-law distribution:

dN

dp2
T

∝ 1(
1 + p2

T /b2
)c . (8)

Such a power-law form is generic for the production of jets,
minijets, and hadrons in both nucleon-nucleon and nucleus-
nucleus collisions. In this application we take the parameters
b = 0.88 GeV and c = 4 from fitting charged pion data for
Au + Au collisions at

√
sNN = 200 GeV. The azimuthal angle

of the transverse momentum is uniformly distributed. Particle
rapidities are taken to be uniformly distributed around midra-
pidity |y| < 1. Particles with large rapidities will be absent
from the central rapidity region at later times and we neglect
them in this work. With the preceding setup, we obtain the full
phase distribution of the system at initial production time.

III. INITIAL GEOMETRY

Before moving to the evolution of the system, we first
investigate its geometrical properties at the production time.
In a nucleus-nucleus collision, the reaction plane is defined by
the beam direction (z) and the impact parameter direction (x).
The impact parameter direction and the third orthogonal
direction (y) define the transverse plane (one typical collision
event is shown Fig. 3). We call the plane defined by the
z direction and the y direction the vertical plane. The geometry
of the transverse plane is particularly interesting owing to the
fact that the elliptic flow v2 is found in ideal hydrodynamics
to be proportional to the initial eccentricity ε2 of the overlap
region of the colliding nuclei, the determination of which plays
an important role in the extraction of the transport coefficients
of the produced fireball.

For averaged initial conditions, the geometry of the system
can be studied directly in the preceding framework owing to the
coincidence of the vertical plane and the spatial event plane for
ε2 (a rotation by π/2 of the participant plane if the participating
nucleons are considered for the spatial distribution). With
fluctuating initial conditions, the spatial event plane is tilted
with respect to the reaction plane from one event to another. We
call the angle between the spatial event plane and the reaction
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FIG. 3. (Color online) The transverse plane for one typical
collision event, where the circles represent nucleons from two nuclei,
with shaded ones for participating nucleons. Also shown are the
locations of different planes: the reaction plane (RP), the spatial event
plane (SEP), and the momentum event plane (MEP) for n = 2.

plane the spatial event plane angle �2. Note that this choice
of the spatial event plane is convenient when generalizing
to higher moments because the event plane angle distribution
always has a maximum in the y direction for all even moments,
whereas not always one of the minima is in the x direction.

The final elliptic flow v2 is defined with respect to a third
plane, the momentum event plane �2 that is reconstructed in
experiments from the measured momentum distribution of the
produced particles. Again in ideal hydrodynamics with smooth
initial conditions this event plane coincides with the reaction
plane, that is, is rotated with respect to the spatial event plane
by π/2. This rotation ensures that the final v2 has the same sign
as the initial ε2. If an event-by-event analysis with fluctuating
initial conditions is applied, a strong correlation of the final
momentum event plane to the initial spatial event plane still
remains, but fluctuates around π/2, as has been shown in
Ref. [33].

One may generalize the preceding concept for every
harmonic moment and define the spatial anisotropy parameters
εn as follows. The first moment ε1 can always be made to vanish
by shifting the coordinates to the center-of-mass (c.m.) frame
of the system such that 〈x〉 = 〈y〉 = 0. Note that throughout
this paper 〈· · ·〉 represents averages over the phase-space
profile for a given event, except in the Appendix. Once the
system is shifted to its c.m. frame, ε1 = 0, all higher harmonic
moments can be defined as

εn =
√

〈rn
⊥ cos(nφ)〉2 + 〈rn

⊥ sin(nφ)〉2/〈rn
⊥〉, (9)

where r⊥ =
√

x2 + y2 and φ = arctan(y/x) are polar coordi-
nates for the point (x, y) in the transverse plane. The spatial
event plane angle �n with respect to the reaction plane can be
found through the following formula:

�n = 1

n
arctan

〈rn
⊥ sin(nφ)〉

〈rn
⊥ cos(nφ)〉 . (10)

Note that in our definition �n fluctuates from one event to
another in the range of (−π/n, π/n), but it is equivalent to

rotate such angle by 2π/n. Once the event plane angle is
found, the definition of the spatial anisotropy parameters may
be reduced to εn = 〈rn

⊥ cos[n(φ − �n)]〉/〈rn
⊥〉.

The flow coefficients vn are defined as the nth Fourier
moment of the particle momentum distribution with respect
to each momentum event plane,

vn = 〈cos[n(ψ − �n)]〉, (11)

where ψ = tan−1(py/px) is the azimuthal angle of particle
momentum p in the c.m. frame. Here we define the momentum
event plane by a rotation angle π/n with respect to the initial
spatial event plane, �n = �n + π/n. This rotation is just a
convention generalized from the requirement that a positive
initial eccentricity generates a positive value of final elliptic
flow in ideal hydrodynamics with average initial conditions.
Note that our definition of the momentum event plane does not
necessarily correspond to the event plane that is reconstructed
in experiments as just mentioned, but for our systematic study
it provides an unambiguous basis to quantify the final-state
response to the initial-state anisotropies.

