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Quantum tunneling and scattering of a composite object reexamined
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This work presents an extensive exploration of scattering and tunneling involving composite objects with
intrinsic degrees of freedom. We aim at exact solutions to such scattering problems. Along this path we
demonstrate solutions to model Hamiltonians and develop different techniques for addressing these complex
reaction-physics problems, discuss their applicability, and investigate the relevant convergence issues. As
examples, we study the scattering of two-constituent deuteron-like systems either with an infinite set of intrinsic
bound states or with a continuum of states that allows for breakup. We show that the internal degrees of freedom
of the projectile and its virtual excitation in the course of reactions play an important role in shaping the S-matrix
and related observables, giving rise to enhanced or reduced tunneling in various situations.
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I. INTRODUCTION

Reaction physics involving composite objects is a major
and critical subject encountered in the context of processes
like fusion, fission, and particle decay, as well as specific
branches of science including chemistry, atomic physics, and
condensed matter physics. In all these phenomena, more often
than not, the scattering or tunneling object has its own degrees
of freedom. Various pertinent scenarios have been explored
earlier, where the tunneling has been shown to be enhanced
by the additional degree(s) of freedom, which may have arisen
from the compositeness of the object [1–7], from its interaction
with another particle(s) [8–10], or directly from quantum field
excitations [11].

This is a complicated and generally nonperturbative prob-
lem, involving vastly different scales. While there are many
techniques and methods for dealing with this problem, most
of them involve simplifications. For example, some studies of
the models that are similar to ours involve restriction of the
range of energy of the projectile [2], the mass ratio of the con-
stituents [2,5–7], and the number of states available in the
intrinsic system [5,7]. In addition, most models exclude the
possibility of virtual excitations of the object undergoing a
reaction [1,5,7]. While simplifications work well at times, it
is also common that the “slightly simplified” problem turns
out to be very different from the original one. Moreover, some
formally exact techniques, as demonstrated in Ref. [12] and
further discussed in this paper, do not necessarily provide
a path to a convergent solution for an arbitrary subset of
parameters. The paramount goal of this work is to find an
exact solution to a given reaction problem, which is free from
the aforementioned limitations and is reliably convergent.

To reach this goal we limit our studies specifically to a
problem in one dimension and to a composite object with
two constituents, only one of which interacts with an external
potential. A deuteron hitting a Coulomb barrier could be a fair
example of such a projectile. This picture has been modeled in
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several different ways in our work. However, the techniques
that we develop and the study of how they work are general and
are not limited, in their applicability, to our examples or models
only. Moreover, we believe that many of our findings are
generic and there are realistic situations that can be represented
by even these simple models [13–15].

Our discussion is organized as follows. In Sec. II we start
by identifying our models and invoking some definitions of
reaction physics. Then in Sec. III we examine a particularly
simple example of a deuteron-like system reflecting from an
infinite wall. This case provides an excellent illustration of the
pivotal role of virtual excitations in the dynamics. It also shows
how the formally exact method of projecting the reaction
dynamics onto the intrinsic shell-model-like space could fail
to yield reliable results. We put forward and demonstrate the
variable phase method (VPM) in Sec. IV, followed by solutions
to various examples in Sec. V. While the VPM has been used by
others in the past, we extend it so as to include virtual channels.
This novel extension requires us to explore the role of virtual
channels and to discuss the convergence of solutions with the
number of virtual excitations included in consideration. This
is done in Sec. VI. A study of scattering and breakup of a
system with a continuum of states is presented in Sec. VII.
The summary and conclusions are laid out in Sec. VIII.

II. GENERAL DESCRIPTION OF THE PROBLEM

A. One-dimensional scattering of a two-body object

Throughout this text we examine a one-dimensional prob-
lem. We consider a projectile that is a composite object
made up of two particles that have masses m1 and m2 and
are bound by an intrinsic potential v(x1 − x2), where the
particle coordinates are x1 and x2, respectively. This composite
system interacts with an external potential U (x1, x2). The usual
center-of-mass and relative coordinates are

X = m1x1 + m2x2

M
, x = x1 − x2, (1)

and the corresponding total and reduced masses are

M = m1 + m2, m = m1m2

m1 + m2
. (2)
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The Hamiltonian for the system can be written as

H = − h̄ 2

2M

∂2

∂X2
+ U (x1, x2) + h, (3)

where the intrinsic Hamiltonian

h = − h̄ 2

2m

∂2

∂x2
+ v(x) (4)

has eigenstates ψn(x) with the corresponding energy eigenval-
ues εn:

hψn(x) = εnψn(x), n = 0, 1, 2, . . . . (5)

The general scattering problem can be formulated in
a traditional way, using the asymptotic form of the wave
function. At X → ∓∞ it is given by

�(X, x) � eiKn′ X
√|Kn′ |ψn′(x) +

∑
n∈open

Rnn′√|Kn|
e−iKnXψn(x),

(6a)

�(X, x) �
∑

n∈open

Tnn′√|Kn|
eiKnXψn(x), (6b)

respectively. The preceding wave function corresponds to an
incident beam coming from the left with a particle in the
intrinsic state (channel) n′. Here Kn is the center-of-mass
momentum of the system with total energy ET , while in
channel n,

Kn(ET ) = 1

h̄

√
2M(ET − εn). (7)

Here, and later in this paper, the symbol � is used to indicate
an asymptotic equality that involves only open channels n

with ET > εn. Contributions from the closed channels, for
which ET < εn, decay exponentially with distance from the
scattering potential and are not present in the asymptotic
form. The coefficients R and T are referred to as reflection
and transmission amplitudes owing to their physical mean-
ings. |Rnn′ |2 and |Tnn′ |2 represent the probabilities of the
incoming beam in channel n′ to reflect and transmit, respec-
tively, in channel n. The conservation of probability hence
implies ∑

n∈open

(|Rnn′ |2 + |Tnn′ |2) = 1. (8)

It should be mentioned that for the scattering problem to be
fully determined, one should consider, in addition to Eq. (6),
an incident beam coming from the right, which gives rise to
another set of reflection and transmission amplitudes. If and
when it is necessary to distinguish between these two, the
amplitudes in Eqs. (6) for the incident beam coming from the
left and traveling in the positive x direction are denoted R+
and T+ instead of just R and T ; R− and T− are used when they
are associated with an incident beam traveling from the right
to the left.

B. The S-matrix

While it is convenient to use the reflection and trans-
mission amplitudes, the formal S-matrix is still essential

for establishing a relation between this description and the
traditional scattering theory. In addition, the S-matrix allows
one to utilize the symmetries of the problem and determine
relations among the amplitudes. Despite the S-matrix being
a textbook subject [16,17], there are a few nontrivial features
that emerge in the case of coupled-channel problems and with
asymmetric potentials [18–20]. We review some of them in
the following.

Let us first consider the case of one open channel, which
is of particular importance for many examples considered
in this work. For a real potential barrier the transmission
amplitude is symmetric between the incoming beam traveling
from the left and that from the right, which follows directly
from the complex-conjugated Schrödinger equation, showing
time-reversal invariance. The S-matrix can be defined in
several ways [18]. It is quite common to select a basis with
incoming and outgoing waves so that S = 1 at high energies
or in the absence of a potential barrier. An alternative approach
is to choose the S-matrix to be symmetric, which is possible
because of the time-reversal invariance. Unfortunately, it is
impossible to accommodate both properties simultaneously.
We choose the second alternative and define the S-matrix using
the following symmetric and asymmetric (in space) asymptotic
forms of the incoming waves at |X| → ∞:

�+(X) � i√
2

exp(−iK|X|),

�−(X) � i√
2

X

|X| exp(−iK|X|).

The outgoing-wave basis comprises the corresponding
complex-conjugated wave functions. Then the S-matrix in
terms of reflection and transmission amplitudes is

S = −1

2

(
(R+ + R−) + 2T (R− − R+)

(R− − R+) (R+ + R−) − 2T

)
.

Note that the S-matrix is symmetric, and T+ = T− = T

owing to time-reversal invariance. From unitarity of the
S-matrix we find that |R−| = |R+|, |R2

±| + |T 2
±| = 1, and

� [T ∗(R+ + R−)] = 0. The convenience of the preceding
definition is that, for a symmetric potential, R− = R+. Also,
parity is a good quantum number, and hence the S-matrix is
diagonal, with matrix elements

S± = −(R ± T ) = exp(2iδ±). (9)

An extension of the preceding discussion to a more general
multichannel case is straightforward [19,21]. From unitarity it
follows that

R
†
±R± + T

†
±T± = 1, R

†
±T∓ + T

†
±R∓ = 0. (10)

Time-reversal invariance leads to

T± = T T
∓ , R± = RT

±,

where the superscript T implies a transposed matrix. Finally,
reflection symmetry of the scattering potential leads to R+ =
PR−P and T+ = PT−P . The equalities for one channel are
modified owing to the different parities of the intrinsic states
of the composite object. P denotes the parity operator in the

064607-2



QUANTUM TUNNELING AND SCATTERING OF A . . . PHYSICAL REVIEW C 82, 064607 (2010)

channel space, so that P2 = 1 with Pnn′ = δnn′πn, where πn is
the parity of the intrinsic state ψn(x).

