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Disentangling effects of potential shape in the fission rate of heated nuclei
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We have compared the results of dynamical modeling of the fission process with predictions of the Kramers
formulas. For the case of large dissipation, there are two of them: the integral rate RI and its approximation RO .
As the ratio of the fission barrier height Bf to the temperature T reaches 4, any analytical rate is expected to agree
with the dynamical quasistationary rate RD within 2%. The latter has been obtained using numerical modeling
with six different potentials. It has been found that the difference between RO and RD sometimes exceeds 20%.
The features of the potentials used that are responsible for this disagreement are identified and studied. It is
demonstrated that it is RI , not RO , that meets this expectation regardless of the potential used.
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I. INTRODUCTION

The statistical model of the fission process was first
introduced by Bohr and Wheeler in Ref. [1]. Soon afterward,
Kramers derived several formulas for the fission rate, which
included the strength of dissipation corresponding to the
nuclear collective motion [2]. One of the formulas and its
modifications, sometimes incorporating the Bohr-Wheeler for-
mula, are widely used in modern dissipative statistical models
of fission accompanied by light particle emission [3–8]. An
alternative way of modeling the process relies on solving
numerically the stochastic differential equations [9,10]. These
equations allow us to obtain the quasistationary fission
rate RD . Both the Kramers and the dynamical approaches are
based on the picture of Brownian motion. The latter method
is more accurate but very computer-time-consuming. That is
why the combined dynamical-statistical models have been
developed [9,10] and are being used widely at present [11–20].
In these models, after a certain delay time, the dynamical
modeling is matched to the statistical description. In the latter,
a Kramers fission rate is used, implying that the rate agrees
approximately with RD .

The difference between the Kramers fission rates and RD

was shown to reach approximately 20% [21–23]. Let us note
that this level of disagreement persists if the peculiarities of the
nuclear fission problem related to the microcanonical character
of the ensemble are accounted for. Otherwise, the disagreement
reaches an order of magnitude (see, e.g., Fig. 7(a) of Ref. [21]).

The discrepancy of 20% was acceptable 20 years ago.
Nowadays, there are at least three circumstances that require a
more accurate analytical description of the fission rate. First,
it was shown [24] that the quantum correction to the Kramers
formula was of the order of 10%. Second, the contribution of
the memory (non-Markovian) effects may be comparable with
the first one [25,26]. The third effect is the multidimensionality
of the fission process (see Ref. [27] for details).

The fission rate is crucial for calculating the values of
physical observables. For example, if neutron emission is the
only channel competing with fission, the first-chance fission
probability Pf can be estimated within the framework of the
statistical approach: Pf = (1 + RnR

−1
fis )−1. Here Rn and Rfis

denote the neutron emission and fission rates, respectively.

It is easy to see that the 20% relative error in Rfis results in
the 20% and 10% relative errors in Pf provided Rn � Rfis
and Rn = Rfis, respectively. This should be compared with the
5%–10% accuracy reached in the modern measurements of
fission probabilities or fission cross sections. Here, we no
longer concentrate on the physical observables along the lines
of Refs. [27–29].

Many aspects of the problem may be responsible for the
significant difference between the Kramers rates and RD , for
example, the deformation dependence of the friction (inertia)
tensor and of the single-particle level density parameter a,
the approximations made in the derivation of the Kramers
formulas, and the nonharmonic character of the collective
potential. The aims of the present study are as follows: (i) to
disentangle the effects of the potential shape in the accuracy
of the Kramers formulas, and (ii) to find the conditions under
which the discrepancy between RD and an analytical fission
rate is reduced to about 2%. This value is comparable with the
statistical errors of RD achievable during a reasonable amount
of computer modeling.