Because the event plane defined by Eq. (10) fluctuates
around the vertical plane (y direction) for even moments,
we may perform a transformation �n → �′

n by evaluating
Eq. (10) with φ → φ′ = φ + π/2. This corresponds to a
rotation of the coordinate system (x, y) by π/2, which ensures
the distributions of all even �′

n peak at 0, as shown in Fig. 4.
In this plot, the impact parameter b is taken to be 8 fm for all
events. While all even moments are strongly correlated with
the reaction plane with one maximum along y direction, all odd
moments are uniformly distributed. This may be understood
because the odd moments of spatial anisotropy purely originate
from fluctuations while the even ones are combined effects of
fluctuations and geometry. As a consequence, if one defines
the spatial anisotropy parameters εn with respect to the
predetermined reaction plane, the event-averaged εn vanishes
for all odd moments, but not for even ones. We also observe
that the distributions of even moments is wider for higher
values of n owing to weaker correlations with respect to the
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FIG. 4. (Color online) The probability distribution of �′
n at

production time with b = 8 fm.
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FIG. 5. (Color online) The widths of �′
n distribution (times n) at

production time as a function of impact parameter b.

reaction plane [in fact, what matters is the distribution of n�′
n,

as �′
n fluctuates within (−π/n, π/n)].

We also investigate the centrality dependence of the
preceding correlations in Fig. 5, where the widths of the
distributions are plotted as a function of impact parameter b.
One can see that the widths of all odd values of n align with
each other at π/

√
3, as expected [for a uniform distribution

from −π/n to π/n, the variance is σ 2 = π2/(3n2) and we
are plotting nσ (�′

n) = σ (n�′
n)]. Also owing to symmetry in

central collisions there is no correlation between the angle �′
n

and the y direction for all values of n. The anisotropy is purely
from fluctuations, rendering uniform distributions also for even
values of n. As one moves to noncentral collisions, geometry
comes into play and may dominate over pure fluctuations;
hence, the widths of even n distributions become smaller. For
very peripheral collisions, the importance of the geometry
diminishes owing to the small size of the system, and even
n distributions become broader again. We also observe that
even harmonic moments with higher values of n have weaker
dependence on centrality.
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FIG. 6. (Color online) The spatial anisotropy parameters εn at
production time as a function of centrality from MCG modeling of
Au + Au collisions at

√
sNN = 200 GeV (see text for details).
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FIG. 7. (Color online) The widths of the initial vn distribution at
the production time as a function of impact parameter b.

In Fig. 6, the first few spatial anisotropy parameters εn

are plotted as a function of impact parameter b (ε1 = 0 is
not shown). One may observe that all moments are of the
same magnitude for typical noncentral collisions. In central
collisions, as pure fluctuations instead of geometry generate
the anisotropy, higher moments acquire larger values owing
to larger fluctuations brought by the power n in the definition
of εn. Note that if the same weight, that is, r2

⊥, is taken for
every εn as in Ref. [35], all moments are the same in central
collisions and ε2 is larger than all higher moments in noncentral
collisions (also note ε1 is nonzero if r2

⊥ is used).
In our initial conditions, we may also calculate the mo-

mentum anisotropies as we have generated the full phase
space distribution for the produced system. Because the initial
particles are sampled with a symmetric azimuthal distribution,
one obtains zero vn when averaging over events. In Fig. 7, the
width of the initial vn distribution is plotted as a function of
impact parameter b. We find that the width increases as one
moves from central collisions to noncentral collisions owing
to the decrease in the number of particles in the produced
system. In fact, the vn distribution is a Gaussian as a result of
central limit theorem and its width is found to be 1/

√
2N for

all values of n, except for very peripheral collisions where the
particle number N is too small. The figure contains two sets
of curves: The upper one is for all particles within a rapidity
bin of |y| < 0.5 and the lower one is for |y| < 1. The curves
are related by a factor of

√
2 because the number of particles

in the system is doubled via the doubling of the rapidity bin.
The nonzero width of initial vn distribution helps to explain
the wide distribution of the transformation matrix elements
between initial εn and final vn, as shown in Fig. 18. It serves
as another source that contributes to final-flow fluctuations in
addition to initial-state geometry fluctuations.

IV. PRE-EQUILIBRIUM PHASE

To date, hydrodynamical simulations mostly use initial
conditions calculated at the initial production time of the
medium and have neglected the influence of the pre-equlibrium
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time evolution of the colliding matter. In this sense, the
spatial information inferred from comparing experimental
measurements with hydrodynamical simulations is for the
system at the starting time of the hydrodynamic evolution
t = t0, not at the initial production time t = 0. However,
the pre-equilibrium evolution may be important to include
when considering the geometry fluctuations of the produced
matter. Unlike the hydrodynamical evolution, which directly
translates the initial geometric anisotropies into the observed
momentum anisotropies, the early pre-equilibrium expansion
of the system will not only smear out the spatial fluctuations
and change the local momentum distribution, but may also lead
to correlations between odd and even moments. The inclusion
of the pre-equilibrium evolution could be also important for
studying the Hanbury-Brown–Twiss interferometri radii as it
will generate some amount of early flow [48–51].