In the presence of reflection symmetry it is sufficient to
consider only beams originating from the left and thus to
deal only with R+ and T+. From this point onward we omit
the subscript + [hence returning to the notations used in
Eqs. (6)]. The symmetries discussed for the multichannel case
are summarized as follows:

R = RT , T = PT TP, (11)

R†R + T †T = 1, R†(PT ) + (PT )†R = 0. (12)

We define

S± = −(R ± PT ) (13)

in this case, so that the S-matrix is symmetric, and the phase
shifts approach zero in the limit of zero energy, since R = −1
and T = 0 in this limit. Conditions at other thresholds are
related to Levinson’s theorem, which, for one-dimensional
scattering, is discussed in Ref. [19].

III. THE PROJECTION METHOD: EXAMPLES
AND LIMITATIONS

Before we actually describe the projection method, let us
emphasize one important issue. While the observed picture (the
S-matrix, for example) is seen through the asymptotic forms of
the wave functions in the open channels, the crucial dynamics
of a scattering process takes place in the vicinity of the scatterer
and involves virtual (or closed) channels just as much as open
channels. The virtual channels are populated in accordance
with the time-energy uncertainty and lead to an immensely
complicated process. Excluding the virtual channels from
consideration could therefore lead to erroneous results in the
observed quantities. A “simple” model example discussed
here elucidates both the complexity and the importance of
virtual excitations. This model constitutes an infinite wall as a
scatterer that interacts with only one of the two constituents of
the composite object. We refer to this model as the “deuteron
and Coulomb-wall” model, as defined in Sec. III A.

It is noteworthy that numerous authors [22–24], have
worked on this subject, but reports of the findings are scarce.
Mathematical issues, difficulties with stability of the solutions,
and lack of appreciation from the scientific audience are some
of the possible reasons.

In the following method, referred to as the projection
method, a solution is attempted by projecting the reaction
dynamics onto the intrinsic basis set. In some way this
approach is similar to various projection techniques used in
nuclear many-body studies that involve reactions [25–27].

We start our presentation by returning to the deuteron
and Coulomb-wall model and to the projection method.
We draw some conclusions regarding the earlier discussions
[22–24,28–31] by presenting an exact solution, showing
limitations of the projection method, and highlighting the
overall importance of this example for the understanding of
reaction dynamics and development of techniques.

A. The deuteron and Coulomb-wall model

For all the models in this work we assume that in the
composite projectile, loosely referred to as the deuteron, only
the second particle interacts with the potential, U (x1, x2) →
U (x2). A Coulomb potential is an example of such a selective
interaction, although the potentials in the examples presented
in this paper are of finite range, unlike the Coulomb potential.
In this section we concentrate on an example where the
potential is represented by an infinite wall, or the “wall”:

U (x2) =
{∞ when 0 < x2.

0 otherwise.

The traditional textbook methods prescribe looking for a full
wave function in the form

�(X, x) = eiKn′X
√|Kn′ |ψn′ (x) +

∑
n

Rnn′√|Kn|
e−iKnXψn(x), (14)

with the boundary condition �(X, x) = 0 at x2 = 0. In contrast
to the asymptotic form in Eq. (6), where the summation
includes open channels only, the sum here is over all channels
and the expression holds for all values of x2 < 0. The meaning
of the reflection amplitudes Rnn′ is therefore extended to
include the virtual channels as well as open. The asymptotic
form, Eq. (6), is recovered at |X| → ∞ because the term
corresponding to each virtual channel, say n, decays with
distance (from the wall) through the exponential factor e−|KnX|
and, therefore, does not appear in the asymptotic sum. This
exponent can be expressed in a generic way as eiKn|X| by
assuming the principal branch of the square root in Eq. (7).
The branch being specified allows one to consider momentum
in a complex plane.

The location x2 = 0 in the boundary condition translates
into x = x1 and X = µ1x, as follow from Eqs. (1). Here we
define relative masses as

µ1,2 = m1,2/M and µ = m/M. (15)

Thus, the equation to be solved is

�(µ1x, x) = 0 (16)

for all x’s.
The length scale for this problem is determined by a

quantity λ that is associated with the characteristic width of
the intrinsic potential v(x). The intrinsic system also defines
the energy scale, based on the usual coordinate-momentum
uncertainty, as

ε = h̄ 2

2mλ2
. (17)

In what follows we use λ and ε as our units of length and
energy, respectively. This is equivalent to using dimension-
less energy units rescaled to ε, namely, εn → εn/ε for the
intrinsic energies, and E → E/ε for the center-of-mass
kinetic energy, and lengths rescaled to λ, namely, x → x/λ,
X → X/λ, and Kn → Knλ for coordinate and momentum
variables. Thus, it is assumed that λ = 1 and ε = 1 unless
otherwise stated. The center-of-mass kinetic energy for an
incident beam in channel n is E = ET − εn; in almost all our
examples the incident beam is in the ground-state channel,
and therefore n = 0.
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Truncating the number of channels at some large N and
looking for a solution in the space spanned by the functions ψn

for n < N constitutes the projection approach. Thence emerge
the equations∑

n

Dln [−iµ1(Kn′ + Kn)]√|Kn|
Rnn′ = − δln′√|Kn′ | , (18)

where matrix D is defined as

Dln(κ) =
∫

ψ∗
l (x) eκx ψn(x)dx. (19)

This can be interpreted as a momentum shift operator in the
intrinsic basis. Equation (18) is obtained by projecting the
boundary condition onto the intrinsic basis set. Note that for
a virtual channel, the argument of the D matrix becomes real
and positive.

At beam energies below the first threshold, when only the
ground-state channel (n = 0) is open, Eq. (16) is particularly
simple, because scattering is characterized by only a single
phase of the reflection amplitude. Owing to unitarity, |R00| =
1, and the single S-matrix phase δ is defined through e2iδ =
−R00. Equation (16) then reads

ψ0(x) sin[µ1K0x − δ] + 1

2

∑
n∈closed

R′
n0

√
|K0|
|Kn|

× eµ1|Kn|xψn(x) = 0, (20)

where R′
n0 = Rn0e

−i(δ+π/2) is real for any n.
To further illustrate the situation let us review two specific

examples of intrinsic potential v(x) where the eigenstates,
Eq. (5), and the shift matrices, Eq. (19), can be found
analytically.

1. Infinite square-well (“well”) confinement

In the first example, which is that of an infinitely deep
square-well intrinsic confinement, the length scale λ is defined
so as to set the width of the well to πλ; thus

v(x) =
{

0 when |x| < πλ/2.

∞ otherwise. (21)

The eigenstates and the corresponding energies for this square
well are

ψn−1(x) =
√

2

π
sin

[(
x + π

2

)
n
]
, εn−1 = n2, (22)

where n = 1, 2, . . ., so that the indices for both ψ and ε

start from 0, and the energy scale, Eq. (17), is ε = ε0. The
corresponding shift matrix is

Dnn′(κ) = 4nn′
κ

[
(−1)n+n′

exp
(

πκ

2

) − exp
(−πκ

2

)]
π [(n + n′)2 + κ

2][(n − n′)2 + κ
2]

.

(23)

2. Harmonic oscillator (HO) confinement

One could criticize the infinite square-well potential as
being too sharp and therefore leading to nonphysically high

intrinsic excitations. Therefore, the HO intrinsic confinement
v(x) = mω2x2/2 is presented as a second example, which does
not have this controversial feature.

The unit of length here is defined by the standard oscillator
length, λ = √

h̄/mω. The eigenstates, defined in terms of the
usual Hermite polynomials Hn, and the eigenvalues are

ψn(x) = 1√
2nn!

√
π

Hn (x) exp

(
−x2

2

)
, εn = (2n + 1),

(24)

where n = 0, 1, . . ., and the energy unit is ε = ε0 = 1
2h̄ω. The

corresponding shift matrix is

Dnn′(κ) =
√

n<!

n>!

(
κ√

2

)|n−n′|
L|n−n′ |

n<

(
−κ

2

2

)
exp

(
κ

2

4

)
,

(25)

where the associated Laguerre polynomials Ll
n appear, with

n< and n> denoting the smaller and larger, respectively, of the
two indices n and n′.

B. Solutions, difficulties, and limitations

From the explicit forms of the shift matrices in the two
cases described in Eqs. (23) and (25), it is clear that the shift
matrix in Eq. (18), when inverted, has highly singular elements
for N → ∞. To be precise, κn ∼ n

√
m1/m2 for a square well

(and κn ∼ √
2nm1/m2 for an oscillator), which implies that

the elements in Eq. (19) of the shift matrix have exponentially
different scales.