In order to reduce the uncertainties related to all other
parameters but the potential shape, the one-dimensional
overdamped motion of a Brownian particle representing the
fission process is considered. Moreover, the friction and inertia
parameters as well as the level density parameter are assumed
to be deformation-independent. These are serious restrictions,
which, however, are still being used in modern studies [23],
[28–30]. In the future, based on the understanding obtained,
we plan to consider more realistic situations.

II. DYNAMICAL MODELING

We restrict ourselves to the symmetric fission at zero
angular momentum. The shape of the nucleus is characterized
by the collective coordinate q, which is equal to half the
distance between mass centers of the nascent fragments
over the radius of the spherical nucleus. The corresponding
conjugate momentum is denoted by p. Initially all the nuclei
are assumed to be concentrated at qqs = 0.375 at p = 0,
and the saddle and scission points are located at qsd = 1.2
and qsc = 3.0, respectively. We deliberately position the
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FIG. 1. Fission rates obtained on the basis of dynamical modeling (Rf , lines with open circles) using Eq. (1) with different types of potential
(for details, see Sec. IV). One sees the typical behavior of the fission rates reaching their quasistationary values after the relaxation stage. In
each panel, the integral Kramers rate RI [Eq. (3)] is shown by the thick horizontal line with an open triangle, whereas the RO [Eq. (4)] is
displayed by the thin horizontal line with a full circle. In panel (e), RO4 [Eq. (13)] instead of RO is presented. Etot = 150 MeV, Bf /T = 1.95.

quasistationary, saddle, and scission points far from each other
to eliminate the possible influence of the distance between
them on our results.

Within our approximations, the nuclear collective motion is
modeled using the Euler scheme for the stochastic (Langevin)
equation [9,23]

qn+1 = qn − τ

η

(
dU

dq

)
n

+ bn

√
T τ

η
. (1)

Here the friction parameter η is related to the damping
coefficient β and to the inertia parameter m, η = βm; τ is
the time step of dynamical modeling and bn is a Gaussian
random number with a variance of 2. The temperature T is
calculated using the Fermi-gas relation, T = √

Etot/a, and is
supposed to be deformation-independent. Earlier (see [31] and
references therein), the deformation dependence of η, m, a, and
T was accounted for, but it did not allow us to disentangle the
influence of the potential shape on the difference between the
Kramers rates and RD . Since η and τ enter into Eq. (1) only as
the ratio η/τ , it is sufficient to perform the modeling for one
value of the damping coefficient, and β = 10 zs−1 has been
chosen. The height of the fission barrier for all calculations of
this paper was Bf = 5.35 MeV.

Within the framework of the Langevin formalism, the time-
dependent fission rate Rf can be calculated by counting the
number of trajectories Nf that reach the scission point before
the time moment t ,

Rf (t) = 1

Ntot − Nf (t)

dNf (t)

dt
, (2)

where Ntot is the total number of trajectories modeled.

Typical fission rates are shown in Fig. 1 for the six different
potentials that are discussed in Sec. IV. The excitation energy is
Etot = 150 MeV in these calculations. After a transient stage,
each Rf (t) reaches its quasistationary value RD . The time step
of modeling τ = 0.05 zs is typically used. In every case, from
from 105 up to 3 × 105 fissioned trajectories are obtained.

RD is calculated by averaging Rf over the last 20–30
bins. If the interval of averaging is chosen correctly, RD does
not depend on how many bins are accounted for; it changes
within the statistical error. One can see that in the case of the
H potential [Fig. 1(a)], the interval between 200 and 500 zs
can be taken for this procedure. The same time interval is
suitable for the cases of the W, P, and A potentials [Figs. 1(c)–
1(e)]. In the case of the C potential [Fig. 1(b)], such an
interval results in the wrong value of RD since Rf reaches
its quasistationary value significantly later. RD is the most
important characteristic of the fission process. This is the very
value with which we compare the analytical rates in the rest
of the paper.

