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In the framework of relativistic mean field (RMF) theory, we have calculated the density distribution of
protons and neutrons for 40,42,44,48Ca with NL3 and G2 parameter sets. The microscopic proton-nucleus optical
potentials for p + 40,42,44,48Ca systems are evaluated from the Dirac nucleon-nucleon scattering amplitude and
the density of the target nucleus using relativistic-Love-Franey and McNeil-Ray-Wallace parametrizations. We
have estimated the scattering observables, such as the elastic differential scattering cross section, analyzing power
and the spin observables with the relativistic impulse approximation (RIA). The results have been compared with
the experimental data for a few selective cases and we find that the use of density as well as the scattering matrix
parametrizations are crucial for the theoretical prediction.
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I. INTRODUCTION

The study of nuclear reactions is a challenging subject of
nuclear physics both in theory and in the laboratory. This
is useful to explain the nuclear structure of stable as well
as exotic nuclei. The nucleon-nucleus interaction provides a
wide source of information to determine the nuclear structure
including spin, isospin, momenta, and densities, and gives
a clear path toward the formation of exotic nuclei in the
laboratory. In this context the study of elastic scattering of
the nucleon-nucleus interaction is more interesting than that
of the nucleus-nucleus interaction at different energies. One
of the theoretical methods to study this type of reaction is the
relativistic impulse approximation (RIA). It is a microscopic
theory where the Dirac optical potential is constructed from
the Lorentz invariant nucleon-nucleon (NN) amplitudes ob-
tained from relativistic meson exchange models. The basic
ingredients in this approach are the NN scattering amplitude
and the nuclear scalar and vector densities [1] of the target
nucleus. This approach can be extended to elastic scattering of
composite particles [2]. In this context proton-nucleus (p-A)
elastic scattering is of particular interest because of its relative
simplicity with which it provides a satisfactory description of
the reaction dynamics.

One useful application of RIA is to generate a microscopic
optical potential to study the elastic and inelastic scattering
of nucleons for unstable proton- and/or neutron-rich nuclei.
The RIA folding procedure can also be extended to calculate
microscopic optical potentials for exotic nuclei using the
relativistic mean field formalism [3,4].

The first theoretical introduction to elastic scattering was
given by Chew [5] almost six decades ago. For a wide range
of energy intervals, impulse approximation (IA) produces
the main qualitative description on quasielastic scattering
for A � 64 nuclei [6]. During the same time, Glauber [7]
studied the reaction dynamics of the composite system at low
energies, but one cannot predict the extension of quasielastic
scattering using this model. Further, the generalized Glauber
formula and the unitarized impulse approximation [8,9] were

circumvented. But the development of RIA opens a path to
study the above-mentioned scattering phenomenon for both
the elastic and the quasielastic particles. This field of research
was further strengthened by the experimental evidences of
cross-section and analyzing power for the scattering systems−→p + 12C, p + 9B, and p + 16O at 200 MeV, which were
measured over a wide range of momentum transfer >6 fm−1

at IUCF [10,11]. Recent studies of proton nucleus elastic
scattering within the modified (Coulomb) Glauber model
[12,13] and the global Dirac optical potential [14] have
motivated us to study the elastic scattering phenomenon. For
convenience, we consider Ca isotopes as targets and p as
a projectiles, because Ca satisfies the relativistic mean field
nuclear structure model accurately without recoil correction
to the Dirac scattering equation.

In the present paper, our aim is to calculate the nucleon-
nucleus elastic differential scattering cross section ( dσ

d�
) and

other related physical quantities such as optical potential
(Uopt), analyzing power (Ay), and spin rotation parameter
(Q value) using relativistic mean field (RMF) and the recently
proposed effective field theory motivated relativistic mean field
(ERMF) densities. These are obtained from the successful NL3
[15] and the advanced G2 [16] parameter sets, which are given
in Sec. II. In Secs. III and IV, the details of target densities
folded with the NN amplitude for various energetic proton
projectiles with the relativistic-Love-Franey (RLF) [17,18]
and McNeil-Ray-Wallace (MRW) parametrizations [19] for
40,42,44,48Ca are given. In these sections we have outlined the
expressions for the differential elastic scattering cross section,
analyzing power, and spin observables. Section V describes
the results obtained from our calculations. Finally, a brief sum-
mary and conclusions are given in Sec. VI for the present work.

