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The structure of 3/2− and 1/2+ states in 11B is investigated with an α + α + t orthogonality condition
model (OCM) based on the Gaussian expansion method. Full levels up to the 3/2−

3 and 1/2+
2 states around the

α + α + t threshold (Ex = 11.1 MeV) are reproduced consistently with the experimental energy levels. It is
shown that the 3/2−

3 state located around the 7Li + α threshold has an α + α + t cluster structure, whereas the
3/2−

1 and 3/2−
2 states have a shell-model-like compact structure. We found that the 3/2−

3 state does not possess an
α-condensate-like nature analogous to the 0+

2 state of 12C (Hoyle state) which has a dilute 3α-condensate structure
described by a (0Sα)3 configuration with about 70% probability, although the monopole transition strength of the
former is as large as that of the latter. We discuss the reasons why the 3/2−

3 state does not have the condensate
character. On the other hand, the 1/2+

1 state just below the 7Li + α threshold has a cluster structure that can
be interpreted as a parity-doublet partner of the 3/2−

3 state. We indicate that the 12.56-MeV state (J π = 1/2+
2 )

just above the α + α + t threshold observed in the 7Li(7Li,11B∗)t reaction, etc., is of the dilute cluster-gas-like
configuration and is a strong candidate for the product states of clusters, having a configuration of (0Sα)2(0St )
with about 65% probability, from the analyses of the single-cluster motions in 11B. The structure property of the
1/2+ resonant state is analyzed with the complex scaling method.
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I. INTRODUCTION

The cluster picture as well as the mean-field picture is
important to understand the structure of light nuclei [1,2].
The Hoyle state (the 0+

2 state at Ex = 7.65 MeV in 12C)
is a typical cluster state with the 3α-cluster structure [3,4],
which appears by only 0.38 MeV above the 3α threshold
and is characterized by the large monopole transition rate
sharing about 16% of the energy-weighted sum rule [5]. The
Hoyle state has been reinvestigated from the viewpoint of
the α condensation [6]. The definitions and occurrences of
the nuclear α-particle condensation are discussed in detail in
Ref. [7]. Many theoretical works have shown that the Hoyle
state has a 3α-condensate-like structure [6–13], in which the
3α particles occupy an identical 0S orbit with 70% probability
[9,10], forming a dilute α-gas-like configuration with (0Sα)3,
that is, the product states of three α’s.

The structure study of 16O has recently made a great
advance. The six lowest 0+ states of 16O have very nicely
been reproduced up to about 15 MeV excitation energy,
including the ground state, with the 4α orthogonality condition
model (OCM) [14]. The OCM is a semimicroscopic cluster
model, which is an approximation of the resonating group
method (RGM) and is extensively described in Ref. [15]. Many
successful applications of the OCM are reported in Ref. [2].
The 4α OCM calculation showed that the 0+

6 state around the
4α threshold is a strong candidate of the 4α-particle condensate
state, having a large α-condensate fraction of 60% for the
α-gas-like configuration (0Sα)4 as well as a large component
of the α + 12C(0+

2 ) configuration. The 0+
6 state could be

called the product states of four α particles. In this article
the terminology of “product states of α particles” is used,

instead of “Hoyle-analog states,” because the 0+
2 state in 12C is

called the “Hoyle state” for historical reasons, not for physical
reasons [16,17]. The α-cluster product states heavier than
16O are predicted to exist around their α-cluster-disintegrated
thresholds in self-conjugate A = 4n nuclei [6,18,19].

Besides the 4n nuclei, one can also expect cluster-gas states
composed of α and triton clusters (including valence neutrons,
etc.) around their cluster-disintegrated thresholds in A �= 4n

nuclei, in which all clusters are in their respective 0S orbits,
similar to the Hoyle state with (0Sα)3. The states, thus, can
be called product states of clusters in the non-self-conjugated
nuclei. It is an intriguing subject to investigate whether or
not the product states of clusters exist in A �= 4n nuclei, for
example, 11B, composed of 2α and t clusters.

The cluster structure in 11B was studied about 30 years
ago with the α + α + t OCM using the harmonic oscillator
basis by Nishioka et al. [20–22]. They found that (1) the
3/2−

3 state (Ex = 8.6 MeV) just below the 7Li + α threshold
has a well-developed molecular-like structure of 7Li(g.s) + α,
where 7Li(g.s) denotes the ground state of 7Li with the α + t

cluster structure, and (2) the 3/2−
1 (g.s) and 3/2−

2 (Ex =
5.0 MeV) states have shell-model-like compact structures.
The model space adopted in Refs. [20–22], however, was not
sufficient to account simultaneously for the 7Li + α cluster
configuration as well as the α + α + t gas-like configuration.
In addition, limited experimental data in those days caused
difficulties in giving the definite conclusion that the 3/2−

3 state
has an α + α + t cluster structure.