To simulate the pre-equilibrium evolution, we solve
the Boltzmann equation for the phase-space distribution
f (x, p, t) = dN/d3xd3p of the system:

(∂t + v · ∇x)f (x, p, t) = C[f ]. (12)

Here, for simplicity, massless particles are considered, |v| = 1.
The free-streaming term will smear out the spatial fluctuations
and change the local momentum distribution owing to pure
fluctuations. The collision term is important for studying
the details of the thermalization of the system, a complex
issue that has not been fully understood yet. In this work,
we focus on the effect of the pre-equilibrium expansion on
the system geometry and only include the free-streaming
term by setting C[f ] = 0. Such a treatment is important for
our study as the flow built up by hydrodynamical evolution
is mostly driven by spatial anisotropy. The consideration
of the collision term will remain for a future project. The
Boltzmann equation containing only the free-steaming term
can be solved analytically, with the streaming solution given
by f (x, p, t) = f [x − v(t − ti), p, ti], where ti is the initial
starting time of the evolution.

The effect of free streaming on the spatial anisotropies
during the early expansion is shown in Fig. 8, where the ratios
of anisotropy parameters εn evaluated at t0 = 0.6 fm/c to those
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FIG. 8. (Color online) The ratio of εn at t0 = 0.6 fm/c to those at
initial production time as a function of impact parameter b.

at the production time are shown as a function of centrality. As
expected, the expansion of the matter owing to free-streaming
smears out the spatial fluctuations: All the spatial anisotropy
parameters εn become smaller. This diminishing effect is more
pronounced in noncentral collisions owing to the smaller size
of the system. We also observe that higher moments get more
diminished than lower moments.

We further explore the time evolution of the preceding
smearing effect owing to free-streaming as shown in Fig. 9,
where εn at an impact parameter of b = 8 fm is plotted as a
function of time. We observe that the anisotropy parameters εn

decrease rather fast for the first 2–3 fm/c and then slowly sat-
urate. The observed reduction of the εn hints at the importance
of including the pre-equilibrium expansion when studying
the initial-state geometry fluctuations for hydrodynamical
simulations. The relative size of the different coefficients even
depends on the duration of the pre-equilibrium expansion and
the relative size of the resulting flow coefficients might be used
to constrain this initial evolution.

As we just mentioned, there are two separate effects
attributable to the pre-equilibrium evolution: the pure drift
effect owing to the system expansion, which tends to diminish
all moments, and the correlations between odd and even
moments, which are absent in the later hydrodynamical
evolution. The mixing effect between odd and even moments
can be clearly seen when one explicitly performs a multipole-
expansion analysis for the Boltzmann equation. To start,
we choose spherical polar coordinates for both coordinate
space x = (r, θ, φ) and momentum space p = (p, θp, φp). To
make the analysis dimensionless, we define r̃ = r/rmax and
p̃ = p/Tp, where rmax and Tp are two-dimensional quantities
(being constants or varying with time). Then we expand the
phase-space distribution as

f (x̃, p̃, t) =
∑

nlmNLM

aNLM
nlm (t)Rnl(αnl, r̃)Ylm(θ, φ)

× exp(−p̃)PN (p̃)YLM (θp, φp). (13)
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FIG. 9. (Color online) Time evolution of εn when particles are
just freely streaming for an impact parameter of b = 8 fm.
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In the preceding expression,

Rnl(αnl, r̃) =
√

2jl(αnl r̃)

jl+1(αnl)
,

(14)

PN (p̃) =
√

N !

(N + µ)!
L

(µ)
N (p̃),

where jl is the spherical Bessel function with αnl the nth root
of function jl , L

(µ)
N the µth-order Laguerre function (here we

choose µ = 2), and Ym
l (θ, φ) the spherical harmonics. The

expansion coefficients aNLM
nlm are determined from the phase-

space distribution by

aNLM
nlm (t) =

∫ 1

0
r̃2dr̃

∫
d�

∫ ∞

0
p̃2dp̃

∫
d�pRnl(αnl, r̃)

×Y ∗
lm(�)PN (p̃)Y ∗

LM (�p)f (x̃, p̃, t). (15)

The spatial anisotropy parameters εm are related to the
expansion coefficients aNLM

nlm , by

〈(sin θ )m sin(mφ)〉 = −C[m]

N

∑
n

Im
[
a000

nmm

]
Jr [n,m],

(16)

〈(sin θ )m cos(mφ)〉 = C[m]

N

∑
n

Re
[
a000

nmm

]
Jr [n,m],

where

C[m] = (−1)m
√

4π (2m)!

2m + 1

√
8π

(2m − 1)!!
,

(17)

Jr [n,m] =
√

2

jm+1(αnm)

∫ 1

0
r̃2dr̃jm(αnmr̃).

The normalization factor N represents the total number of
particles in the system, which is given by

N =
√

4π
√

8π
∑

n

a000
n00Jr [n, 0]. (18)

Note that for 〈(r sin θ )m cos(mφ)〉 and 〈(r sin θ )m sin(mφ)〉,
which appear in the definition of εm, there will be an extra
factor rm in the integral Jr .