II. RMF AND ERMF FORMALISMS

A documentation of RMF and ERMF formalisms are
available in Refs. [20] and [16,21], respectively, for both
finite and infinite nuclear matter. Here only the energy density
functional and associated expressions for the densities are
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presented [22,23]:
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where the index α runs over all occupied states ϕα(r) of the
positive energy spectrum, � ≡ gsφ0(r), W ≡ gvV0(r), R ≡
gρb0(r), and A ≡ eA0(r).

The terms with gγ , λ, βs , and βv take care of the effects
related with the electromagnetic structure of the pion and
the nucleon (see Ref. [23]). Specifically, the constant gγ

concerns the coupling of the photon to the pions and the
nucleons through the exchange of neutral vector mesons.
The experimental value is g2

γ /4π = 2.0. The constant λ is
needed to reproduce the magnetic moments of the nucleons,
defined by

λ = 1
2λp(1 + τ3) + 1

2λn(1 − τ3), (2)

with λp = 1.793 and λn = −1.913 being the anomalous
magnetic moments of the proton and the neutron, respectively.
The terms with βs and βv contribute to the charge radii of the
nucleon [23].

The energy density contains tensor couplings, scalar-
vector, and vector-vector meson interactions in addition to the
standard scalar self-interactions κ3 and κ4. Thus the ERMF
formalism can be interpreted as a covariant formulation of
density functional theory as it contains all the higher order
terms in the Lagrangian, obtained by expanding it in powers
of the meson fields. The terms in the Lagrangian are kept
finite by adjusting the parameters. Further insight into the
concepts of the ERMF model can be obtained from Ref. [23].
It may be noted that the standard RMF Lagrangian is obtained
from that of the ERMF by ignoring the vector-vector and
scalar-vector cross interactions, and hence does not need a
separate discussion.

In each of the two formalisms (ERMF and RMF), the set of
coupled equations are solved numerically by a self-consistent
iteration method. The baryon, scalar, isovector, proton, and
tensor densities are

ρ(r) =
∑

α

ϕ†
α(r)ϕα(r), (3)

ρs(r) =
∑

α

ϕ†
α(r)βϕα(r), (4)

ρ3(r) =
∑

α

ϕ†
α(r)τ3ϕα(r), (5)

ρp(r) =
∑

α

ϕ†
α(r)

(
1 + τ3

2

)
ϕα(r), (6)

ρT (r) =
∑

α

i

M
∇ · [ϕ†

α(r)βαϕα(r)], (7)

ρT,3(r) =
∑

α

i

M
∇ · [ϕ†

α(r)βατ3ϕα(r)]. (8)

These densities are obtained from the RMF and ERMF
formalisms with NL3 [15] and G2 [16] parametrizations. We
refer the readers to Refs. [20,21] for numerical details and
ground state equations for finite nuclei.

III. THE NUCLEON-NUCLEON SCATTERING
AMPLITUDE

The nonlinear relativistic impulse approximation (RIA)
involves mainly two steps [24–26] of calculation. Basically
a particular set of Lorentz covariant functions [19], which
multiply with the so-called Fermi invariant Dirac matrix,
represent the nucleon-nucleon (NN)-scattering amplitudes.
These functions are then folded with the target densities of
protons and neutrons from the relativistic Langragian for the
NL3 and G2 parameter sets to produce a first-order complex
optical potential. The invariant NN-scattering operator F can
be written in terms of five complex functions (the five terms
involved in the proton-proton pp and neutron-neutron nn

scattering). In general RIA, the function F can be expressed
as [24–26]