Kawabata and his collaborators have investigated the
excited states of 11B by using the 11B(d,d ′) reaction [23]. They
eventually concluded that the 3/2−

3 state at Ex = 8.56 MeV
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has an α-cluster structure. Among many reasons for this con-
clusion, one is a large isoscalar monopole transition rate for the
3/2−

3 state, B(E0:IS) = 96 ± 16 fm4, which is of a value simi-
lar to that for the Hoyle state in 12C, B(E0:IS) = 120 ± 9 fm4.
A close relation between large isoscalar monopole strengths
and underlying cluster structures in excited states was dis-
cussed by the present authors and their co-workers (see
Ref. [5]). According to the literature, the largeness of the
isoscalar monopole transition rate for 3/2−

3 originates from
the fact that the state has a cluster structure.

Another reason why the 3/2−
3 state has the cluster structure

is that the AMD (antisymmetrized molecular dynamics) cal-
culation [23,24] has reproduced the large monopole transition
rate for the 3/2−

3 state and has succeeded in assigning an
α + α + t cluster structure to this state. Comparing the density
distribution of the 3/2−

3 state (calculated by AMD) with
that of the Hoyle state (together with the analysis of the
expectation values of the harmonic oscillator quanta in their
wave functions), the AMD calculation [24] claimed that the
3/2−

3 state has a clustering feature similar to that of the Hoyle
state. However, the single-cluster properties such as single-
cluster orbits and their occupation probabilities in the 3/2−

3
state were not studied. Their quantities are independent of
the information of the density distribution and the expectation
values of the harmonic oscillator quanta in the wave function.
Thus, it is very important to study the single-cluster properties
in order to judge whether the 3/2−

3 state possesses the
similarity to the Hoyle state with the (0Sα)3-like structure.
As discussed in Refs. [9,10,25,26], the single-cluster motions
such as α (t)-cluster orbits and their occupation probabilities
in a nuclear state can be investigated by solving the eigenvalue
equation of the single-cluster density matrix ρ(r, r ′) derived
from the microscopic and/or semimicroscopic wave functions.

The purpose of the present article is to study the structure
of 3/2− and 1/2+ states in 11B up to around the α + α + t

threshold. Here we take the α + α + t OCM with the Gaussian
expansion method (GEM), the model space of which is large
enough to cover the α + α + t gas, the 7Li + α cluster, and
the shell-model configurations. Combining the OCM and the
GEM provides a powerful method to study the structure of light
nuclei [9,12,27] as well as light hypernuclei [28,29], because
the Pauli-blocking effect among the clusters is properly
taken into account by the OCM and the GEM covers an
approximately complete model space [30,31]. This framework
can treat precisely a strong parity dependence of the α-t
potential. The negative-parity potential is attractive enough
to make bound states (3/2−

1 and 1/2−
1 ) and resonant states

(7/2−
1 and 5/2−

1 ) of 7Li, whereas the positive-parity potential
is not. This parity dependence should play an important role in
producing the cluster states of 11B, as will be discussed later.
The single-cluster properties such as single-α-particle (single-
t-particle) orbits and occupation probabilities are investigated
to judge whether or not the 3/2−

3 state is described by the
product states of clusters, similar to the Hoyle state with (0S)3

α ,
by solving the eigenvalue equation of the single-cluster density
matrix ρ(r, r ′) derived from the total wave function of 11B.
The resonance structure of 1/2+ states is also studied with the
complex scaling method (CSM), since they appear around the
α + α + t threshold with Ex = 11.1 MeV.

It is also interesting to explore the product states of clusters
with the α + α + t structure in 1/2+ states, because one can
conjecture an appearance of the product state, (0Sα)2(0St ), in
Jπ = 1/2+ of 11B (1/2 comes from the spin of the triton)
from the similarity of (0Sα)3 in the Hoyle state. The structure
of the positive-parity states (isospin T = 1/2) in 11B so far
has not been discussed well in AMD [24] and the noncore
shell model [32]. Recently several positive-parity states of 11B
with T = 1/2 have been observed with the 7Li(9Be,α7Li)5He
reaction [33], the 7Li(7Li,11B∗)t reaction [34], and the decay-
particle measurements of α + 7Li and t + 8Be from excited
11B∗ states [35]. An interesting result in these experiments is
as follows: The 1/2+(3/2+) state at Ex = 12.56 MeV, which
has been identified so far as the isospin T = 3/2 state [36],
is observed through the α + 7Li decay channel [33–35]. It
was concluded that the 12.56-MeV state has isospin T = 1/2
or alternatively it is observed at an energy similar to that of
T = 3/2. Therefore, it is interesting to investigate theoretically
the structure of the 12.56-MeV state.