Within the preceding multipole expansion analysis, the
Boltzmann equation becomes

∂aN ′L′M ′
n′l′m′ (t)

∂t
+

∑
nlmNLM

aNLM
nlm (t)

αnl

rmax
Ir [n′, l′, n, l]

×δNN ′(δl,l′−1 + δl,l′+1)(δL,L′−1 + δL,L′+1)

×
√

l + l′ + 1

2(2l + 1)

√
2L + 1

2L′ + 1
(L, 0; 1, 0|L′, 0)

×
∑

i

δm,m′+iδM,M ′−i(l
′,m′; 1, i|l, m)(L,M; 1, i|L′,M ′)

= C
[
aN ′L′M ′

n′l′m′
]
, (19)

where

Ir [n′, l′, n, l] =
√

2

jl′+1(αn′l′ )

√
2

jl+1(αnl)

×
∫ 1

0
r̃2dr̃jl′(αn′l′ r̃)jl′(αnl r̃). (20)
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FIG. 10. (Color online) Time evolution of 〈(sin θ )n cos(nφ)〉 from
multipole expansion analysis (lines) and from directly solving the
free-streaming term of Boltzmann equation (symbols) for an event
with b = 8 fm.

Note the indices of jl′(αnl r̃) in I (0)
r [n′, l′, n, l], which do not

allow us to perform the integral using orthogonal relations.
(l1,m1; l2,m2|j,m) are the Clebsch-Gordan coefficients for
adding two angular momenta j = l1 + l2. More details of the
derivation are presented in the Appendix.

From the preceding equations, one immediately sees the
mixing between odd and even moments for both the spatial
part (l → l ± 1) and the momentum part (L → L ± 1) owing
to the free-streaming of particles. We also check the preceding
expression by comparing numerically with the result from
directly solving the free-streaming part of the Boltzmann
equation. This is shown in Fig. 10, where we plot the time
evolution of 〈(sin θ )n cos(nφ)〉 for one typical event with
impact parameter b = 8 fm and see that the two results nicely
agree with each other.
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FIG. 11. (Color online) The probability distributions of the
transformation matrix between ε2 and ε3 with the early expansion
time taken as t0 = 1.2 fm. The numbers represent the mean of each
distribution.
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FIG. 12. (Color online) Time evolution of the transformation
matrix between ε2 and ε3.

To further separate the correlation effect from the pure drift-
ing effect during the pre-equilibrium expansion, we perform
the following analysis. We relate the spatial anisotropies at two
different times by a transformation matrix,(

ε2(t0)

ε3(t0)

)
=

(
D22(t0) D23(t0)

D32(t0) D33(t0)

)(
ε2(0)

ε3(0)

)
. (21)

Here we only consider the second and third moments—the
inclusion of higher-order moments is straightforward and
is expected to give only small contributions, which we
neglected in the current analysis. The diagonal elements of
the transformation matrix quantify the pure drifting effect and
the off-diagonal elements represent the effect of the mixing
between the second and the third moments. We obtain the
distribution of the transformation matrix elements by pairing
two linear independent events from a large set of events.

In Fig. 11, we show the probability distribution of four
elements of the preceding transformation matrix, with the pre-
equilibrium expansion time taken to be t0 = 1.2 fm/c. The
numbers in the figure represent the mean of each distribution
(to which the arrows point). The impact parameter is taken to
be 8 fm for all events in this plot. One clearly observes the
smearing effect from the free streaming when one looks at the
distributions of the two diagonal elements. The pure drifting
effect is more pronounced for the third anisotropy parameter
ε3 (19%) than for the second one ε2 (13%), consistent with the
preceding results. The two off-diagonal elements are close to
zero, implying weak correlations between ε2 and ε3 originating
from the free-streaming of the system. We further investigate
the time evolution of these matrix elements up to 2 fm/c in
Fig. 12. Both the drifting effect and the mixing of even and odd
moments tend to increase with time as the system expands.

V. HYDRODYNAMICAL EVOLUTION

In the previous sections, we have presented the initial
conditions of the system at production time and simulated
the pre-equilibrium evolution by utilizing the free-streaming
approximation. As we have not included interaction among the
produced particles, the system is still highly nonthermal. Up to

now, little knowledge has been attained about the details of the
thermalization mechanisms in relativistic heavy-ion collisions.
In this work, we follow the common practice of assuming a
sudden thermalization of the system at t = t0 and start the
hydrodynamical evolution with the initial conditions obtained
above (including the free streaming evolution from t = 0 to
t = t0). We first calculate the energy-momentum tensor from
the full phase-space distribution f (x, p, t),

T µν(x) =
∫

d3p

E
pµpνf (x, p, t). (22)

For our discretized phase-space distribution f (x, p, t) =∑
i δ(x − xi)δ(p − pi), the momentum integration

∫
d3p turns

into sums over all particles. The discretized spatial part is
smeared with a Gaussian function to ensure a sufficiently
continuous distribution necessary for the hydrodynamic sim-
ulation,

δ(x − xi) →
exp

[
− (x−xi )2+(y−yi )2

2σ 2
xy

]
2πσ 2

xy

exp
[
− (z−zi )2

2σ 2
z

]
√

2πσ 2
z

, (23)

where the widths σxy and σz characterize the granularity
of the system in the transverse and longitudinal directions.
Physically, this procedure can be interpreted as thermal
smearing of the system which should have occurred prior to
thermalization at t = t0. In general, the choice of these width
parameters depends on the duration of the pre-equilibrium
phase and the thermalization time at which one starts the
hydrodynamic evolution. Different choices of the smearing
width will affect the local density of the system and thus
influence the spatial anisotropy parameters.