F(q, E) =
PS∑

L=S

FL(q, E)λL
(0) · λL

(1), (9)

where λL stands for the Dirac operator and (0) and (1) stand
for the incident and struck nucleons, respectively. S, V , T ,
A, and PS stand for scalar, vector, axial vector, tensor, and
pseudoscalar. The dot product (·) implies that all Lorentz
indices are contracted. The Dirac spinor is defined as the initial
and final two nucleons by taking the matrix elements of F ,
which represent the NN-scattering amplitudes. The functions
FL are determined by equating the resultant amplitude (in
the center-of-mass frame) to the empirical amplitude, which
is conventionally expressed in term of the nonrelativistic
Wolfenstein amplitudes A1, A2, . . . A5 [19]. Since there are
five complex invariant amplitudes and A1, A2, . . . A5 are
five Wolfenstein amplitudes, the relation among them is
determined by a 5 × 5 nonsingular matrix, whose inversion is
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straightforward. However, F is an operator in the two-particle
Dirac space and the component is canceled out due to isospin
and parity invariance and we get only 44 components [27].
From this it is clear that F is not unique. In other words, there
are an infinite number of operators F with same five on-shell
but different negative (energy) elements. The expression of F
cannot predict a reasonable result at the lower energy region.
To avoid the limitation, the pseudoscalar FPS is replaced by
the pseudovector invariant, and is expressed as

FPSγ 5
(0)γ

5
(1) = −FPV

γ 5
(0)

2M

γ 5
(1)

2M
. (10)

The meson-nucleon couplings are complex, with a real part
g2

i and an imaginary part g2
i , which can be decomposed into

two parts,

〈k′
0k

′
1| F |k0k1〉 = 〈k′

0k
′
1| t(E) |k0k1〉

+ (−1)T 〈k′
0k

′
1|t, (E)|k0k1〉, (11)

where t(E) is the lowest order meson and T is the total isospin
of the two-nucleon state. The calculation of the one-meson
exchange from the Feynman diagram [17] is represented as

gi

(
�2

i

q2 + �2
i

)
λL(i) (τ )Ii , (12)

with L(i) denoting the spin and parity of the i th meson and
Ii = (0, 1) being the meson’s isospin. Here we neglect the
energy transfer q0 carried by the meson for different masses
and cutoff parameters in the real and imaginary parts of the
amplitude in Eq. (9). The contribution of the i th meson to the
NN-scattering amplitude by taking all kinematics is given as
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Here the direct and exchange momentum transfer are q = k′
0 −

k0 and Q = k′
1 − k1.The first term in Eq. (13), which is already

of the form of Eq. (9), can easily identify the contribution of
FL.The second term is unlike this form, so we rewrite this as
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where the transformation matrix is given as

BL,L′ = 1

8
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The row and columns are labeled in the order of S, V, T, A,
PS. The contribution to the Lorentz invariants (FL) in simpler
forms are written as

F(q, Ec) = i
M2

2Eckc
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FL
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]
, (16)
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Here Ec is the total energy in the NN center-of-mass sys-
tem. Note that f i depends only on the magnitude of the
three-momentum transfer and the expressions are used to fit
the NN-scattering amplitude at laboratory energy. The full
parametrizations are framed out in Refs. [17,18].

IV. NUCLEON-NUCLEUS OPTICAL POTENTIAL

The Dirac optical potential Uopt(q,E) can be written as

Uopt(q,E) = −4πip

M
〈ψ |

A∑
n=1

exp [iq · x(n)]F(q,E; n)|ψ〉,

(20)

where F is the scattering operator, p is the momentum of
the projectiles in the nucleon-nucleus center-of-mass frame,
|ψ〉 is the nuclear ground state wave function for the A
particle, q is the momentum transfer, and E is the collision
energy for a stationary target (nucleus) and incident projectile
(proton). In the present calculation the nuclear recoil energy
is neglected because of elastic scattering. The operator
F(q,E; n) describes the scattering of the projectile from target
nucleon n without separation into direct and exchange terms.
Let us define the nuclear ground state by a Dirac-Hartree wave
function [28] and the incident projectile wave function asU(x),
then the optical potential on incident wave projected to the
coordinate space can be written as

〈x|Uopt|U0〉

= −4πip

M
〈ψ |

occ∑
α

∫
d3y ′d3yd3x ′Uα(y ′)

×{〈xy ′|t(E)|x ′y〉 + (−1)T 〈y ′x|t(E)|x ′y〉}U0(x ′)Uα(y).