This difficulty of matrix inversion can be handled by
performing a linear transformation from the set of basis states
ψn(x) to a different set. Transformation to a configuration
localized state is discussed in Ref. [24]. In our studies
we used the singular value decomposition, which is also
effective. As observed in Refs. [22] and [29–32], there are
complications in numerical convergence with an increased
number N of included channels. The core of the problem is
that the amplitudes for real and virtual channels involve very
different scales. We find that for the square well, for example,
remote virtual channels scale approximately as Rn = Rn0 ∼
exp[πn

2

√
m1
m2

] (similar scaling follows for the oscillator). The

behavior of the virtual coefficients is illustrated in Fig. 1. Here
and in what follows, the second index in Rnn′ and Tnn′ , which
corresponds to the incident channel, is dropped when it is the
ground state channel, that is, when n′ = 0.

As the physics of interest is comprised of small contribu-
tions from exponentially large excitations, the problem has
mathematical issues. This is apparent also from Eqs. (16)
and (20), where one is attempting to make a series with
exponentially divergent coefficients vanish. This condition
fails to fulfill, especially for high mass ratios m1/m2, when
the coordinate-range |x| ∼ λ (where ψn are not zero) implies
large exponential factors e|Kn|λµ1 . The physics behind this is
that when the interacting particle is stopped by the wall, the
noninteracting component continues its motion until its entire
kinetic energy is converted into virtual intrinsic excitations of
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FIG. 1. (Color online) Well and wall. Absolute values of reflec-
tion amplitudes for virtual channels are plotted against channel
number n. The infinite square-well potential (intrinsic) is used in
this example, with m1 = m2. The incident beam is in the ground state
with kinetic energy E = 0.1. Different curves correspond to different
truncations N . The straight line shows the curve exp(πn/2). The
actual results closely follow this line initially and then deviate owing
to truncation in the channel space.

the confining potential that is necessary for the system to be
reflected. The bigger the mass of the noninteracting particle
m1 relative to m2, the more kinetic energy it has, and the more
complicated the virtual excitations become. Figure 2 shows
how this issue effects calculated results.

For “good” mass ratios, which is roughly when m1/m2 � 2,
reliable solutions can be obtained [23,24] that agree with the
exact and stable solutions gotten through a different method
(the VPM; see Sec. IV), as shown in Sec. V B. For these
satisfactory results, the projection method had to involve
arbitrary-precision numerics, ensuring that both the small
and the large contributions are properly taken care of. The
reflection probabilities in different open channels calculated
for the square well and harmonic oscillator models with
m1/m2 = 1 are reliable. They are also identical to those
obtained through the VPM and are shown in Figs. 14 and 15,
respectively, in Sec. V B. These two figures display cusps at
thresholds, which is a consequence of unitarity [21,33]. In
addition to that, there are weak oscillations which, as discussed
in the same section, become more pronounced in the case of a
more massive noninteracting particle.

The solution, however, is still elusive. This is especially
visible for “bad” mass ratios with large values of m1/m2. The
projection method results are shown in Fig. 2. As the mass of
the noninteracting particle m1 gets larger, the results become
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(5)

(10)

HO

-90

0

-54

0 80 160

(3)

FIG. 2. (Color online) HO and wall. This plot demonstrates the
failure of the projection method, which uses Eq. (18), to solve the
scattering problem where the system of two particles bound by a
harmonic oscillator confinement collides with an infinite wall. The
incident kinetic energy is E = 1 = 0.5h̄ω, which means that the
total energy is halfway between the energy of the ground state and
that of the first excited state. Different curves are labeled with the
corresponding mass ratios: m1/m2 = 1, 2, 3, 5, and 10. The phase
shift δ is shown to vary with N , the number of channels included in the
calculation. Horizontal grid lines along with the tic marks on the right
indicate the values of the phase shifts, as obtained in a convergent
way with a different method, the VPM (see Sec. IV). Inset: The curve
for m1/m2 = 3 on a large scale, up to N = 160.

extremely unstable. While a satisfactory value may be obtained
for some cases, the approach is still flawed, as the inclusion
of more channels (which must be accompanied by increased
numerical precision) does not necessarily improve the results
and may eventually lead to increasing oscillatory instabilities.
This is demonstrated in the inset in Fig. 2, where curve (3) for
m1/m2 = 3, which seems to converge initially, is continued
up to N = 160, where its behavior becomes erratic.

To solve this problem, one should depart from projection
onto the basis states. In what follows this is achieved
by introducing a variable reflection amplitude Pnn′ (X) (see
Ref. [34]) through the following equation,

Rnn′ = ei(Kn+Kn′ )X[2i
√

KnKn′Pnn′ (X) − δnn′ ]. (26)

Then Eq. (16) takes the form∑
n

Pnn′ (µ1x)ψn(x) = 0

and can be efficiently solved by selecting a discrete set of
N coordinate locations. This is the essence of a different
approach, discussed next.
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IV. THE VARIABLE PHASE METHOD (VPM)

It follows from the discussion in the previous section that
the approach based on projection onto the intrinsic basis is
unpredictable in its ability to handle the problem. As an
alternative, the time-dependent methods have previously been
used to treat similar problems [20]. Here we discuss the VPM,
which is a well-established technique for treating multichannel
tunneling and scattering. It dates back to works presented in
Refs. [35–41]. Exhaustive treatises on the subject are found
in books by Razavy [34], Babikov [42], and Calogero [43].
Solving differential equations for the phases of the stationary-
state wave functions, as functions of coordinate, is central
to the VPM. These phases at asymptotic distances (from the
scattering potential) make up the S-matrix of the problem.
Equations for such quantities can be found by considering
the phase shifts corresponding to the scattering potential
being truncated at some coordinate locations. Alternatively,
Green’s function approach can be used. Techniques of this sort
are widely used in reaction physics with atoms, molecules,
and nuclei and in relativistic scattering. Recently, there has
been interest centered around multichannel tunneling and
scattering problems [3,5,6,34,44–46]. Our problem is unlike
those ordinarily encountered because its solution depends on
proper treatment of the multichannel virtual dynamics. Thus,
here we extend the VPM by applying it to virtual channels,
which is mentioned in Ref. [42] as a possibility. Some later
steps in this direction have been taken in Ref. [47] with
off-shell amplitudes in the context of a three-body problem.

A. Formulation of the VPM

Let us first introduce the VPM briefly. We would like
to emphasize that although we limit our discussion to one-
dimensional scattering for simplicity, the approach is a general
one. This method is also known as the variable reflection
amplitude method [19,34,48]. By using factorization of the
form

�(X, x) =
∑

n


n(X)ψn(x)

for the wave function, Schrödinger’s equation H�(X, x) =
ET �(X, x) with the Hamiltonian from Eqs. (3) and (4)
can be transformed into a coupled-channel equation for the
center-of-mass wave functions 
n(X) for channels n (subject
to appropriate boundary conditions),[

∂2

∂X2
+ K2

n

]

n(X) −

∑
n′

Vnn′ (X)
n′(X) = 0, (27)

where the folded potentials are

Vnn′ (X) = 2M

h̄ 2

∫ ∞

−∞
ψ∗

n (x)U (X, x)ψn′ (x) dx, (28)

and Kn is defined in Eq. (7).
The reflection and transmission amplitudes are specified

in reference to the potential-free solutions of Schrödinger’s
equation. These solutions are defined in terms of diagonal

matrices as

�±
nn′ (X) = e±iKnX

√−2iKn

δnn′ , (29)

where the ± sign corresponds to a wave moving in the right or
left direction. These solutions are normalized to unit current
with the Wronskian set to unity:

�+(X)
d�−(X)

dX
− �−(X)

d�+(X)

dX
= 1.

The functions defined in (29) can be used for both open
and closed channels, provided that, as mentioned earlier, the
principal branch of the square root is selected for an imaginary
Kn.

While there are variations of the VPM [34], we demonstrate
here the approach that explicitly emphasizes the decoupling of
the reflection and transmission coefficients and the different
roles thereof [42]. It is convenient to apply the VPM by
considering an auxiliary set of free-space wave functions


(X,X′) = [�+(X) + �−(X)R(X′)]T (X′), (30)

with coefficients R(X′) and T (X′) defined from the solution

(X) of Schrödinger’s Eq. (27), using the Cauchy boundary
condition at some point X′, so that at X = X′,


(X,X′) = 
(X) and
d

dX

(X,X′) = d

dX

(X). (31)

It is convenient to interpret 
(X,X′) for X � X′ as
the wave function corresponding to a potential truncated
from the left, Vnn′ (X,X′) = Vnn′ (X)θ (X − X′), where θ (X)
is the Heaviside step function. So, Vnn′ (X,X′) = 0 at X �
X′, and the wave function is given by Eq. (30) with the
boundary condition, Eq. (31). This interpretation is illus-
trated in Fig. 3. Now, R(X′) in Eq. (30) is a matrix in
the channel space. With the help of Fig. 3, it can be
identified as the reflection amplitude for a wave scattering
from the potential truncated from the left (shaded part
in the figure). The vector T (X′) in the channel space is
the amplitude of the wave function 
(X,X′) at X = X′.
It can be normalized in different ways. In the literature the
wave function 
 and its amplitude T are commonly viewed
as collections of independent column vectors corresponding
to different independent initial conditions (initial channels).
It is clear from Fig. 3 that transmission through the potential
V (X,X′) is inversely proportional to the amplitude T (X′).
With relatively straightforward derivations that involve sub-
stitution of the wave function in Schrödinger’s Eq. (27) by
Eq. (30) (see also Ref. [42]), one can show that the matrix
R(X) is subject to the differential equation

dR(X)

dX
= [(�+ + R(X)�−)]V [�+ + �−R(X)]. (32)

The X dependency of the �’s and the folded potential V

is suppressed in this differential equation and all others that
follow unless there is an ambiguity.