The effect of the Gaussian smearing on the spatial
anisotropy is shown in Fig. 13, where the ratio of anisotropy
parameters εn with smearing to these without smearing is
shown as a function of transverse smearing width σxy . As
we are studying the spatial anisotropy in the transverse
plane, the smearing of the longitudinal direction should be
irrelevant and we fix it to be σz = 0.5 fm for our study. The
impact parameter is taken to be 8 fm for all calculations
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FIG. 13. (Color online) The ratio of εn with smearing to those
without smearing as a function of the transverse Gaussian width.
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FIG. 14. (Color online) The distributions of the energy momentum tensor components in the transverse plane (x, y) for one typical event
with impact parameter b = 8 fm: the left column for T 00 and the right column for the flow vector (T 0x/T 00, T 0y/T 00). Three different sets of
parameters are used: t0 = 0, σxy = 0.5 fm (top); t0 = 0.6 fm/c, σxy = 0.5 fm (middle); and t0 = 0.6 fm/c, σxy = 1 fm (bottom).

shown in this figure. As expected, the spatial anisotropies
are reduced as one increases the width of the transverse
Gaussian function. Similar to pre-equilibrium evolution shown
before, such smearing effect is more prominent for higher
moments than for lower moments. Combining both effects

(pre-equilibrium evolution and Gaussian smearing), for typical
noncentral collisions ε2 may be reduced by about 10% for a
Gaussian width of σxy = 0.5 fm and a typical pre-equilibrium
evolution time of t0 = 0.6 fm; a factor of 2 larger effect is
observed for for ε4.
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In the preceding construction of the energy-momentum
tensor, the initial conditions at production time are fitted to
the final-state particle multiplicity distribution at midrapidity
(see Figs. 1 and 2). Therefore, the energy density of the
system at the thermalization time t0 is underestimated, owing
to the longitudinal (and transverse) expansion during the
hydrodynamical evolution. This effect can be estimated to be
about a factor of 2.2 by directly comparing our calculation
to the final average charged-particle multiplicity dNch/dη ≈
700 in central Au + Au collisions at

√
sNN = 200 GeV.

We have not tuned our parameters to match the final-state
particle spectra as we are here not aiming at providing a
comprehensive quantitative description of the time evolution of
a heavy-ion collision, but rather at a targeted study of initial-
state fluctuations and how these initial spatial anisotropies
propagate through the fireball history and translate themselves
into collective flow in the final state.

In Fig. 14, we show the a few snapshots of the energy
momentum tensor components in the transverse plane (the
horizontal and vertical axes are the x and y axes, respectively,
in units of fm) for one typical event with an impact parameter
b = 8 fm. To illustrate the effects of the pre-equilibrium
evolution and Gaussian smearing of discretized space distri-
bution, we plot three different sets of pre-equilibrium time
and Gaussian smearing width: the top panels for t0 = 0
and σxy = 0.5 fm, the middle panels for t0 = 0.6 fm/c and
σxy = 0.5 fm, and the bottom panels for t0 = 0.6 fm/c and
σxy = 1 fm. The left column shows the distribution of T 00

and the right column the flow vector (T 0x/T 00, T 0y/T 00), with
the arrows representing the directions and the lengths of arrows
for the relative magnitudes of the vectors (within each plot).
Comparing the left and middle panels, one can clearly see that
pre-equilibrium evolution makes the system larger (thus, the
energy density becomes smaller) and generates some amount
of radial flow. The effect of Gaussian smearing can be seen
by comparing the middle and right panels: both the energy
density and the flow velocity smoothen out significantly when
one increases the Gaussian width.

After obtaining the energy momentum tensor as described
previously, we start the hydrodynamical evolution:

∂µT µν(x) = 0. (24)

Here with the assumption of a sudden thermalization, the
calculated energy and momentum densities (T 00, T 0i) are put
into an ideal hydrodynamical evolution code [41,42] with
a lattice equation of state [52,53] for the hot and dense
matter created in Au + Au collisions at

√
sNN = 200 GeV.

We neglect the off-equilibrium part of the energy momentum
tensor which may be included if one extends to viscous
hydrodynamical simulation. Particle production at the end
of the hydrodynamic evolution when the matter is diluted
in the late stage is treated as a gradual freeze-out on an
approximated isoeigentime hypersurface according to the
Cooper-Frye prescription [52,54]. For simplicity, we have
not taken into account the hadronic rescattering in the dilute
hadron gas and the resonance decays, because they should not
have much influence on the results for the charged-particle
flow coefficients, as has been shown in Ref. [32].