III. ANALYTICAL FORMULAS FOR THE
QUASISTATIONARY FISSION RATES AND

REPRESENTATION OF THE RESULTS

The Kramers formulas, the accuracy of which we are study-
ing by means of comparison with the dynamical modeling,
read

RI = T

η

[∫ qsd

−∞
exp

(
−U (y)

T

)
dy

∫ qsc

qqs

exp

(
U (x)

T

)
dx

]−1

,

(3)

064606-2



DISENTANGLING EFFECTS OF POTENTIAL SHAPE IN . . . PHYSICAL REVIEW C 82, 064606 (2010)

RO = ωqsωsd

2πβ
exp

(
−Bf

T

)
. (4)

Here, Bf stands for the fission barrier height, and ωqs =√
Cqs/m and ωsd = √

Csd/m are the absolute values of
the angular frequencies of the collective motion around
the maximum (the saddle point) and the minimum (the
quasistationary point) of the potential energy. Equation (3)
is supposed to be valid if (i) the fission barrier is high enough
compared to the temperature and (ii) β is large enough, that
is, β � max(ωqs, ωsd ). Equation (4) results from Eq. (3) after
extending the limits of integration qsd , qsc to plus infinity, qqs

to minus infinity, and expanding the potential energy in the in-
tegrands up to the quadratic terms in y − qqs and x − qsd . Thus
Eq. (4) is valid under the following additional requirements:
(iii) The scission point is far enough from the saddle point
(this makes it possible to substitute the qsc by plus infinity)
and (iv) the potential U (q) is represented near its extremes
by two quadratic parabolas with stiffnesses Cqs and Csd .

The most familiar Kramers rate widely quoted by the
nuclear fission community (see, e.g., [3,7,8,10]) reads

RK = ωqs

2πωsd

(√
ω2

sd + β2

4
− β

2

)
exp

(
−Bf

T

)
. (5)

We do not use Eq. (5) in this paper and thus we do not
discuss the limits of its applicability. Note, however, that
Eq. (4) results from Eq. (5) if (ii) holds.

In the original Kramers paper [2], Eq. (3) was not written
explicitly; it was implied. This is probably why RI , to the best
of our knowledge, was not used earlier in the literature to model
the fission process. Equation (3) resembles the formula for the
inverse mean first passage time, RMFPT, which is discussed
in detail in Refs. [9,21,28]. However, RMFPT contains double
integration whereas RI is a product of two decoupled integrals.
That is why we discuss here only RI , but not RMFPT. Note that
in the literature, most often Eqs. (5) or (4) are used and are
called Kramers formulas.

Of the two Kramers fission rates, RI and RO , the former is
expected to agree better with RD . We have calculated the three
fission rates at values of excitation energy ranging from 9 up
to 270 MeV. The rates versus Etot are shown in Fig. 2. They
cover three orders of magnitude and are hardly distinguishable.

FIG. 2. The fission rates vs excitation energy. The W potential is
used (see Sec. IV C for details). The thick solid line corresponds to
RD , full circles indicate RO , and RI is shown by open triangles.

Therefore, it is convenient to characterize the deviation of a
fission rate Ri from another rate Rj (both calculated with the
same potential) by means of the fractional difference

ξij = Ri − Rj

Rj

. (6)

These are the ξij values that are shown in the following
figures. However, the discussion is presented in terms of the
rates themselves. For example, ξOD = 5% means that the
Kramers rate of Eq. (4) exceeds the dynamical quasistationary
fission rate by 5%.

IV. THE NUMERICAL FISSION RATES VERSUS
THE ANALYTICAL RATES

A. The two-quadratic-parabolas potential with
equal stiffnesses (H potential)

This potential is shown in Fig. 3(a) by a thick line with
triangles and is referred to later as the H (harmonic) potential. It
has been used in many articles (see, e.g., Refs. [25,28,32–35]).
The H potential reads

UH (q) =

⎧⎪⎨
⎪⎩

Cqs

2
(q − qqs)

2, q < qm,

−Csd

2
(q − qsd )2 + Bf , q > qm.