The equation for the vector T (X) is linear,

dT (X)

dX
= −�−V [�+ + �−R(X)]T (X), (33)
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FIG. 3. An incoming wave of amplitude 1 is traveling from the
left toward the potential barrier. It is reflected with amplitude R and
transmitted with amplitude T . For any arbitrary point X′ the barrier is
thought of as a combination of two parts: the unshaded part to the left
of X′ and the shaded part V (X, X′) to the right. At X′, in accordance
with Eqs. (30) and (31), the incoming and outgoing components are
identified as having amplitudes T (X′) and R(X′)T (X′), respectively.
Here T (X′) represents the overall amplitude of the wave function
at X′, which has been modified, relative to the incoming beam,
owing to the passage through the unshaded part of the barrier. In
the context of the shaded part only, T (X′) represents an incident
beam normalization; thus R(X′) is interpreted as the amplitude of
reflection from the shaded part. Owing to this normalization, the
transmission amplitude T (X′) through the shaded part is given by the
final amplitude T (transmission through the full potential) normalized
relative to the incident amplitude T (X′). Thus, T (X′)T (X′) = T . The
incoming beam has a unit amplitude, and T (−∞) = 1, T (−∞) = T .

It is obvious that R(−∞) = R, which is the amplitude of reflection
from the full potential. On the right of the potential R(∞) = 0,
T (∞) = T , and T (∞) = 1.

which reflects linearity of quantum mechanics. To be more
specific, the linearity shows that the column vectors corre-
sponding to different initial channels are independent of each
other, and the amplitudes allow for arbitrary normalizations.

The reaction physics of interest, in agreement with the
discussion in Sec. II B, is given by R alone; and the physical
properties are independent of normalization, resulting in the
decoupled Eq. (32) for R(X).

As follows from the boundary condition for the wave func-
tion 
(X) or from the interpretation of R(X′) as a reflection
amplitude, R(X′) is subject to the boundary condition

Rnn′ (∞) = 0, which leads to Rnn′ (−∞) = Rnn′ . (34)

The transmission amplitude is determined by T (X′). One
can treat T (X′) as a matrix of the column vectors described
previously. Assuming the incident beam to be in channel n′
and normalizing it to unity (which is the most common and
natural way), one would have

T nn′ (−∞) = δnn′ , and thus, T nn′ (∞) = Tnn′ . (35)

The elements of the reflection matrix R(X) are sufficient to
determine all observable probabilities. One, however, may
still want to obtain the transmission amplitudes, which can
be done by integrating Eq. (33) separately using previously
determined values of R(X). Owing to the different boundary
conditions for R and T [see Eqs. (34) and (35)], this approach is
computationally inconvenient. However, given that T nn′ (∞) =
Tnn′ , it can be interpreted as a final-state normalization to a yet
unknown value Tnn′ , and this inconvenience can be avoided. If
one defines a matrix T (X) so that T (X)T (X) = T , then T (X)

coincides exactly with the matrix of transmission amplitudes
through the truncated potential V (X,X′) (see Fig. 3). Because
d

dX
[T (X)T (X)] = 0, Eq. (33) in terms of T (X) is

dT (X)

dX
= T (X)�−V [�+ + �−R(X)]. (36)

It is to be used with the boundary condition

Tnn′(∞) = δnn′ , and then Tnn′(−∞) = Tnn′ . (37)

This approach is equivalent to the one discussed in Ref. [34].
In summary, the most celebrated advantages of the VPM

are its physical transparency, its generality, and the simplicity
of its application. Phase equations can indeed be constructed
for most quantum mechanical problems. In particular, with
appropriate substitutions for the �± functions, the approach
can be immediately used in three-dimensional problems with
radial variables and for Coulomb potentials [42]. The VPM
is technically simple; the entire multichannel problem is
reduced to a relatively straightforward integration of the
Riccati equation, (32), from right to left with a zero starting
value [for R(X)] as a boundary condition.

B. Virtual channels in the VPM

In this work we find yet another value of the VPM in
its effectiveness in treating virtual channels and in general
complex-momentum (i.e., off-shell) applications. Some sug-
gestions in this direction have been made in Refs. [42] and [47].
However, there are a few important things to note, as follows.

First, the formalism remains valid in the complex momen-
tum plane assuming that, for virtual channels, the principal
branch of the square root is selected in Eq. (7).

Second, separation of the amplitude [given by T (X)] from
the physically relevant phase difference between incoming and
outgoing components [given by R(X)] is important. Owing to
this separation, the principal equation, (32), is solved with
a zero-value boundary condition, Eq. (34), and without any
concern about exponentially falling or rising components of
the wave function outside the potential. Normalization is
provided by a set of decoupled equations for each selected
initial condition. Therefore, while solving scattering problems,
one could consider only those columns T (X) that correspond
to open channels of interest.

Closed channels can be studied, if desired, with an initial
wave function exponentially rising toward the potential. Bound
states can also be explored in this way [43], but we do not study
these questions.

Normalizing in a way to have the closed channels set to
zero still deserves some attention. As further demonstrated
in Sec. V A1, T (X) and T (X) for closed channels are set
to zero differently. For T (X) one assumes the initial beam
normalization of zero for any closed channel, that is,

T nn′ (−∞) = 0 if n′ is closed. (38)

Thus after scattering, one has waves in closed channels with
amplitudes exponentially decaying to zero away from the
potential.
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Contrary to that, Eq. (37) is best thought of as a final-state
normalization; thus

Tnn′(∞) = 0 if n is closed. (39)

Finally, the original Eqs. (32) and (33) used for open
channels are valid also for closed channels but have issues with
numerical stability for virtual excitations. The exponential
divergence of the functions �±

nn(X) with n (or, |Kn|), especially
at large |X|, makes it difficult to handle long-ranged potentials.
We define

P (X) = −�+�− − �−R(X)�−,

which agrees with Eq. (26), so that Eq. (32), written in terms
of the variables P (X) instead of R(X), reads

dPnn′

dX
= δnn′ − i(Kn + Kn′)Pnn′ −

∑
ll′

PnlVll′Pl′n′ , (40)

where P and V depend on X. It is noteworthy that in this
form the equations no longer contain any exponential factors.
A similar substitution can be done for T (X) or T (X).

The amplitudes P for open channels oscillate outside
the potential where V = 0, which is not the most desirable
boundary condition one would want to deal with. However,
this is a minor inconvenience compared to the benefit of the
exponential drop of P (X) for virtual channels with distance
from the potential barrier. This is particularly important
because in the problems that we discuss, the reaction processes
contain only a few open channels but are determined by
numerous closed channels.

V. APPLICATIONS OF THE VPM

A. A δ-barrier

We proceed by considering a δ-barrier as the scattering
potential. Here, a bound system of two particles is incident on
a potential

U (x1, x2) = h̄ 2

AM
δ(x2), (41)

where, again, only the second particle interacts with the
potential; A is a length parameter, characterizing the strength
of the barrier, and δ(x2) is the Dirac delta function.

Interactions of composite objects, such as diatomic
molecules, with a δ-barrier have been discussed before
[34,44,45], but usually without any involvement of the virtual
channels and in situations where the potential barrier acts on
both the particles.

Any potential can be considered with the VPM in principle;
however, the short-ranged δ potential provides a good way of
exploring the generic features of scattering without putting
efforts into computing folded potentials. The folded potential,
Eq. (28), for a δ-barrier, Eq. (41), takes an analytic factorized
form:

Vnn′ (X) = 2

µ1A
ψ∗

n

(
X

µ1

)
ψn′

(
X

µ1

)
, (42)

where µ1 is the mass ratio defined in Eq. (15).

In the limit of A → 0 the δ-barrier turns into an impene-
trable wall, thus allowing us to complete the study in Sec. III,
which is done in Sec. V B.