VI. FROM INITIAL GEOMETRY FLUCTUATIONS
TO FINAL FLOW

The above event-by-event setup of the system evolution
from initial production time to the freeze-out of the final state
should include all ingredients that are necessary for the study
of the build-up of collective flow during the hydrodynamical
evolution. For the following results, we use the produced
charged particles with transverse momenta pT < 2 GeV/c

and pseudorapidity |η| < 1.
In Fig. 15, we show the first few flow coefficients vn

for final-state particles together with three different spatial
anisotropies evaluated at the production time at t = t0 before
and after Gaussian smearing. In this figure, the impact pa-
rameter is randomly sampled in the 5-to-10-fm bin according
to the probability distribution P (b) ∝ b, the pre-equilibrium
evolution time is set as t0 = 0.6 fm/c prior to the hydro-
dynamical evolution, and the Gaussian widths for smearing
the discretized initial conditions are taken to be σxy = σz =
0.5 fm. One can see that all flow coefficients vn with n greater
than 5 are negligible and only the first few vn (n = 2, 3, 4)
survive after the hydrodynamical evolution. We may conclude
that the analysis of flow coefficients vn allows only for the
extraction of the first few spatial anisotropy parameters εn,
but may not provide sufficient information to recover the full
initial geometry in terms of all of its higher-order harmonics.
To achieve this, one needs additional observables with an
increased sensitivity to the higher-order spatial anisotropy
parameters. We also note that the spatial asymmetry obtained
from comparing flow measurements to a hydrodynamical
simulation only applies to the spatial characteristics of matter
at the starting time of hydrodynamical evolution t0. To obtain
the geometry at the initial production time t = 0, one needs
to account for the dynamics of the pre-equilibrium phase—in
our analysis this would be the smearing effects during the
initial free streaming of the particles and the smoothing of the
discretized initial conditions, as shown in the figure.

To study the response of flow buildup to the initial
geometry, Fig. 16 shows the first few flow coefficients
vn as a function of the corresponding spatial anisotropy
parameter εn evaluated at the production time. As expected,
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FIG. 15. (Color online) The first few spatial anisotropiy parame-
ters εn and flow coefficients vn as a function of n for b = 5–10 fm.

064903-10



TRANSLATION OF COLLISION GEOMETRY . . . PHYSICAL REVIEW C 82, 064903 (2010)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
ε

n

-0.05

0

0.05

0.1

0.15

0.2

v n

n = 2
n = 3
n = 4
n = 5
n = 6

FIG. 16. (Color online) The first few flow coefficients vn as a
function of the same-order spatial anisotropy parameter εn for b =
5–10 fm.

the hydrodynamical evolution translates spatial anisotropies
into momentum anisotropies, resulting in an essentially linear
relation between vn and εn. We also observe that the curves
have smaller slopes for higher moments and become more or
less flat when n is greater than 4–5. This implies that higher
flow coefficients show weaker response to the corresponding
geometrical harmonic moments owing to a larger diminishing
effect originating from the combination of pre-equilibrium
evolution, Gaussian smearing of the discretized spatial distri-
bution, and the hydrodynamical evolution, all of which tend to
lead to a larger suppression for the higher moments.

We also explore the correlations between different harmon-
ics moments. As an illustration, we plot the first few flow
coefficients vn as a function of the second spatial anisotropy
parameter ε2 in Fig. 17. On can see that except for v2 versus ε2,
all other curves are essentially flat owing to the combined effect
of the small correlations between odd and even moments and
the reduced effect on higher moments from the pre-equilibrium
and hydrodynamical evolution.
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FIG. 17. (Color online) The first few flow coefficients vn as a
function of the second-order spatial anisotropy parameter ε2 for b =
5–10 fm.

To separate the pure smearing effect from the mixing effect
between different moments, we perform an analysis similar
to that for the pre-equilibrium evolution. One may define
the transformation matrix Mnm between the initial spatial
anisotropy and the final-flow coefficients as

vn =
∑
m

Mnmεm, (25)

where Mnm characterizes the strength of the coupling be-
tween initial εm and final vn. The diagonal elements of the
transformation matrix quantify the response of vn to εn and
the off-diagonal elements represent the effect of the mixing
response between different moments vn and εm. Here again
we only consider the second and third moment,(

v2

v3

)
=

(
M22 M23

M32 M33

)(
ε2

ε3

)
. (26)

The extension of this ansatz to include higher-order moments is
straightforward and expected to only give small contributions
to the dominant moments n = 2, 3. The distribution of the
transformation matrix elements is obtained by solving two
linear independent equations which correspond to a pair
of linear independent events chosen from a large set of
events.

In Fig. 18, we show the probability distribution of the four
elements of the transformation matrix between final v2, v3

and initial ε2, ε3. We find that for the two diagonal elements
〈M22〉evt = 0.21 is larger than 〈M33〉evt = 0.13, implying
stronger response of v2 to ε2 than v3 to ε3, as expected
from Fig. 16. The two off-diagonal elements 〈M32〉evt and
〈M23〉evt again are very small, implying a weak response of
v3(v2) to ε2(ε3) during the hydrodynamical evolution. Another
interesting feature is the wide distribution of the transfor-
mation matrix which encodes the fluctuations of final-flow
coefficients. We note two initial-state effects that contribute to
such wide distribution: initial geometry fluctuations and initial
vn fluctuations (see Fig. 7). If one wants to extract information
about the initial collision geometry from the measured flow

-1 -0.5 0 0.5 1 1.5
M

nm

0

0.5

1

1.5

2

2.5

3

P
(M

nm
)

P(M
22

)
P(M

32
)

P(M
23

)
P(M

33
)

FIG. 18. (Color online) The probability distributions of the
transformation matrix between the initial spatial anisotropy parameter
ε2,3 and the final-flow coefficients v2,3.
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FIG. 19. (Color online) The final-flow coefficients vn as a
function of impact parameter b.

anisotropies, it is important to separate the two sources of
fluctuations in the transformation matrix. Experimentally, this
could be achieved by measuring the rapidity correlations of
the final-flow coefficients because the initial-state geometry
fluctuations are expected to be long range in rapidity, while
initial-state flow fluctuations should decrease when one makes
the rapidity window wider.