The present article is organized as follows. In Sec. II we
formulate the α + α + t OCM with the GEM as well as the
CSM. Section III is devoted to results and discussion. Finally
we present the summary in Sec. IV.

II. FORMULATION

In this section, we present the formulation of the α + α + t

OCM with the GEM for 11B, and give a brief formulation
of the CSM with the α + α + t OCM to study the resonant
structures of 11B.

A. α + α + t OCM with the Gaussian expansion method

The total wave function of 11B (the total angular momentum
J and total isospin T = 1/2) within the frame of the α + α + t

OCM is expanded in terms of the Gaussian basis,

�J (11B) =
∑

c

∑
ν,µ

Ac(ν, µ)�(12,3)
c (ν, µ)

+
∑

c

∑
ν,µ

Bc(ν, µ)
[
�(23,1)

c (ν, µ)

+ �(31,2)
c (ν, µ)

]
, (1)

�(ij,k)
c (ν, µ) = {[

ϕ�(r ij , ν)ϕλ(rk, µ)
]
L
χ 1

2
(t)

}
J
, (2)

ϕ�(r, ν) = N�(ν)r� exp(−νr2)Y�(r̂), (3)

where we assign the cluster numbers as 1 and 2 for the
two α clusters (spin 0) and 3 for the t cluster (spin 1/2).
�

(12,3)
J [�(23,1)+(31,2)

J ] denotes the relative wave function of the
α + α + t system with the Jacobi-coordinate system shown
in Fig. 1(a) [Figs. 1(b) and 1(c)]. It is noted that �

(23,1)+(31,2)
J

is symmetric with respect to the particle-number exchange
between 1 and 2. N� is the normalization factor of the Gaussian
basis ϕ�, and r ij (rk) denotes the relative coordinate between
the ith and j th clusters (the kth cluster and the center-of-mass
coordinate of the ith and j th clusters). The angular momentum
channel is presented as c = [(�, λ)L 1

2 ]J , where � (λ) denotes
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(a) (b) (c)

t t t

FIG. 1. Three-Jacobi-coordinate systems in the α + α + t model.

the relative orbital angular momentum with respect to r ij (rk),
and L ( 1

2 ) is the total orbital angular momentum (the spin
of t particles). The Gaussian parameter ν is taken to be of
geometrical progression,

νn = 1/b2
n, bn = bmina

n−1, n = 1 ∼ nmax. (4)

It is noted that this prescription is found to be very useful in
optimizing the ranges with a small number of free parameters
with high accuracy [30,37].

The total Hamiltonian for the α + α + t system is presented
as

H =
3∑

i=1

Ti − Tc.m. + V
(N)

2α (r12) + V
(C)

2α (r12)

+
2∑

i=1

[
V

(N)
αt (ri3) + V

(C)
αt (ri3)

] + V2αt + VPauli, (5)

where Ti , V
(N)

2α (V (N)
αt ), and V2αt stand for the kinetic energy

operator for the ith cluster, α-α (α-t) potential, and three-
body potential, respectively, and V

(C)
2α (V (C)

αt ) is the Coulomb
potential between 2α clusters (α and t). The center-of-mass
kinetic energy (Tc.m.) is subtracted from the Hamiltonian. The
Pauli-blocking operator VPauli [38] is expressed as

VPauli = lim
λ→∞

λÔPauli, (6)

ÔPauli =
∑

2n+�<4,�=even

|un�(r12〉〈un�(r12)|

+
∑

2n+�<3

2∑
i=1

|un�(r i3〉〈un�(r i3)| (7)

which removes the Pauli forbidden states between the two α

particles in 0S, 0D, and 1S states as well as those between α

and t particles in 0S, 0P , 0D, and 1S states. Consequently,
the ground state with the shell-model-like configuration can
be described properly in the present model.