Introduction of the short-range δ-barrier adds just one
additional length scale A to the parameters used to describe
the problem. There are thus three length scales in the
problem, namely, the intrinsic scale λ, the incident beam
wavelength ∼1/K , and the potential scattering length A. The
corresponding energy scales are the intrinsic energy scale ε,
the incident beam kinetic energy E, and the energy scale
associated with the δ potential, defined by

Eδ = h̄ 2

2MA2
. (43)

The mass ratio µ defined in Eq. (15) connects the length
scales λ and 1/K at similar energies; the precise relation
is λK = √

E/µ. The noncomposite limit of the process is
reached either if all the mass is concentrated in the interacting
particle, leaving µ1 = 0 and therefore λ → ∞, or if the
intrinsic states have infinitely high energy ε → ∞ and thus
λ = 0. This yields a textbook problem of scattering off a
δ-barrier, where the transmission and reflection amplitudes
are, respectively,

T = iKA

iKA − 1
and R = 1

iKA − 1
. (44)

For a noncomposite projectile the δ potential allows for
scattering only in the symmetric channel, because from Eq. (9)

S+ = 1 + iKA

1 − iKA
and S− = 1.

Transmission and reflection probabilities for a δ-barrier are
determined solely by the energy ratio (KA)2 = E/Eδ . Thus,
the sign of the coupling A, that is, whether it is a well or a
barrier, does not matter:

|T 2| = E/Eδ

E/Eδ + 1
, |R2| = 1 − |T 2|. (45)

1. Spatial dynamics of the reflection and transmission amplitudes

The spatial dynamics of the reflection and transmission
amplitudes is shown in Figs. 4 and 5. As an example we take
the “well” confinement (see Sec. III A1) with equal particle
masses, µ1 = µ2 = 1/2, and a δ-barrier with strength Eδ = 1
in units of intrinsic excitations, Eq. (17). The kinetic energy of
the beam is E = 4 in the same units, which means that there
are two open channels.

Figures 4(c) and 5(c) show folded potentials, as follow from
Eqs. (42) and (22). Thanks to the simplicity of the δ-barrier, the
folded potentials have obvious forms showing the structures of
the wave functions for the intrinsic square-well confinement.
Naturally, Vnn′ (X) = 0 outside the well or, in other words,
if |x| � π/2 (that is, |X| � π/4), where x (as well as X) is
expressed in units of λ.

As explained through Fig. 3, the dynamic transmission and
reflection amplitudes, T (X) and R(X), in the VPM correspond
to the potential truncated from the left of X. Therefore,
both transmission and reflection probabilities |Tnn′(X)|2 and
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FIG. 4. (Color online) Well and δ-barrier. The barrier strength is
Eδ = 1. With incident beam kinetic energy E = 4, the only open
channels are those labeled 0 or 1. The transmission and reflection
probabilities, |Tnn′ (X)|2 and |Rnn′ (X)|2, and the folded potentials
Vnn′ (X) are shown in (a), (b), and (c), respectively, for open channels.
X is expressed in units of λ.

|Rnn′ (X)|2, shown in Figs. 4(a) and 5(a) and Figs. 4(b) and 5(b),
respectively, are evolved from right to left following Eqs. (34)
and (37). For both Fig. 4 and Fig. 5 we utilize the final-state
normalization, Eq. (37), of T (X) instead of T (X), owing to
the convenience of application and interpretation of T as the
transmission amplitude.

Figure 4 shows the dynamics in the open channels. Because
the intrinsic potential is of a finite width, the final values
of the reflection and transmission coefficients are reached
at X = −π/4, which means inclusion of the full potential.
And therefore, the values of |Rnn′(X)|2 and |Tnn′ (X)|2 at
X = ±π/4 are the asymptotic values thereof, commensurate
with Eqs. (34) and (37). The probability is conserved at all
values of X:

∑
n∈open

|Tnn′(X)|2 + |Rnn′ (X)|2 = 1,

and Rnn′(X) = Rn′n(X) owing to time reversal symmetry.
However, Tnn′(X) �= Tn′n(X) owing to the asymmetry in the
truncated potential. Symmetry is recovered in the final T , as
the full symmetric potential is covered at X = −π/4, where
|Tnn′ |2 = |Tn′n|2, as shown in Fig. 4(a).

A different picture emerges with the virtual channels. The
linearity and independence of initial conditions, discussed

-4
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 2

 4

 -π/2 -π/4 0 π/4 
V

nn
′(X

)
X

(c)
 0

 2

 4

 6

 8

|R n
n
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) |2   (

10
-3

) (b)
 0

 2

 4

 6

 8

|T n
n

′(X
) |2   (

10
-3

) (a)

(n,n′)_____
(0,2)
(0,3)
(0,5)

FIG. 5. (Color online) Well and δ-barrier. This graph refers to the
same projectile as described in Fig. 4, with E = 4. The reflection and
transmission probabilities, |Rnn′ (X)|2 and |Tnn′ (X)|2, and the folded
potentials Vnn′ (X) are shown for the outgoing channel, n = 0, for a
projectile in three virtual incoming channels, n′ = 2, 3, and 5 (see
text for interpretation). X is expressed in units of λ.

earlier, are important, as they make the normalization of virtual
channels irrelevant for the S-matrix and other asymptotic
reaction observables. Having said that, one can assume that
T nn′ (−∞) = 0 if the initial channel n′ is closed [Eq. (38)],
and thus T nn′ (X) = 0 for any X owing to linearity, Eq. (33).
However, an incident beam in some open channel n′ generates
virtual excitations n that exist outside the potential. Therefore,
T nn′ (X) is an exponentially decaying nonzero function beyond
the range of the potential when initial channel n′ is open but
the final channel n is closed.

A totally different situation arises with the final-state
normalization, Eq. (39), that is, with Tnn′ (∞) = 0, if n

corresponds to a closed channel. Thus, assuming that all
virtual channels are normalized to zero to the right of the
barrier generates disturbances of virtual channels in front of
the potential barrier, so that Tnn′(X) is not zero there when n′ is
closed. This is shown in Fig. 5 where such quantities Tnn′ (X)
(or their norms) decay exponentially to the left of the barrier
but are not zero at X = −π/4.

The interpretation of Rnn′ (X) is quite different. It sets
relations among the different components (phase shifts) of
the wave function and is nonzero for all real and virtual initial
and final channels. Nevertheless, the behavior is similar (see
Fig. 5).
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FIG. 6. (Color online) Well and δ-barrier. Barrier strength
Eδ = 1. Probabilities of transmission to different final channels,
n = 0, 1, 2 and 3 are shown as functions of the incident beam kinetic
energy E. The incident beam is in the ground-state channel. The
different curves in each panel correspond to different values of the
mass ratio µ1, as labeled. The noncomposite limit is shown by the
thick solid line in the top panel.

2. Results

Let us now discuss some final results for the scattering and
tunneling of the deuteron-like system. Here we continue to
consider the infinite square-well (“well”) and the HO models
(see Secs. III A1 and III A2), which do not allow for breakup.
A model with a continuum of intrinsic states, which allows for
breakup, is described in Sec. VII.

Figures 6 and 7 for the well, and Figs. 8 and 9 for the
HO, depict the probabilities |Tn|2 of transmission and |Rn|2
of reflection, respectively, in the first few lowest channels as
functions of the incident beam kinetic energy E. Each figure
contains vertical grid lines indicating the locations of channel
thresholds. In the case of the well, new channels open up at
kinetic energies E = n2 − 1, where n is a positive integer;
for the HO, these occur at integral multiples of h̄ω. In each
case the incident beam is in the ground-state channel, thus
the corresponding subscript is suppressed, and n refers to the
final channel. The strength of the δ-barrier is set, via Eq. (43),
to Eδ = 1. The redistribution of probabilities at the threshold
energies, required by unitarity, leads to cusps in the cross
sections [21,33]. These discontinuities are common in all the
figures for both models.

Figures 6–9 each shows three curves with µ1 =
0.3, 0.5, and 0.7, and thus illustrates the mass ratio depen-
dence. In addition to that are shown the ground-state-to-
ground-state transmission probabilities in the top panels in
Figs. 6 and 8 in the noncomposite limit µ1 → 0, where
an analytic answer follows from Eq. (44). Indeed, when
the noninteracting particle 1 is very light compared to the
interacting particle 2, that is, when µ1 → 0, then particle 2
carries almost all the momentum, and the presence of particle
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FIG. 7. (Color online) Well and δ-barrier. Same as Fig. 6, show-
ing reflection probabilities.

1 hardly matters. In this limit the behavior of the projectile
approaches that of a single noncomposite particle.

The development of the resonant behavior, as µ1 increases,
is easy to follow in these plots. For larger values of µ1 the
curves exhibit prominent peaks and dips that are not associated
with cusps at thresholds. Classically this can be viewed as a
process in which the light interacting particle is stopped by
the potential, while the larger mass µ1 keeps moving forward
without any impediment, until most of its kinetic energy is
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FIG. 8. (Color online) HO and δ-barrier. Barrier strength Eδ =
1 = 0.5 h̄ω. Probabilities of transmission to different final channels
n = 0, 1, 2, and 3 are shown as functions of the incident beam kinetic
energy E. The incident beam is in the ground- state channel. Different
curves in each panel correspond to different values of the mass
ratio µ1, as labeled. The noncomposite limit is shown by the thick
solid line in the top panel.
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FIG. 9. (Color online) HO and δ-barrier. Same as Fig. 8, show-
ing reflection probabilities.

transferred into the potential energy of the intrinsic interaction,
and then it either turns back or pulls the smaller interacting
mass through the barrier. Hence, the larger the noninteracting
particle’s mass, the more complex and chaotic the process.