Finally, we explore the centrality dependence of the final-
state flow coefficients as shown in Fig. 19. The splitting
of vn is clearly seen for all centralities: The lower vn are
larger than higher vn, at least for the first few vn (when
n � 5, vn are so small that it is difficult to resolve their
splitting). For the most central collisions, our statistics is
not sufficient to distinguish between different curves, but one
would expect the same ordering, even though the splitting
might be smaller. This is attributable to pure fluctuations
being the only source of spatial anisotropies for both odd and
even moments in central collisions, and the smearing effect in
the subsequent pre-equilibrium evolution is more prominent
for higher moments, thus leading to less flow buildup for
higher-order vn during the hydrodynamical evolution. One
observes different centrality dependencies for different vn: The
lowest vn have the strongest centrality dependence.

VII. SUMMARY

We have presented a systematic study of initial collision
geometry fluctuations and have investigated how they evolve
throughout the whole history of the collision and finally trans-
late into measurable momentum anisotropies of the produced
hadrons. Our initial conditions at production time t = 0 are
obtained via a MCG model with the inclusion of nucleon po-
sition fluctuations, plus additional fluctuations stemming from
individual nucleon-nucleon collisions. In addition, we make
an ansatz for the initial transverse momentum distribution of
the produced particles which is important for the treatment
of the pre-equilibrium phase of the collision. We evolve our
full phase space distribution using a Boltzmann equation
and approximate the pre-equilibrium evolution by treating all

particles as free streaming. A sudden thermalization of our
initial conditions is enforced for the subsequent hydrodynamic
evolution of the thermalized system, which is performed using
three-dimensional relativistic ideal hydrodynamics.

Our analysis shows that though all initial spatial anisotropy
parameters are of the same magnitude, only the first few
flow coefficients for the momentum anisotropy of final-state
hadrons actually survive after hydrodynamical evolution. We
also quantitatively investigate the mixing between odd and
even harmonic moments during the pre-equilibrium evolution
and its effect on the evolution of the system asymmetry is
found to be small. The anisotropy of the matter is found
to be affected by the pre-equilibrium evolution and by the
smoothing of the discretized initial conditions necessary for
the hydrodynamical evolution (which can be seen as equivalent
to thermal smearing expected to occur during thermalization),
both of which tend to smear out the spatial anisotropies. The
hydrodynamical evolution leads to an additional dampening of
the flow response to the initial spatial anisotropies, particularly
for the higher-order moments. This makes it difficult to recover
the full geometry of the initial state from measuring high-order
flow coefficients, which have the ability to provide additional
information on the transport properties of the produced matter.
We also observe the contribution of initial-state flow fluctua-
tions to final-flow fluctuations, which could be separated by
rapidity correlation measurements for a better understanding
of initial-state geometry fluctuations.

In summary, we have conducted an event-by-event study of
the time evolution of the multipole moments of the collision
geometry in a relativistic heavy-ion collision. Our study sheds
light on how these multipole moments relate to measurable
collective flow coefficients of the hadronic final state and how
the collision dynamics, in both the pre-equilibrium and the
hydrodynamic evolution phase, affect the correlation between
the initial spatial anisotropies and the final momentum
space anisotropies. It allows for improved constraints on the
determination of various transport properties of the QCD
medium, which commonly are extracted by analyzing the
observed momentum anisotropy of the final particles and
are very sensitive to the proper description of initial spatial
anisotropies. Our current work can be improved in many
directions. Here we have only focused on the qualitative study
of the propagation of the initial-state geometry fluctuations; a
more quantitative study including a comparison with experi-
mental measurements would be desirable. The pre-equilibrium
phase has been approximated by free streaming of particles;
we fully expect that the inclusion of a realistic collision term
in the Boltzmann equation would provide more sophisticated
initial conditions for the hydrodynamic evolution. We
have performed our calculations using ideal hydrodynamics;
improving these with the use of viscous hydrodynamics should
help to separate viscosity-dominated effects from nonviscous
effects on the evolution of the geometry fluctuations. All these
tasks we leave to future investigations.
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APPENDIX: MULTIPOLE EXPANSION

In this appendix, we present more details of the multipole
expansion of the left-hand side of the Boltzmann equation.
The first term is straightforward,

∂f (x̃, p̃, t)

∂t
=

∑
nlmNLM

∂aNLM
nlm (t)

∂t
Rnl(αnl, r̃)Ylm(r̂)

× exp(−p̃)PN (p̃)YLM (p̂). (A1)

Note that r̃ = r/rmax and p̃ = p/Tp. If rmax and/or Tp vary
with time, then one needs to include additional terms, which
we do not elaborate in detail. To obtain the evolution equation
for the expansion coefficients aNLM

nlm , we define the following
shorthand to project out the expansion coefficients from any
function F ,

〈n′l′m′N ′L′M ′, F (x, p)〉

=
∫ 1

0
r̃2dr̃

∫
d�

∫ ∞

0
p̃2dp̃

∫
d�pRn′l′(αn′l′ r̃)