(7)

Here Cqs and Csd are the stiffnesses of the potential near
the quasistationary and saddle points, respectively, and qm

FIG. 3. (a) The H potential (thick line with triangles) and the
quadratic parabolas approximating it near the extreme points (thin
lines with circles) vs q. (b) The fractional differences ξID (open
triangles) and ξOD (full circles) vs ε = Bf

/
T . The 2% interval near

zero is shown by thin horizontal lines.
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is the matching point. The H potential stretches into the
region of negative-q values that has no physical meaning
for the fission process. However, this potential corresponds
best to the assumptions under which the Kramers formula (4)
was derived. In this subsection, Cqs = Csd = 31.44 MeV and
consequently ωqs = ωsd ; later the case ωqs �= ωsd is studied
(see Sec. IV F). Along with the H potential, in Fig. 3(a) the
quadratic parabolas from which it is constructed are displayed
by thin lines with full circles.

RI and RO are expected to agree with the “true” fission rate
if ε = Bf T −1 becomes large enough. In Ref. [35] it was shown
that RK of Eq. (5) agreed well with RD even in the case ε = 1.
However, no quantitative analysis was performed in that work.
Therefore, we present in Fig. 3(b) the fractional differences ξID

(triangles) and ξOD (circles) versus the parameter ε. Since RO

has been derived from the integral Kramers rate RI , the latter
is supposed to agree better with RD . However, the opposite
is seen in Fig. 3(b). This seems to be due to occasional
compensation for the inaccuracies made in the derivation of
Eq. (4) from Eq. (3). The mutual layout of ξID and ξOD can
be explained as follows.

As already mentioned, Eq. (4) results from Eq. (3) if one
makes an expansion of the potential energy in the exponents
up to quadratic terms in (y − qqs) (the left integral) and in
(qsd − x) (the right integral). In addition, all the upper limits of
integration are changed to plus infinity, whereas minus infinity
is used as the lower limits:

RO = T

η

[∫ +∞

−∞
exp

(
−Cqsy

2

2T

)
dy

×
∫ +∞

−∞
exp

(
2Bf − Csdx

2

2T

)
dx

]−1

. (8)

One can think that the expansion does not change anything
since the potential is made of the two quadratic parabolas.
This would be the case if the integration were performed near
the parabolas’ extremes. However, in both integrals the limits
of integration enter the neighboring parabola. Thus both the
expansion of U (q) and the extension of the integral limits
are significant. Figure 4 illustrates the influence of these two
factors. Here the integrands of Eqs. (3) and (8) are displayed
as functions of the integration variable. Shown in panels (a)
and (b) are the integrands of the left and right integrals,
respectively. The thick lines with open triangles correspond
to Eq. (3), whereas the thin lines with full circles are for
Eq. (8). In each panel of Fig. 4 near the limits of integration
in Eq. (3), its integrand is orders of magnitude larger than the
one in Eq. (8). The extension of the limits of integration does
not compensate for this effect. The larger integrands result in
RI < RO , which is seen in Fig. 3.

To conclude this subsection, let us note that the fractional
difference ξID enters the region ±2 % at the value of ε of about
3.5 − 4.0 [exp(−4) = 0.018].

B. The cosine potential (C potential)

Of course the shapes of the well and the barrier are not
necessarily parabolic. Therefore, we have made calculations

FIG. 4. (a) The integrands of the left integrals used to calculate
RO [Eq. (8), thin line with full circles] and RI [Eq. (3), thick line with
open triangles] are shown as functions of q. The vertical line indicates
the finite limit of integration in RI (the saddle-point coordinate).
(b) The curves are the same as in the upper panel but for the right
integrals. The vertical line indicates the interior limit of the right
integral in Eq. (3) (the quasistationary-state coordinate).

using the cosine potential (C potential) of Ref. [36],

UC(q) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Bf

2

(
1 − π

2
− α

)
if α < −π

2
,

Bf

2
(1 − cos α) if − π

2
� α <

3π

2
,

Bf

2

(
1 − α + 3π

2

)
if α � 3π

2
.