It is intuitive to suggest that the highly virtual channels
have little or no effect on observables at low energies. It
is proved otherwise in our studies. In Figs. 10 and 11 we
focus on the low-energy region, below the first threshold,
for the well and the HO models, respectively. Here we use
the same parameters as in Figs. 6–9 and present our results
for the noncomposite limit µ1 = 0 as well as for projectiles
with µ1 = 0.3, 0.5, and 0.7. Along with the transmission
probability, we show results for the two phase shifts, Eq. (9),
that are defined up to the first threshold (shown by the
vertical grid line). We conclude that the compositeness and
the composition of the projectile given by the mass ratio
of the components are consequential factors that determine
the observables. In these models, as well as in the ones
with breakup (discussed in Sec. VII), we find a systematic
enhancement of tunneling probability, with increasing mass of
the noninteracting component, in a broad region of energy
near the first threshold. This enhancement was discussed
in Ref. [23]. Observations are not without controversy; no
enhancement was seen in Ref. [14], but the experiments in
Refs. [13] and [15] show enhancement in tunneling of heavy
He isotopes, where additional spectator neutrons contribute to
the mass of the noninteracting component, while the α core
interacts with the Coulomb barrier.

3. An attractive δ-well

In addition to the δ-barrier discussed so far, we explored
scattering that involves an attractive δ-well. We stress again
that for a noncomposite projectile the sign of the interaction
does not effect the observed reflection and transmission
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FIG. 10. (Color online) Well and δ-barrier. The system is the
same as that in Fig. 6, showing (a) the transmission probability |T0|2
for energies below the first threshold and (b, c) phase shifts δ± for the
same energy region.

probabilities [see Eq. (45)]. This is not true for a composite
projectile. This topic has been extensively explored in the
literature and is often referred to as the Barkas effect. In
Ref. [49], one can find more references that are relevant and
a model that is similar in spirit and discusses the Coulomb
excitation of a harmonic oscillator.

Our results for the transmission probability in a scattering
that involves a δ-well are shown in Fig. 12. We present
results for the case of an HO confinement only; the results
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FIG. 11. (Color online) HO and δ-barrier. The system is the
same as that in Fig. 8, showing (a) the transmission probability |T0|2
for energies below the first threshold and (b, c) phase shifts δ± for the
same energy region.
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FIG. 12. (Color online) Well and attractive δ-well. The proba-
bility of transmission from ground state to ground state is shown
as a function of incident kinetic energy. Barrier strengths Eδ = 1
(top) and Eδ = 5 (bottom) (i.e., 0.5h̄ω and 2.5h̄ω, respectively). In
both cases three mass ratios, µ1 = 0.3, 0.5, and 0.7 are considered,
along with the analytic limit of a noncomposite projectile (labeled
µ1 = 0).

for the square well are similar. In all cases, even at relatively
small masses of the noninteracting component, the scattering
process is highly resonant. The interacting particle 2 and the
barrier form a bound state at an energy −µ2Eδ , which is only
a virtual binding in the three-body problem. However, the
system in an excited state n with intrinsic energy εn can be
temporarily bound as a whole, thus leading to a resonance
at ET = εn − µ2Eδ . We find that this crude interpretation
unravels some of the complex resonant patterns shown in
Fig. 12. The resonances indeed periodically follow the channel
thresholds, and they are close to the thresholds for small
Eδ = 1 (Fig. 12, top) and are farther away for the larger Eδ = 5
(Fig. 12, bottom).

B. An infinite wall

In this section we return to the wall problem, which, as
shown in Sec. III, is an extraordinarily illustrative example.
This model emerges in the limit of a very strong δ potential
(Sec. V A), that is, with A → 0.

We study the convergence of the VPM separately in Sec. VI;
nevertheless, here we present Fig. 13, which, in contrast to
Fig. 2, shows that the VPM is not prone to convergence issues.
Even for the high mass ratio m1/m2 = 5, the VPM produces
a perfectly smooth curve that converges to a final δ = −77◦,
which is not the case with the projection method.

Figures 14 and 15 show the reflection probabilities of a
composite projectile in the ground-state channel scattered from
a wall. They are similar to the previous results for scattering
that involves a δ-barrier (see Sec. V A2); cusps at thresholds
and some resonant behavior are among the typical features.
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FIG. 13. HO and wall. This figure refers to the scattering problem
described in Fig. 2, where the system of two particles bound by HO
confinement collides with an infinite wall. The incident kinetic energy
is E = 1 = 0.5h̄ω, and the mass ratio is m1/m2 = 5. The phase δ,
as calculated using the VPM, is plotted, by the solid line, versus the
number of included channels N . The horizontal grid line indicates the
final value of the phase shift to which it is found to converge smoothly
with increasing N . Dashed curve shows results obtained through the
projection method, which is unstable.

Scattering below the first threshold is characterized by a
single phase shift δ, which is plotted in Fig. 16 as a function
of the incident beam kinetic energy, in the case of the HO.
Different curves correspond to different mass ratios.

The limit of very low energies is particularly interesting.
The formal effective range expansion [42,43,50,51], in the
context of the VPM, has been applied extensively to problems
of nucleon, molecular, and atomic scattering. As K → 0, the
S-matrix, S = e2iδ , is characterized by a phase δ = −Ka,
where a is the scattering length. This length a depends only
on the mass ratio m1/m2 and represents the distance of the
turning point from the reflecting wall. A scattering length
a > 0 implies that the system is reflected at a distance a prior to
reaching the wall. Figure 17 shows a in units of λ, as a function
of µ1. The limit µ1 → 0 corresponds to a noncomposite case
where the scattering length is zero. It is interesting to note that,
while the intrinsic wave function of an infinite square-well
confinement has a finite width ∼πλ, the scattering length
can easily exceed this range. Thus, a classically impossible
situation occurs in which a finite-size system reflects from a
wall before it actually approaches it within the contact distance.
In the limit of µ1 → 1 the scattering length a diverges. This is a
strong divergence, as it is relative to a divergent scale, λ → ∞,
for any given energy because of the vanishing reduced mass.
It is worth pointing out that the divergence of the scattering
length owing to intrinsic degrees of freedom coupling to the
reaction dynamics is similar to Feshbach resonance.

064607-12



QUANTUM TUNNELING AND SCATTERING OF A . . . PHYSICAL REVIEW C 82, 064607 (2010)

0
0.1
0.2
0.3

0 2 4 6 8 10 12 14 16 18

|R
3|

2

E

0

0.1

0.2

0.3

|R
2|

2

0
0.2
0.4
0.6
0.8

|R
1|

2

0
0.2
0.4
0.6
0.8

1

|R
0|

2

Well

FIG. 14. Well and wall. This is the same as Fig. 7, but for a “wall,”
not for a δ-barrier, and only for the case of equal masses, m1 = m2

(i.e., µ1 = 0.5).

For both square-well and oscillator models, one can
examine the analytic results for a by considering a few
virtual channels within the projection method. It becomes
immediately clear that such an expansion is convergent only
in the limit of µ1 → 0. In this limit we obtain a/λ ≈ 0.56µ

3/2
1

for the square-well-bound system and a/λ = µ
3/2
1 for the

oscillator-bound system.
Figure 18 shows the square of the amplitude of the

wave function, �n|T nn′(X)|2, for a projectile in the incoming
channel n′ = 0. This is interpreted as the density of probability
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not for a δ-barrier, and only for the case of equal masses, m1 = m2

(i.e., µ1 = 0.5).
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FIG. 16. (Color online) HO and wall. Phase shift as a function of
incident beam kinetic energy. Curves are labeled with different values
of the mass ratio m1/m2.

for the center of mass of the projectile to be at a location
X when it is reflected from an infinite wall. The four curves
show a few of the most representative situations: incident beam
kinetic energies as low as E = 1.5 and as high as E = 30 and
two mass ratios, µ1 = 0.5 and 0.9. All probabilities eventually
die to zero beyond the wall located at X = 0. The first two
curves represent cases where the energy of the projectile,
E = 1.5, is halfway between the energy of the ground state
and that of the first excited state. Hence, only one open channel
is present. For mass ratio µ1 = 0.5 the behavior is plain.
However, when the noninteracting particle contains 90% of the
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FIG. 17. (Color online) Well or HO and wall. For the “deuteron
and Coulomb-wall” model, the scattering length a (in units of intrinsic
length λ) is shown as a function of the mass ratio µ1 = m1/M for
two systems: those bound by the well and by the HO confinements.
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FIG. 18. (Color online) Well and wall. Probability densities as
functions of location, for scattering of a square-well-bound system
off an infinite wall at X = 0.

total mass, there is a peak of probability density in front of the
wall. This is consistent with the enhanced scattering length (see
Fig. 17) and with the interpretation that this probability peak
corresponds to a turning point where the system is stopped
prior to reaching the wall. At higher beam energies the center of
mass penetrates considerably through the wall (region X > 0).
As expected, this penetration is deeper for a more massive
noninteracting component; the peaks in the density inside the
wall can also be attributed to the noninteracting particle’s being
stopped via energy transfer to intrinsic excitations.