(21)
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The antisymmetrized matrix element of t(E) in coordinate
space is the Fourier transform [28] of the matrix element in
the momentum space coordinate and is written as

〈x|Uopt|U0〉
= −4πip

M

∑
L

∫
d3x ′[ρL(x ′)tLD(|x − x ′|; E)

]
λLU0(x)

− −4πip

M

∑
L

∫
d3x ′[ρL(x ′, x)tLX(|x − x ′|; E)

]
λLU0(x ′),

(22)

where

tLD(|x|; E) ≡
∫

d3q

(2π )3
tLD(q,E)e−iqx, (23)

with

tLD(|q|; E) ≡
(

iM2

2Eckc

)
FL

D (q), (24)

and similarly for the exchange part tLD(|Q|; E). The nuclear
density is defined by a simple expression similar to the equation
of RMF and ERMF density,

ρL(x, x ′) ≡
occ′∑
α

UαλLUα, ρL(x) ≡ ρL(x ′, x). (25)

The prime stands for occupied states, i.e., the sum over target
protons (pp amplitude) and target neutrons (pn amplitude)
used. The first term in Eq. (22) defines the direct optical
potential,

UL
D(r, E) = −4πip

M

∫
d3x ′ρL(x ′)tLD(|x − x ′|; E). (26)

The nonlocal second term is treated in nonlocal density
approximation [29], which contains plane wave status for
incident and bound nucleons. We replaced the exchange
integral with the local potential by

UL
X (r, E)

= −4πip

M

∫
d3x ′ρL(x ′, x)tLD(|x − x ′|; E)j0(p(|x − x ′|),

(27)

where j0 is the spherical Bessel function. The off-diagonal
one-body density is approximated by the local density, which
results in

ρL(x ′, x) ≈ ρL[1/2(x + x ′)]
(

3

skf

)
j1(skf ), (28)

with s ≡ |x − x ′|; kf is related to the nuclear baryon density
by ρB[1/2(x + x ′)] = 2k3

f /3π2. Now the optical potential has
the form

Uopt = US + γ 0UV − 2iα · r̂ UT , (29)

where

UL ≡ UL(r, E) = UL
D(r, E) + UL

X (r, E). (30)

As the tensor contributions are small, by neglecting these the
Dirac equation for the projectile has precisely the same form

as in the RMF and ERMF equation. By taking the Fourier
transform of this equation, we get the optical potential:∫

d3q

(π )3
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= g2
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r
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}
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(31)

This equation includes all meson exchanges (except the
pseudoscalar meson) with derivative coupling, which is written
in the form∫

d3q

(2π )3
exp (iq · x)f (q)

q2

4M2
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(32)

The optical potential is modified by the Pauli blocking
factor [30–34] a(E) with local density approximation as
follows:

UL(r, E) −→
[

1 − a(E)

(
ρB(r)

ρ0

)2/3
]

UL(r, E). (33)

Here ρB is the local baryon density of the target and ρ0 is
the nuclear matter density at saturation. The approximation
depends on ρ

2/3
B , which agrees with phase-space arguments

based on isotropic scattering. The details about the Pauli
blocking factor are given in Ref. [18]. To solve the scattering
state Dirac equation, the wave function is separated into two
components (upper and lower) and this equation is expressed as
two coupled first-order differential equations. Elimination of
the lower component leads to a single second-order differential
equation with spin-orbit as well as both local and nonlocal
potentials. The nonlocal Darwin potential can be separated
by rewriting the upper component of the wave function,
A1/2(r, E)U(x), and

A(r, E) ≡ 1 + US(r, E) − UV (r, E)

E + M
. (34)

After some algebra, the equation can be written as

(−∇2 + Vcent + Vsoσ · L + VDarwin)u(x) = (E2 − M2)u(x),

(35)

where the energy-dependent optical potentials are

Vcent(r, E) = 2MUS + 2EUV + (US)2 − (UV )2, (36)

Vso(r, E) = −1

r

B ′

B
, (37)

VDarwin = 3

4

(
B ′

B

)2

− 1

r

B ′

B
− 1

2

B
′′

B
. (38)