(9)

Here, α = π (q − qqs)(qsd − qqs)−1, and the frequencies
entering Eq. (4) are fully defined by Bf and qsd − qqs . The
C potential and the resulting ξOD and ξID are shown in Fig. 5,
which is designed exactly like Fig. 3. The value of ξOD is far
from zero, confirming that in the case of the H potential the
acceptable agreement between RO and RD is purely accidental.

Let us now discuss the difference between RO and RI .
Equation (4) accounts for only the two quadratic parabolas
approximating the C potential near its extremes. The quadratic
parabolas have stiffnesses 38.79 MeV and they are shown in
Fig. 5(a) by thin lines with circles. The upright parabola clearly
contains fewer collective states than the quasistationary well
of the C potential itself. This results in RO > RI . The inverted
parabola presents the barrier, which is obviously thinner than
that of the C potential. This again enhances RO in comparison
with RI . Another way to explain the relation between these
rates is similar to the discussion concerning Fig. 4.

Comparing Fig. 3(b) and 5(b), we are forced to conclude
that Eq. (4) should be used with care. Moreover, only at ε
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FIG. 5. Same as Fig. 3 but for the C potential.

larger than 3.5 does RI agree with RD to within 2%, exactly
as happens in the case of the H potential.

C. The two-quadratic-parabolas potential with identical
stiffnesses plus a wall (W potential)

Of course, the distance between the mass centers of the
nascent fragments cannot be negative. This is also true for
chemical applications (dissociation or association) where the
distance between the ions or molecules must be positive.
The potential that accounts for this requirement and keeps
the advantages of the H one, namely the W potential, is again
constructed of the two smoothly matched quadratic parabolas
but is supplemented by an exponential wall preventing Brow-
nian particles from coming into the unphysical region q < 0,

UW (q)

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Cqs

2
(q − qqs)

2 + exp[100(qqs − q)3] − 1, q < qqs,

Cqs

2
(q − qqs)

2, qqs � q < qm,

−Csd

2
(q − qsd )2 + Bf , q � qm.

(10)

The W potential is illustrated by Fig. 6(a). The quadratic
parabolas on which it is based are also shown here as in
Figs. 3(a) and 5(a) (Cqs = Csd = 31.44 MeV). The resulting
values of ξOD and ξID are presented in Fig. 6(b); both are
negative for all values of the parameter ε. This means that the
dynamical rate is larger than the analytical ones. Moreover,
ξOD lies below ξID by about 17%. Consequently, the integral
Kramers rate RI is significantly larger than RO . The latter does
not agree with RD at any studied values of ε [recall that ε � 1
is the prerequisite for Eqs. (3) and (4) to be valid]. However,

FIG. 6. Same as Figs. 3 and 5 but for the W potential.

RI reaches the accepted agreement with the dynamical rate for
large values of ε, as expected.

The low values of RO are explained by the larger number
of states contained in the upright quadratic parabola, similar
to the way it was done in Sec. IV B. The value of ε at which
ξID agrees with zero within 2% is again the same as in two
previous cases.

Of all the discussed potentials, the W potential is the closest
to the realistic case (e.g., to the finite range model). Thus there
is no doubt that RO should not be used in dissipative statistical
models like [8] unless one accepts about a 20% inaccuracy in
the fission rate.