×Y ∗
l′m′(r̂)PN ′ (p̃)Y ∗

L′M ′(p̂)F (x, p). (A2)

Performing such projection for the first term, we obtain〈
n′l′m′N ′L′M ′,

∂f (x̃, p̃, t)

∂t

〉
= ∂aN ′L′M ′

n′l′m′ (t)

∂t
. (A3)

The second term involves the gradient of a function of r times a
spherical harmonics. We note the following gradient formula:

∇F (r)Ylm(r̂) =
∑

i

ξ̂i

[√
l

2l + 1

(
dF

dr
+ l + 1

r
F

)

×Yl−1,m−i(r̂)(l − 1,m − i, 1, i|l, m)

−
√

l + 1

2l + 1

(
dF

dr
− l

r
F

)
Yl+1,m−i(r̂)

× (l + 1,m − i, 1, i|l, m)

]
. (A4)

Here (l1,m1, l2,m2|j,m) represent Clebsch-Gordan coeffi-
cients for adding two angular momenta j = l1 + l2. The
spherical basis vectors ξi are defined as

ξ̂±1 = ∓ 1√
2

(êx ± iêy), ξ̂0 = êz. (A5)

The use of spherical basis vectors is convenient as three
components of a vector V are directly related to spherical
harmonics Y1i ,

Vi = |V|
√

4π

3
Y1,i(V̂ ). (A6)

The gradient formula Eq. (A4) can be further simplified if one
has spherical Bessel function, F (r) = jl(kr), with the help of

the following recurrence relations:
d

dr
jl(kr) = kjl−1(kr) − l + 1

r
jl(kr),

(A7)
d

dr
jl(kr) = −kjl+1(kr) + l

r
jl(kr).

Applying to the first and second terms in Eq. (A4), one has for
our case

∇jl(αnl r̃)Ylm(r̂)

= αnl

rmax

∑
i

ξ̂i

∑
l̄

(δl̄,l+1 + δl̄,l−1)

√
l + l̄ + 1

2(2l + 1)

× jl̄(αnl r̃)Yl̄,m−i(r̂)(l̄, m − i, 1, i|l, m), (A8)

where we have combined two terms together into a compact
form. The second term becomes

v · ∇f (x̃, p̃, t)

=
∑

nlmNLM

aNLM
nlm (t)

αnl

rmax

√
2

jl+1(αnl)

∑
i

∑
l̄

(δl̄,l+1 + δl̄,l−1)

×
√

l + l̄ + 1

2(2l + 1)
jl̄(αnl r̃)Yl̄,m−i(r̂)(l̄, m − i, 1, i|l, m)

× exp(−p̃)PN (p̃)YLM (p̂)

√
4π

3
Y1i(p̂). (A9)

Following the same procedure as done for the first term, we
project out the expansion coefficients aNLM

nlm for the second
term:

〈n′l′m′N ′L′M ′, v · ∇f (x̃, p̃, t)〉
=

∑
nlmNLM

∑
i

aNLM
nlm (t)

αnl

rmax

∑
l̄

(δl̄,l+1 + δl̄,l−1)

×
√

l + l̄ + 1

2(2l + 1)
(l̄, m − i, 1, i|l, m)

√
2

jl′+1(αn′l′)

√
2

jl+1(αnl)

×
∫ 1

0
r̃2dr̃jl′(αn′l′ r̃)jl̄(αnl r̃)

∫
d�Y ∗

l′m′(r̂)Yl̄,m−i(r̂)

×
∫ ∞

0
p̃2dp̃PN ′ (p̃) exp(−p̃)PN (p̃)

×
∫

d�pY ∗
L′M ′(p̂)YLM (p̂)

√
4π

3
Y1i(p̂). (A10)

The integrals
∫

d� and
∫

dp̃ can be done using orthogonal
relations for spherical harmonics and Laguerre function.
The integral

∫
d�p involves the product of three spherical

harmonics, which can performed with the help of the following
relation: ∫

d�pY ∗
L′M ′ (p̂)YLM (p̂)Y1i(p̂)

=
√

3(2L + 1)

4π (2L′ + 1)
(L, 0, 1, 0|L′, 0)

× (L,M, 1, i|L′,M ′). (A11)

Note that the preceding Clebsch-Gordan coefficients are
nonzero only when |L − L′| � 1 and L − L′ − 1 are even
numbers. This implies that L = L′ ± 1 and M = M ′ − i. The
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final result for the second term is

〈n′l′m′N ′L′M ′, v · ∇f (x̃, p̃, t)〉
=

∑
nlmNLM

∑
i

aNLM
nlm (t) × αnl

rmax
Ir [n′, l′, n, l]δNN ′

× (δl′,l+1 + δl′,l−1)

√
l + l′ + 1

2(2l + 1)
(δL′,L+1 + δL′,L−1)

×
√

2L+1

2L′+1
(L, 0, 1, 0|L′, 0)δm′,m−i(l

′,m−i, 1, i|l, m)

× δM ′,M+i(L,M, 1, i|L′,M ′), (A12)

where Ir [n′, l′, n, l] has been defined in Eq. (20). Combining
with the first term, we finish the multipole expansion of the
left-hand side in Boltzmann equation.
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