VI. ROLE OF VIRTUAL CHANNELS AND CONVERGENCE

While problems similar to those presented here have been
extensively discussed in recent literature (e.g., Refs. [5–7,34,
44–46]), little attention has been paid to virtual channels. In
fact, most of these works discuss tunneling of a diatomic
molecule where both the atoms interact with the potential.
In this case, virtual excitations are relatively less likely to take
place, and hence the folded potential within open channels
already provides a relatively good description of the process.
In contrast, our selection of models, where only one particle
interacts with the scatterer, is dynamically different. It is
the virtual channels that shape the noninteracting particle’s
movement. Therefore, compared to the models discussed by
other authors, already cited, our models are in general more
sensitive to virtual channels. In the most extreme case of
reflection from an infinite wall, no meaningful description is
possible without reference to the virtual channels. The folded
potential for the ground state, depicted in Fig. 4(c) by the solid
black line, has a single hump and, therefore, does not lead
to any resonant behavior in reactions at low energies, when
only one channel is open. Hence it can be concluded that the
resonance-like increases or decreases in the transmission and
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FIG. 19. (Color online) HO and δ-barrier. A two-body system
with m1 = m2, bound by an oscillator confinement, is scattered by
an external δ-barrier with Eδ = 1. (a) Transmission probability; (b,
c) two symmetric and antisymmetric phase shifts, respectively. The
three curves compare the full solution (“full”) with the approximate
treatment that includes only open channels (“open”), and with results
for a noncomposite projectile (“non-composite”). We conclude that
ignoring the composite nature of the system or neglecting the virtual
channels results in neither the correct phase shifts nor the correct
transmission probability.

reflection probabilities shown, for example, in Figs. 8 and 9, at
low energies and especially when the noninteraction particle
is heavy, are exclusively owing to virtual channels.

The importance both of compositeness and of virtual
channels is illustrated in Fig. 19,where we consider an
oscillator scattering from a δ-barrier. The curves in three
different styles and colors correspond to results from three
different calculations: the solid red line represents the exact
solution, that is, the solution of scattering of a composite
projectile obtained through a calculation that includes the
virtual channels as well as the open channels; the dotted
blue line represents scattering of a composite projectile solved
through a folded potential but ignoring any virtual channel
whatsoever; the solid black line represents scattering of a
noncomposite projectile of the same mass as the composite
projectile. For the region of energies shown in these graphs,
there is only one open channel; thus the asymptotic behavior of
the wave function is fully determined by the two phase shifts
δ±, which are shown in Figs. 19(b) and 19(c) as functions of
incident beam kinetic energy. All three curves are different,
indicating that neither noncompositeness nor treatment of
open channels only can substitute for a full solution. To
emphasize this, we show in Fig. 19(a) the transmission
probability, an observable quantity, as a function of energy;
for most of the energy region shown, the actual transmission
probability appears to be higher than that of an equally massive
noncomposite particle.

While the virtual channels cannot in general be ignored,
the contribution of the highly excited states is expected to
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FIG. 20. (Color online) Well and δ-barrier. Convergence of the
transmission probability PT = |T0|2 to its limiting value, as a function
of N . The masses are equal, m1 = m2, and the kinetic energy is
E = 4, so that only the first two channels are open. The strength of
the δ-barrier is Eδ = 1. (a) The actual behavior of the transmission
probability PT (N ) with N , and its asymptotic value PT = 0.6708
shown by the grid line. (b) To show agreement with Eq. (46), the
value N [PT − PT (N )] is shown. This quantity is well described by
a constant Ns = 0.157, shown by the horizontal (red) line.

diminish. Practical applications require some truncation in the
channel space, too. In Fig. 20(a) we demonstrate the rate of
convergence of the transmission probability PT = |T0|2 by
plotting it as a function of the number of included channels N .
The curve is visually indistinguishable from the hyperbola

PT (N ) = PT − Ns

N
, (46)

showing that the deviation of the probability PT (N ) from
its limiting value PT is inversely proportional to N . That is,
Ns is the rate of convergence. Figure 20(b) shows agreement
with Eq. (46) by comparing [PT − PT (N )] N with a constant
Ns . These results are for the square-well-bound system with
|KN | ∼ N . With more precise consideration it is found that,
in general, the amplitudes converge as ∼1/|KN |. Figure 21
demonstrates an excellent agreement with this rule using
two different systems reflecting from an infinite wall. This
power-law convergence is slow in contrast to an exponential
convergence usually encountered for eigenvalues and other
structural observables as functions of truncation [28]. Here
we repeat our recent conjecture [12] that this is an inherent
property of reaction physics, where the kinetic energy operator
plays a major role in the Hamiltonian. The mentioned operator
discretized in coordinate space corresponds to a tri-diagonal
matrix that meets a set of criteria for the power-law conver-
gence [28].

In the course of our work we have vigorously tested the
∼1/|KN | convergence rule. While the rate of convergence,
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FIG. 21. Well or HO and wall. Convergence of the phase shift.
The log-log scale acts to accentuate a good agreement with the
∼1/|KN | convergence rule. The dashed straight lines represent
these rules. For the square-well intrinsic potential, KN ∼ N and
δ(N ) � δ − Ns/N , with δ = −23.05◦ and Ns = 11.3. For the HO,
KN ∼ √

N , so δ(N ) � δ − √
Ns/N , with δ = −22.98◦ and Ns =

53.4. For both cases the incident beam energy is halfway between the
energy of the ground state and that of the first excited state.

Ns , depends strongly on the type of system, we found no
exception from the power-law convergence.

VII. INTRINSIC POTENTIAL WITH
A CONTINUUM: BREAKUP

We conclude our exploration with a somewhat more
realistic situation where the intrinsic potential allows for a
breakup. We therefore consider a confining potential v(x) that
has both a bound state(s) and a continuum. In our discussion
here we study a particular confinement, namely, a finite square
well (“finite well”):

v(x) =
{

0 when |x| > λ.

−v otherwise. (47)

This allows one to capture the generic features of the problem,
while still having a small number of parameters and retaining
the ability to have analytic solutions, Eq. (5), for the intrin-
sic Hamiltonian. Realistic applications to three-dimensional
problems with other potentials are outside the scope of this
work.

In what follows we again select the units of length λ to
represent the width of the intrinsic potential as defined in
Eq. (47). The bound-state energies for the finite square-well
potential are given by the transcendental equation

tan
√

ε + v = ±
( −ε

v + ε

)±1/2

, (48)

where we remind the reader that v and ε are expressed in units
of ε [see Eq. (17)]. The ± sign corresponds to the intrinsic
parity P = ±1 of the state of interest. In addition to these
bound states, there is a continuum of states with positive
energies above the well.
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FIG. 22. (Color online) Finite well and δ-barrier. Convergence
of the transmission probability to its final value with truncation energy
(in units of ε) of virtual excitations. The well depth is v = 1 and the
incident kinetic energy is E = 0.2. Therefore, only the elastic channel
is open. Three of the four curves are labeled with the widths of the
quantization box, L = 15, 50, and100, used. These curves agree well
with the power-law convergence discussed in the previous section,
the fit for which is shown by the last curve (dashed green). The final
transmission probability value is 0.174.

To model such a situation mathematically we discretize
the spectrum using a quantization box of width 2L, and
hence the intrinsic wave functions ψn(x) are subject to a
boundary condition ψn(±L) = 0. The choice of a large enough
L can yield a spectrum that represents the continuum obtained
without the box. The large box allows for any finite potentials
v(x) to be considered.

To examine the appropriateness of the approach and to
address the potential concerns arising from the presence of the
continuum and its truncation, in Fig. 22 we show the calculated
transmission probability for such a system incident on a
δ-barrier. A depth of v = 1 was chosen for this example, thus
there is a single bound state at energy ε0 = −0.454, as follows
from Eq. (48), with an RMS size 1.17 of the wave function.
The incident kinetic energy of the center-of-mass motion is
assumed to be E = 0.2, which means that only the elastic
channel is open. Although there is not enough beam energy
for a breakup, the virtual channels are still important. In Fig. 22
we explore different box widths, L = 15, 50, and 100 (in units
of λ); the figure shows that the results are independent of L, if
it is large enough. (Note that with a large box width the density
of states in the continuum is high and therefore it is difficult
to include high-energy channels.) Even for the smallest box,
L = 15, the energy of the ground state differs from the exact
answer by only <0.05%. The breakup threshold is at 0.495,
which is slightly different from −ε0, mainly because the first
excited state (continuum threshold) in the box does not exactly
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FIG. 23. (Color online) Finite well and δ-barrier. Transmission
probability and phase shifts for scattering of a two-particle system
with an intrinsic potential that is finite and allows for breakup.
The potential is modeled by a square well of unit width and depth
v = 1. We concentrate on the region below the breakup threshold
of kinetic energy at 0.495 shown by the vertical grid line. Four
curves correspond to four mass ratios: µ1 = 0.3, 0.5, and 0.7 and the
noncomposite limit of 0 for which Eq. (44) is plotted. The δ-barrier
strength is assumed to be Eδ = 1. (a) Transmission probability; the
curve is continued above the breakup threshold to show the cusp at the
threshold. (b, c) Similar to those in Figs. 10 and 11, the phase shifts
δ+ and δ− as defined in Eq. (9). Note that their meaning as phase
shifts of the S-matrix is true only below the breakup threshold; above
the breakup these are arguments of the corresponding reflection and
transmission amplitudes.

coincide with zero energy. These differences are minor and
orders of magnitude smaller for L = 100.