D. The fifth-order polynomial potential (P potential)

All the potentials considered previously are piece-
continuous potentials. Therefore, the corresponding forces
entering Eq. (1) possess the kinks. One may suspect the kink
to be the cause of the inaccuracy of Eq. (4). Therefore, in
this subsection we study one more case corresponding to the
fifth-order polynomial potential (P potential), which is used in
Refs. [23,29,37,38]. It reads

UP (q) = Q1

5∑
i=1

di

qi

i
+ Q2. (11)

Here

d1 = q0q1q2q3,

d2 = −q0q1q2 − q0q2q3 − q0q1q3 − q1q2q3,

d3 = q0q1 + q0q2 + q0q3 + q1q2 + q1q3 + +q3q2,

d4 = −q0 − q1 − q2 − q3,

d5 = 1.

064606-5



I. I. GONTCHAR et al. PHYSICAL REVIEW C 82, 064606 (2010)

FIG. 7. Same as Figs. 3, 5, and 6 but for the P potential.

The values of the parameters are q0 = qqs = 0.375, q1 =
qsd = 1.2, q2 = 6, q3 = 7, Q1 = −1.7635 MeV, and Q2 =
5.397 MeV, which results in Bf = 5.35 MeV. The stiffnesses
of the quadratic parabolas approximating the P potential near
the quasistationary and saddle points are somewhat different:
Cqs = 54.22 MeV, Csd = 40.50 MeV. The P potential and the
corresponding quadratic parabolas are presented in Fig. 7(a),
whereas the resulting fractional differences ξOD and ξID are
displayed in Fig. 7(b) (Fig. 7 is completely analogous to 3, 5,
and 6, and the notations are the same).

Ironically, RO agrees better with RD at higher temperatures
(low values of ε), where it should not do so. No values of
ξOD within 2% are reached in our calculations. Yet ξID enters
the 2% stripe at the same value of ε ≈ 3.5 − 4.0 as in the
three previous cases. The qualitative explanation of the relation
between ξID and ξOD is as follows.

In Fig. 7(a), the left branch of the approximating upright
quadratic parabola is flatter than the P potential itself. In this
sense, the situation resembles the case of the W potential.
Thus ξOD is expected to be lower than ξID . However, the
right branch of the upright parabola in Fig. 7(a) is steeper than
the potential. This corresponds rather to the situation with
the C potential resulting in the opposite layout of the relative
differences. Intuitively, one expects that the “way” from the
quasistationary state to the saddle point is more important than
the random walks of the Brownian particle to the left of qqs

and to the right of qsd . Finally, ξOD > ξID in Fig. 7(b) seems
to be understood as it is in Fig. 5(b).

E. The quartic-parabolas potential (A potential)

It is interesting to check the agreement between RI and
RD for the potential with zero second derivatives near the
quasistationary and the saddle states when Eqs. (4) and (8) are
not applicable. Therefore, we perform calculations with the

FIG. 8. Same as Figs. 3 and 5–7 but for the A potential. The ξO4D

is calculated using Eq. (13).

potential that reads

UA(q) =

⎧⎪⎨
⎪⎩

kqs

4
(q − qqs)

4, q < qm,

−ksd

4
(q − qsd )4 + Bf , q > qm,

(12)

which is the anharmonic A potential. It is shown in Fig. 8(a) by
the thick line, whereas the thin lines represent its components.
This figure corresponds with kqs = ksd = 370 MeV.

The structure of the A-potential formula is very similar to
that of the H potential. Thus it is expected that the formula
analogous to Eq. (4) might be obtained from Eq. (3) in the
same way. The expansion of U (q) should be performed up to
the fourth-order terms in this case. Finally, we have

RO4 = 2(kqsksd )1/4

η 	2(1/4)

√
T exp

(
−Bf

T

)
, (13)

where 	(1/4) = 3.62561 is the gamma function.
The resulting fractional differences ξO4D and ξID are shown

in Fig. 7(b). The ξO4D falls into the 2% interval near zero for
ε > 4, whereas ξID surprisingly enters this interval within the
accuracy for all investigated values of ε. At the moment we
are not able to explain why RI agrees with RD for ε ≈ 1.
However, we understand the relative position of ξID and ξO4D

in the same way as we do in the case of the H potential.