Since the two-component Dirac wave functions are eigenstates
of σ · L, by taking the second derivative of the function we can
solve easily using the Numerov algorithm [35,36]. Note that
U(x) is not equal to the upper component wave function in the
region of the potential A(r, E) −→1, as r −→ ∞ and U have
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the same asymptotic behavior of the wave function at large r .
Thus the correct boundary condition is imposed by matching

U to the form of Coulomb scattering solution incident in the z

direction [37]:

ψ(r) ∝r−→∞

{
exp i[pz − η ln2prsin2θ/2]

[
1 − η2

2iprsin2θ/2

]}
χinc +

{
exp i[pr − η ln2pr]

r
[A(θ ) + B(θ )σ · n̂]

}
χinc, (39)

with E =
√

p2 + M2. χinc is a two-component Pauli spinor,
θ is the scattering angle, n is the normal to the scattering
plane, and η ≡ Ze2/p2 where Z is the nuclear charge. The
scattering observables such as the differential scattering cross
section ( dσ

d�
) and other quantities, such as the optical potential

(Uopt), analyzing power (Ay), and spin observables (Q value),
are easily determined from the scattering amplitude, which is
written as

dσ

d�
≡ |A(θ )|2 + |B(θ )|2, (40)

Ay ≡ 2Re[A∗(θ )B(θ )]

dσ/d�
, (41)

Q ≡ 2Im[A(θ )B∗(θ )]

dσ/d�
. (42)

V. DETAILS OF CALCULATIONS AND RESULTS

First we calculate both the scalar and vector parts of the
neutron and proton density distribution for 40,42,44,48Ca from
the RMF (NL3) and ERMF (G2) formalisms [21]. Then
we evaluate the scattering observables using these densities
in the RIA framework [38], which involves the following
two steps: (i) We generate the complex NN interaction
from the Lorentz invariant matrix FL(q,E) as defined in
Eq. (2). Then the interaction is folded with the ground state
target nuclear density for both the RLF [17,18] and MRW
parameters [19] separately and obtained the nucleon-nucleus
complex optical potential Uopt(q,E). It is to be noted that
the pairing interaction has been taken into account using
the Pauli blocking approximation. Here, the Pauli blocking
enters through the intermediate states of the t-matrix formal-
ism, which has geometrical effects on the optical potential.
(ii) We solve the wave function of the scattering state utilizing
the optical potential prepared in the first step by the well
known Numerov algorithm [35]. The result is approximated
with the nonrelativistic Coulomb scattering for a wide range
of radial components, which yields the scattering amplitude
and other observables [37]. By comparing our calculations
with the available experimental data, we examine the validity
of our RIA predictions for describing dσ

d�
, Ay, and Q values,

which are presented in Figs. 1–11.

A. Neutron and proton densities

In Fig. 1, we have plotted the proton ρp and neutron ρn

density distribution for 40,42,44,48Ca using the NL3 and G2

parameter sets within RMF and ERMF formalisms. From
the figure, we note that there is a very small difference in
the densities for the NL3 and G2 parameter sets. However, a
careful inspection shows a small enhancement in the central
density (0–1.6 fm) for the NL3 set. On the other hand, the
densities obtained from G2 are elongated to a larger distance
toward the tail region, and this nominal difference has a
significant role to play in the scattering phenomena, which
is explained later on. Further, the agreement of ρp with the
experiment [39] and ρn with the deduced data [40] for the
NL3 set is slightly better than that of G2. Explicitly, it is
worth mentioning that the ρp (NL3) matches the data even
at the central region, whereas the ρp of G2 is underestimated
throughout the density plot.