Here we remind the reader that Refs. [20,21] don’t contain
the Pauli-blocking operator VPauli (6). The reason for this is
given as follows. In Refs. [20,21], the total wave function of
11B, �J (11B), is expanded in terms of the Pauli-allowed states
constructed by the harmonic oscillator wave functions. The
Pauli-allowed states can be classified with the total harmonic
oscillator quanta Q and the SU(3) representation (λ,µ) (see
Table I in Ref. [20]). Thus, they don’t need to use the Pauli-
blocking operator in their calculation. However, the number of
the Pauli-allowed states increases very rapidly with increasing
the value of Q. This is the reason why they adapted only the
small model space. This is a major fault of using the harmonic

oscillator basis, because one needs a significantly large model
space specified by Q in order to describe the α + α + t gas-like
structure. In fact, in the case of the Hoyle state, we found over
100 quanta to describe the 3α-gas-like structure, but the quanta
were not enough to reach a numerical convergence [5,27]. On
the other hand, the Gaussian basis in Eqs. (1)–(3) is found
to have major merit in that an optimum smaller model space
can describe the gas-like structure as well as the compact
shell-model-like structure with a good numerical convergence.
In the Gaussian basis, we have to remove the Pauli-forbidden
states from the total wave function �J (11B) by introducing
the method of Kukulin et al. [38], that is, introducing the
Pauli-blocking operator (6) into the Hamiltonian as mentioned
above.

The effective α-α potential and Coulomb potential, V
(N)

2α

and V
(C)

2α , in Eq. (5) are constructed with the folding procedure,
where we fold the modified Hasegawa-Nagata effective NN

interaction (MHN) [39] and the pp Coulomb potential with the
α-particle density. They reproduce the observed αα scattering
phase shifts (S, D, and G waves) and the energies of the
8Be ground state and of the Hoyle state (0+

2 in 12C) [9,12].
Concerning the effective α-t potential and Coulomb potentials,
we use the folding potentials, which reproduce well the
low-lying energy spectra of 7Li [3/2−

1 (g.s.), 1/2−
1 , 7/2−

1 ,
and 5/2−

1 ] (including the low-energy α-t scattering phase
shifts) obtained initially by Nishioka et al. [20,21]. The
potentials are applied to the structure study of 7


Li with
the α + t + 
 model and are known to reproduce well the
low-lying structure of the hypernucleus [28,29]. We made
a fine tuning for the α-t potential obtained by Nishioka
et al. [20,21] so as to get a qualitatively better agreement
with the experimental phase shifts. Note that the α-t potential
has a strong parity-dependence: The odd-parity potentials are
attractive to reproduce the bound states (3/2−, 1/2−) with
respect to the α + t threshold, while the even-parity potentials
are weakly attractive and thus no bound and/or resonant
states with positive parity have been observed in low-energy
excitation region up to Ex ∼ 15 MeV [40].

The three-body potential V2αt is introduced phenomeno-
logically so as to reproduce the energies of the ground state
(3/2−

1 ) and the first excited positive-parity state (1/2+
1 ) of

11B with respect to the α + α + t threshold. The origin of
V2αt is considered to derive from the state dependence of
the effective nucleon-nucleon interaction and an additional
Pauli repulsion arising from exchanging nucleons among
the three clusters (α + α + t). It should be short range and
hence only act in compact configurations. In the present
article, we take the following phenomenological three-body
potential,

V2αt =
∑

Q=7,8

V0(Q)
∑
(λµ)

∑
Lπ

∣∣�SU(3)
(λµ)Q(Lπ )

〉〈
�

SU(3)
(λµ)Q(Lπ )

∣∣, (8)

where �
SU(3)
(λµ)Q(Lπ ) with the total orbital angular momentum L

represents the SU(3)[443](λµ) wave function with the total
oscillator quanta Q (Q � 7). It is noted that the present
α + α + t model space can be classified into the SU(3) bases
with the irreducible representation, (λµ)Q, with partition
[f ] = [443], and the total wave function of 11B with positive
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(negative) parity in Eq. (1) can be expanded in terms of the
�

SU(3)
(λµ)Q(Lπ ) bases with even (odd) Q values [20,21]. The

(λµ) = (13) basis with Q = 7 is a unique Pauli allowed
state for negative-parity states of 11B with Q = 7, which
is equivalent to the shell-model configuration of (0s)4(0p)7.
Thus this SU(3) basis becomes the main component in the
ground state of 11B. On the other hand, there exist only
three Pauli-allowed states, (λµ) = (42), (23), and (04), for the
positive-parity states with Q = 8. Therefore they correspond
to the main components in the first excited states with even
parity in the present model. For simplicity, the strengths
of the three-body potential, V0(Q = 7) and V0(Q = 8), are
fixed so as to reproduce the experimental energies of the
ground state of 11B and the first 1/2+ state (Ex = 6.79 MeV),
respectively, with respect to the α + α + t threshold: V0(Q =
7) = 10.2 MeV and V0(Q = 8) = 4.5 MeV. The expectation
value of this three-body potential does not exceed 8% of
that of the corresponding two-body term, even for the ground
state with the most compact structure, that is, being the most
sensitive to the potential. When we switch off the three-body
potential, the shell-model-like states such as 3/2−