Now that the appropriateness and validity of the approach
are established, we present the transmission probability and
both symmetric and antisymmetric phase shifts δ± as functions
of incident kinetic energy in Fig. 23 This figure concentrates on
the energy region below the breakup threshold. This situation is
important, because it is commonly encountered in practice. As
is clear from the graphs, the composite nature of the system and
the virtual continuum play a crucial role in shaping the reaction
process. We find that at very low energies, transmission is
inhibited for a composite particle. At higher energies close
to the breakup threshold, the transmission rate is always
enhanced. Moreover, this rate increases for an increasingly
heavy noninteracting particle. The role of the virtual channels
appears to be universal for all models that we investigated
(see also Figs. 6 and 8), where |T0|2 increases sharply near the
first threshold. The experiment in GANIL, as cited at the end
of Sec. V A2, proves tunneling enhancement for systems with
breakup also.

It is interesting to review the distribution of probability of
breakup into the continuum, when energetically possible. In
the continuum we can still separate the center-of-mass and the
relative kinetic energies. The relative kinetic energy is now
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FIG. 24. (Color online) Finite well and δ-barrier. Probability to
break up into a level ε in the continuum is plotted as a function
of ε. The intrinsic potential is modeled by a square well of unit
width and depth v = 1, as described in the text. The kinetic
energy of the incident wave is E = 2. The system interacts with
a δ-barrier of strength Eδ = 1 and then either scatters elastically
or breaks up into its constituents with relative energy ε. The three
curves correspond to three mass ratios: µ1 = 0.3, 0.5, and 0.7. The
corresponding probabilities for elastic scattering are 0.64, 0.60,
and 0.69, respectively, which complement the breakup probabilities
shown.

given by the discretized states in the box. Figure 24 shows the
normalized probability distribution for breakup with different
relative energies. The initial beam in this case corresponds to
a projectile in the ground state with kinetic energy E = 2.
Thus, the total kinetic energy of fragments after breakup is
E + ε0 − ε1 ≈ E + ε0 = 1.55, which is viewed as the sum of
two parts: the center-of-mass kinetic energy h̄ 2K2/(2M) and
the relative kinetic energy ε. As shown in Fig. 24, it is most
likely to have the two fragments moving together with very
little relative energy (peaks on left) or, inversely, moving apart
in opposite directions, with most of the energy concentrated in
the relative motion (peaks on right).

The choice of quantities plotted in Fig. 24 reflects our
method but is not very closely related to a potential experiment,
where the momenta or velocities of both particles could be
measured. Therefore in Fig. 25 we show the distribution of
probability to observe a certain combination of the particle
velocities v1 and v2. Because the total kinetic energy after
breakup is fixed,

1
2

(
m1v

2
1 + m2v

2
2

) = E + ε0, (49)

it is sufficient to use a single angle to parametrize the position
on the ellipse formed in the velocity v1, v2) plane. In Fig. 25
we show the probability as a function of angle using a contour
plot. Both Fig. 24 and 25 have been smoothed but preserve the
general shapes that we believe to be good representations of
the physics. Some of the features shown in Fig. 24 become
more transparent in Fig. 25. For all mass ratios we see
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FIG. 25. (Color online) Finite well and δ-barrier. The system
and scattering conditions are the same as in Fig. 24. The system
interacts with the δ-barrier and then either scatters elastically or breaks
up into its constituents with momenta v1 and v2. Breakup probability,
as a function of velocities v1 and v2, is plotted as a contour graph.
Owing to Eq. (49) the points representing the possible velocity values
lie on an ellipse in the v1, v2 plane and are parametrized by a single
angle. The contour plot shows the probability of breakup (radial
coordinate) as a function of this angle.

that the probability peaks at about −45◦, which corresponds
to noninteracting particle 1 moving forward and interacting
particle 2 being reflected back at velocities nearly equal in
magnitude and opposite in direction. For equal masses the
peak at low relative kinetic energies in Fig. 24 appears as
two peaks in Fig. 25, at about 45◦ and −135◦. In both cases
the particles move at similar velocities, forward for 45◦ and
backward for −135◦. The observed picture appears to be quite
intuitive.

VIII. SUMMARY AND CONCLUSIONS

In this work we revisit some of the most intricate questions
of reaction physics involving composite objects. The research
presented here was inspired by the highly unpredictable be-
havior of reaction observables including resonances and cusp
discontinuities,the very broad spectrum of scales involved,
and, at the same time, the utmost importance of these processes
in nuclear physics and other fields.

The topic of reactions involving composite objects is widely
investigated and benefits from many advanced methods and
techniques. Our work got its thrust from the simple and
well-defined problem of a deuteron-like system interacting
in one dimension with an infinite Coulomb wall. A number
of methods tried, in the past, to examine this problem have
failed in certain circumstances, namely, where approximations
or simplifications commonly used were not appropriate for
this particular problem, or where the method did not produce
convergent results, or where there were difficulties with
numerical errors. Owing to the delicate nature of the problem,
we find exact solutions to all the examples considered in this
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work. This allows us to obtain comprehensive answers and
to be able to carry out comparisons with other methods and
solutions.

This goal requires us to have a precisely defined Hamilto-
nian with as few parameters as possible and conditions that
perhaps are more critical to reaction-structure interplay than
those typically encountered in nature. In this presentation we
restrict our discussion to models. Nevertheless, our methods
have broad applicability; most examples can be modified
easily to represent realistic situations, and we continuously
suggest cases in nature that are similar to what we discuss. We
study, through this work, a two-particle system interacting in a
one-dimensional scattering with a target that poses a δ potential
or an infinite wall potential. It is always assumed that only one
of the two components interacts with the target. The study
includes models that do allow the projectile to break up and
models that do not. The dominant and nonperturbative role of
the virtual channels that extend far in excitation energy is the
main common theme of all the examples discussed here.

We start by revisiting the “deuteron and Coulomb-wall,”
model which has been discussed for almost a decade, with little
outcome [23,24,29]. Unfortunately, this problem is commonly
dismissed either at first glance, when it seems uninteresting, or
after some investigation, when it seems unphysical, ill defined,
or unsolvable. We, in contrast, find this model remarkable in
its ability to demonstrate, in an extremely transparent manner,
the dynamics driven by the virtual excitations.

We review, and carefully apply, the technique of projecting
the reaction dynamics onto an intrinsic space and show that,
while satisfactory results are obtained in some limits, this
formally exact approach does not yield convergent solutions in
general. This is an important finding because this “projection
method” is a prototype of several commonly used approaches
in many-body problems that involve both structure and
reactions [25,26].

As our main workhorse we utilize the variable phase
method (VPM) to address the coupled-channel problems of
interest. While the method has been used by others before,
we modify and extend it to treat highly remote virtual
channels. We demonstrate that the VPM produces reliable
and convergent results. We investigate the contributions
from remote virtual excitations, study convergence with the

truncation size, and find the power-law convergence, which is
in contrast to the exponential convergence seen in many-body
structure problems [28].

Within a given set of models, this work contains numerous
examples, investigations, and demonstrations. Cusps and
discontinuities appear in observables as manifestations of
conservation of probability and redistribution of flux at the
thresholds. Intrinsic structure gives rise to resonance-like
behavior in tunneling probabilities; our models and recent
experimental evidence indicate a generic enhancement of
transmission probabilities owing to virtual channels or a virtual
continuum, whichever is the case. We explore and discuss
the role of virtual excitations at very low energies, showing
that even in those cases the scattering length is sensitive to
the projectile’s structure. Owing to the intrinsic structure and
its coupling to reaction dynamics, the scattering length can
become infinite, a phenomenon known as Feshbach resonance.
We demonstrate how the intrinsic structure violates charge
symmetry, which is called the Barkas effect. The scattering
of a noncomposite projectile off a δ-barrier is the same for
attractive and repulsive interactions. But in the case of a
composite projectile, the corresponding three-body problem
for an attractive potential is quite different from that for a
repulsive barrier and reveals numerous resonances, some of
which can be understood as bound states built on individual
intrinsic excitations involving two-body subsystems.

Scattering and breakup dynamics influenced by a virtual
continuum are also investigated in this work. It is seen that the
most probable breakups take place where either almost all the
kinetic energy is relative or almost all of it is in the center of
mass.
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