A microscopic investigation of Fig. 1 shows a change in
ρp(r), ρn(r), i.e., the area covered by the proton and neutron
densities gradually increases with the mass number in an
isotopic chain. From the ρp(r) and ρn(r), we estimate the
possible relative isotopic density difference 
ρ(r) for the RMF
(NL3) and ERMF (G2) parameter sets (see Figs. 2 and 3).
The calculated 
ρp(r) are compared with the experimental
data [41] in Fig. 2. The measured data of 
ρp(r) lies in
between the prediction of the NL3 and G2 values, as shown in
Fig. 2. Comparing ρp(42Ca) − ρp(40Ca), ρp(44Ca) − ρp(40Ca),
and ρp(48Ca) − ρp(40Ca) of Figs. 2(a)–2(c), we notice a better
agreement of NL3 values over G2 with respect to experimental

0

0.02

0.04

0.06

0.08

0.1 RMF (NL3)
E-RMF (G2)
(Sick 1979: [39])

0 2 4 6
0
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42
Ca 44

Ca
48
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)

FIG. 1. The proton ρp (upper panel) and neutron ρn (lower panel)
density distribution for 40,42,44,48Ca obtained from RMF (NL3) and
ERMF (G2) parameter sets. The experimental [39] ρp and deduced
[40] ρn for 40,48Ca are also compared.
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FIG. 2. The relative isotopic proton density differences 
ρp(r)
for ρp(42Ca) − ρp(40Ca), ρp(44Ca) − ρp(40Ca), and ρp(48Ca) −
ρp(40Ca) obtained from RMF (NL3) and ERMF (G2) are compared
with the data [41] in (a), (b), and (c), respectively.

measurement in the isotopic chain, which is subsequently
reflected in the results of the scattering observables.

The relative isotopic density difference for neutron 
ρn(r)
is compared in Fig. 3 with the deduced neutron density dif-
ference data [42] and the density-matrix-expansion prediction
[43]. The predicted results with RMF (NL3) agree well only
for the double closed-shell nuclei 40Ca and 48Ca. But in the
case of ERMF (G2) we get an excellent match with the deduced

ρn(r) for the considered isotopic chain. A peak appears in

ρn(r) at the radial range r ∼ 3.4−3.8 fm and this peak is
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FIG. 3. The relative isotopic neutron density differences 
ρn(r)
for ρn(42Ca) − ρn(40Ca), ρn(44Ca) − ρn(40Ca), ρn(48Ca) − ρn(40Ca),
ρn(44Ca) − ρn(42Ca), ρn(48Ca) − ρn(42Ca), and ρn(48Ca) − ρn(44Ca).
The RMF (NL3) and ERMF (G2) 
ρn(r) are compared with
the density-matrix-expansion (DME) data [43] and the uncertainty
deduced neutron difference [42].
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FIG. 4. The real (Re) and imaginary (Im) parts of the scalar S
and vector V Dirac optical potential are plotted as a function of the
nuclear radius for p + 40Ca system using RMF (NL3) and ERMF
(G2) densities. (a) RLF and (b) MRW parametrization. The energy
of the projectile proton is Elab = 1000 MeV.

slightly shifted toward the center with the increase of neutron
number. Although 
ρn(r) for the G2 set gives better agreement
with the deduced values, the use of the NL3 set in the RIA
formalism works well for the scattering observables (shown
later).