F. The two-quadratic-parabolas potential with different
stiffnesses (H� potential)

The P potential possesses a property that the H, C, and
W potentials do not have. Namely, its stiffnesses at the
quasistationary state and at the saddle point are different. It
is natural to expect that a realistic potential calculated using
the liquid drop model or the finite-range model possesses
different stiffnesses as well. For instance, in the work [34],
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FIG. 9. Same as Figs. 3 and 5–7 but for the H
 potential with
different stiffnesses of quadratic parabolas near quasistationary and
saddle states: Cqs/Csd = 4.

the stiffnesses of the potential differ by a factor of 2.
For this reason, we present in this section results of the
calculations for the two-quadratic-parabolas potential having
different stiffnesses (
 = Cqs/Csd = 4, Csd = 19.65 MeV).
This potential (the H
 potential) is shown in Fig. 9(a). In
Fig. 9(b), the resulting fractional differences ξOD and ξID are
presented.

From this figure, one can see that RI agrees with RD

significantly better than RO does. The ξID gets into the
2% interval near zero starting from ε ≈ 3.5 as it does for
most of the potentials discussed earlier. This supports our
presumption that an acceptable agreement of RO with RD for
the two-quadratic-parabolas potential with equal stiffnesses
(Sec. IV A) is pure random. It is the only case of all the
investigated potentials in which RO is closer to the dynamical
rate than RI . If Cqs �= Csd , this agreement is destroyed.

For all the potentials considered, the ξID becomes negative
at low values of ε. This can be explained in the following way.
Equation (3) implies equilibrium distribution of the Brownian
particles inside the potential well, ρeq ∼ exp(−U/T ). In fact,
the distribution differs from the equilibrium one due to the

probability current over the barrier [see, e.g., Fig. 7(b) of
Ref. [21]]. The real (i.e., dynamically modeled) probability
density ρD is very close to ρeq in the vicinity of the potential
minimum, but it lies below ρeq near the fission barrier. The
smaller the value of the parameter ε, the larger is the difference
ρeq − ρD . That is why Eq. (3) underestimates the fission rate
in comparison to the dynamical calculation (RI < RD).

V. CONCLUSIONS

The problem of the accuracy of the Kramers formulas for
the fission rate of heated nuclei was not often addressed in
the past. In several calculations, a difference of up to 20% was
revealed but the reasons were not identified [21]. Now we have
made some progress, which can be summarized as follows.

The integral Kramers rate of Eq. (3), RI , is applied to
describe the fission process. Six somewhat different profiles
of the fission barriers are studied. The RI is shown to agree
with the long-time limit of the dynamical rate, RD , within 2%
as the barrier height becomes about four times larger than
the temperature. The amount of agreement is not affected
by the barrier shape. The error within 2% is to be expected
since the accuracy of the Kramers approach is of the order of
exp(−Bf T −1).

The rate that is obtained from RI by the use of the quadratic
approximation and the infinite limits for the integrals, RO ,
agrees with RD only in the case of the two-quadratic-parabolas
potential with equal stiffnesses that allows for an unphysical
negative distance between the fission fragment centers. This
seems to happen because of mutual cancellation of the errors.
Curiously, this is the only potential for which a detailed study
of the problem under consideration has been performed in the
past (see Ref. [35]).

In the present paper for the five other potentials considered,
RO typically differs from RD by more than 5%. In particular,
ξOD = (RO − RD)R−1

D is about −20% for Bf T −1 > 7 for
the W potential, which is the closest to the realistic one.
This 20% is comparable to the non-Markovian, quantum, and
multidimensional effects that are presently being studied in
the literature.

Analyzing all the results, we are forced to conclude the
following: there is no doubt that RO should not be used in
dissipative statistical models like [8] unless one accepts about a
20% uncontrolled inaccuracy in the fission rate. An expression
similar to RI should be used instead.
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