B. Optical potential

With the densities in hand, we calculate the optical potential
Upot for 40,42,44,48Ca by folding the density matrix with the NN
scattering amplitude of the proton projectile for 300, 800, and
1000 MeV. The Upot is a complex function which constitutes
both a real and an imaginary part for both the scalar and the
vector potentials. In Fig. 4, we present the Upot for −→p + 40Ca
at laboratory energy Elab = 1000 MeV as a representative
case. We also examine the Upot for other Ca isotopes and
find similar trends with −→p + 40Ca. In other words, we do not
get any significant difference in the optical potential with the
increase of neutron number. Similar to the density distribution
in NL3 and G2 (Fig. 1), here we find a difference in Uopt(q,E)
between the RLF and MRW parametrizations. The evaluation
methods of the optical potentials using RLF or MRW (see
Fig. 4) are somewhat different from each other, which are
given in the Appendix [38] and are responsible for the use
of the different parametrizations at various ranges of incident
energies. For example, the RLF parameters used here are from
Refs. [17,18] and are computed for energies up to 400 MeV
and are therefore suitable for lower Elab, whereas the MRW
is better for the higher values, which will be discussed in the
coming sections. Further, the Uopt(q,E) values from either
RLF or MRW differ significantly depending on the NL3 or G2
force parameters. That means that the optical potential is not
only sensitive to RLF or MRW but also to the use of NL3 or G2
densities. Investigating the figure, it is clear that the extreme
values of the magnitude of the real and the imaginary parts of
the scalar potential are −382.9 and 110.6 MeV for RLF (NL3)
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and −372.4 and 177.8 MeV for RLF (G2), respectively. The
same values for the MRW parametrization are −217.7 and
40.2 MeV with the NL3 and −333.8 and 61.7 MeV with the
G2 sets. In case of the vector potential, the extreme values
for the real and imaginary parts are 293.0 and −136.0 MeV
for RLF (NL3) and 319.7 and −157.5 MeV for RLF (G2),
but with MRW parametrization these appear at 124.1 and
−82.3 MeV with the NL3 and 115.5 and −77.1 MeV with
the G2. From these variations in the magnitude of scalar and
vector potentials, it is clear that the predicted results not only
depend on the input target density, but they are also sensitive
to the kinematics of the reaction dynamics. A further analysis
of the results for the optical potential with RLF shows that
the Uopt value extends for a larger distance than MRW. For
example, with RLF the central part of Uopt is more expanded
than MRW and ends at r ∼ 5 fm, whereas the Uopt persists
until r ∼ 6 fm. It is important to point out that, due to the lack
of availability of experimental data for the optical potential,
we are unable to justify the capability of parametrizations at
different energies. We also repeated the calculations without
Pauli blocking and found almost identical results for the optical
potential at Elab ∼ 300, 800, and 1000 MeV. The effects of
RLF and MRW parametrizations are presented in the next
subsections during the discussion of scattering observables.

C. Differential scattering cross section

Evaluation of the differential elastic scattering cross section
dσ
d�

, defined in Eq. (40), is crucial to study the scattering
phenomena. The results of our calculation for −→p + 40Ca and−→p + 40,42,44,48Ca systems at incident energies 300, 800, and
1000 MeV, respectively, are displayed in Figs. 5–7 along with
the available experimental data [44–46]. As is stated earlier,
the RIA prediction with the NL3 density is a better the choice
of G2 for all the angular distributions, irrespective of the use
of RLF or MRW parametrizations. Again, considering the
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FIG. 5. The elastic differential scattering cross section ( dσ

d�
) as

a function of scattering angle θc.m.(deg) for 40Ca using both RLF
and MRW parametrizations at Elab = 300 MeV. Triangles are the
experimental data [44].
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FIG. 6. Same as Fig. 5 for 40,42,44,48Ca at Elab = 800 MeV. The
experimental data are taken from [45].

energy of the projectile, the RLF predictions best fit the data
for Elab � 400 MeV (see Fig. 5). However, results obtained
from the MRW parametrization are better for higher incident
energies (Figs. 6 and 7) (Elab > 400 MeV) [19,38]. This result
shows a fundamental difference between the RLF and MRW
parametrization depending upon the incident energy ranges.
Perhaps due to this reason, the explicit off-shell behavior of
RLF and MRW drastically affects the scattering predictions.
Similarly for the optical potential, the results are insensitive to
the Pauli blocking.

D. Analyzing power and spin observable

The analyzing power Ay and the spin observable (Q value)
are calculated from the general formulas given in Eqs. (41)
and (42), respectively. The results of our calculations for the−→p + 40Ca system at incident energies 300 and 800 MeV are
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(Bruge 1978: [46] )
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FIG. 7. Same as Fig. 6 at Elab = 1000 MeV. The experimental
data are taken from [46].
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angle θc.m.(deg) for 40,42,44,48Ca at Elab = 1000 MeV.

shown in Figs. 8 and 9. The RIA predictions for Ay using RLF
with RMF (NL3) density show a quantitative agreement with
the data [44] at 300 MeV, whereas this observation is just the
reverse at 800 MeV [45]. That means that the prediction of Ay

resembles the dσ
d�

observations of Figs. 5–7. In Figs. 10 and 11,
we present the Ay and Q value for the −→p + 40,42,44,48Ca
composite system at 1000 MeV. These results are obtained for
both the RLF and MRW parametrizations with NL3 and G2
densities in comparision with the experimental data [46]. The
calculated Ay and Q values obtained by these two forces differ
significantly from each other for the choice of RLF and MRW
parametrizations. Also, we observe small oscillations in the
values of Ay and Q with the increase in scattering angle θc.m.

for both RLF and MRW. This oscillatory behavior could be
related to the dispersion phenomenon of the optical potential.
Similar to the dσ

d�
, here also the prediction of MRW is best fitted

to the data for the higher incident energies and RLF for lower
incident energies. Further, investigation into the spin rotation
parameter Q value shows that the peak shift and diminished
magnitude with the increase in neutron number (see Fig. 11)
agree with the calculation of first-order Brueckner theory using
Urbana V14 soft core internucleon interactions [47]. It makes
the nucleon finite size correction more realistic and hence
merits a structure effect for the formation of exotic nuclei in
the laboratory.

VI. SUMMARY AND CONCLUSION

We have calculated the density distribution of protons and
neutrons for 40,42,44,48Ca by using RMF (NL3) and ERMF
(G2) parameter sets. From these densities, we estimate the
relative isotopic neutron density difference for both force
parameters. The comparison of 
ρn(r) with the data [42]
indicates the superiority of G2 over NL3. The small difference
in the density at the central region significantly affects
the results of scattering observables including the optical
potential. A fundamental difference between RLF and MRW
parametrizations as well as RMF (NL3) and ERMF (G2) sets
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in the RIA predictions is noticed from the observation of the
dσ
d�

, Ay , and Q values. We conclude from our calculations that
RLF relatively works well at lower and MRW at higher incident
energies. The predicting capability of scattering observables
of RMF (NL3) over ERMF (G2) is also realized.

In conclusion, the reaction dynamics highly depends on
the input density and the choice of parametrization. In
addition to this, our present study indicates that the RIA is
a powerful predictive model which provides a clear picture of
the successful Dirac optical potentials and can be useful to
study both stable and exotic nuclei.
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APPENDIX

If RLF is our choice, the tL functions in Eqs. (17)–(19)
and (23), (24) involve all the occupied states for pp and pn
scattering. It is most convenient to shift variables from x ′ →
x + x ′ so the tL functions are not involved in the angular
integration. Now, the first-order optical potential Eq. (20) can
be written as [38]

UL(r, E) = −4πip

M

[∫
d3r ′ρL(x + x ′)tLD(r ′; E)

]
+

[∫
d3r ′ρL(x + x ′, x)tLX(r ′; E)j0(pr ′)

]
.

(A1)

After φ integration, this becomes

UL(r, E) = −8π2ip

M

[∫
dr ′tLD(r ′; E)

∫ +1

−1
ρL(x + x ′)dω

]
+

[∫
dr ′tLX(r ′; E)j0(pr ′)

∫ +1

−1
ρL(x + x ′, x)dω

]
,

(A2)

where ω = cosθ , (|x + x ′|2) = (r2 + r ′2 + 2ωrr ′), and

( |2x+x ′ |
|4|

2
) = 1

4 (r ′2 + 4ωrr ′ + 4r2). The integral is evaluated
by the Gauss-Laguerre quadrature. At the point (x + x ′), the
radial integration must go roughly twice the nuclear radius.
Note that for spherical nuclei only the scalar and vector are
taken into account, as the tensor terms are negligible.

In the case of MRW, the optical potential Uopt is calculated
somewhat differently from the RLF. Here we tranform the
density ρL(x) to momentum space, then multiply with the
FL(q,E) and back which leads to the equation

UL(r, E)

= −4πip

M

[∫
d3q

(2π )3
eiqxFL(q,E)

∫
d3x ′e−iqx ′

ρL(r ′)
]

,

(A3)
with FL(q,E) = FL

0 (E)e−q2β2(E) at each proton energy E.
The final equation is obtained by adding the contributions
from proton and neutron states to the direct term Eq. (A3)
which is given as

UL(r, E) = −8ip

M

1

r

×
[∫ ∞

0
dqsin(qr)

∫ ∞

0
dr′r′sin(qr′)FL

0 (E)e−q2β2(E)ρL(r′)
]

.

(A4)

These integrals are solved by double Gaussian summation
methods.
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