1 and 3/2−
2

states are overbound by 9.5 MeV, while the 1/2+
1 state is

overbound by 2.9 MeV, and the energy levels of 3/2−
3 and

1/2+
2 stay pretty much the same (see Fig. 2). This overbind-

ing in 3/2−
1 and 3/2−

2 was also observed in the previous
study [20,21].

The equation of motion of 11B with the α + α + t OCM is
obtained by the variational principle,

δ[〈�J (11B) | H − E | �J (11B)〉] = 0, (9)

where E denotes the eigenenergy of 11B measured from
the α + α + t threshold. The energy E and expansion co-
efficients Ac and Bc in the total wave function shown in
Eq. (1) are determined by solving a secular equation derived
from Eq. (9).

It is instructive to study single-α-particle (single-t-particle)
orbits and corresponding occupation probabilities in 11B. We

FIG. 2. (Color online) Calculated energy levels of 3/2− and 1/2+

states in 11B with respect to the α + α + t threshold together with
the experimental data [36]. The thresholds of the α + 7Li(3/2−)
and t + 8Be(0+) channels are shown in the figure. It is noted that
the threshold energies of the α + 7Li(1/2−), α + 7Li(7/2−), α +
7Li(5/2−), and t + 8Be(2+) channels are E = −1.99, 2.19, 4.14, and
3.12 MeV, respectively.

define the single-cluster density matrices for α and t clusters,
respectively, as

ρ(α)(r, r ′) = 〈�J (11B)|1

2

2∑
i=1

∣∣δ(r (G)
i − r ′)〉

× 〈
δ
(
r (G)

i − r
)∣∣|�J (11B)〉, (10)

ρ(t)(r, r ′) = 〈�J (11B)|∣∣δ(r (G)
3 − r ′)〉

× 〈
δ
(
r (G)

3 − r
)∣∣|�J (11B)〉, (11)

where r (G)
i (i = 1, 2) [r (G)

3 ] represents the coordinate vector
of the ith α (triton) cluster with respect to the center-of-mass
coordinate of the α + α + t system. The calculated method of
ρ is given in Refs. [9,10,25,26]. The single-α-particle (single-
t-particle) orbits and corresponding occupation probabilities
are obtained by solving the eigenvalue equation of the single-
cluster density matrices,∫

d rρ(α)(r, r ′)f (α)
µ (r ′) = µ(α)f (α)

µ (r), (12)
∫

d rρ(t)(r, r ′)f (t)
µ (r ′) = µ(t)f (t)

µ (r), (13)

where the eigenvalue µ(α) (µ(t)) denotes the occupation prob-
ability for the corresponding single-cluster orbit f (α)

µ (f (t)
µ )

with the argument of the intrinsic coordinate of an arbitrary α

(triton) cluster in a nucleus measured from the center-of-mass
coordinate of 11B. The spectrum of the occupation probabilities
provides important information on the occupancies of the
single-α-(t-)particle orbit in 11B. If the two α particles (one t

particle) occupy only a single orbit, the occupation probability
for this orbit becomes 100%.

The nuclear root-mean-square (rms) radius of 11B in the
present OCM is given as

RN = [
1

11

(
2〈r2〉α + 〈r2〉t + 2Rα−α

2 + 24
11R8Be−t

2
)]1/2

,

(14)

where Rα−α (R8Be−t ) presents the rms distance between α and
α (8Be and t) in 11B. In Eq. (14) we take into account the finite
size effect of α and t clusters, where the experimental rms
radii for the α and t particles are used in

√
〈r2〉α and

√
〈r2〉t ,

respectively.
The reduced width amplitude or overlap amplitude is useful

to see the degree of clustering in the nucleus. In the present
article, we study the reduced width amplitudes for the 7Li + α

and 8Be + t channels, respectively, defined as

Y 7Li−α
J7�74J

(r74) = r74 ×
〈[

δ(r ′
74 − r74)

r ′
74

2 φJ7 (7Li)Y�74 (r̂ ′
74)

]
J

×
∣∣∣∣�J (11B)

〉
, (15)

Y 8Be−t

J8(�83
1
2 )j83J

(r83) = r83 ×
〈[

δ(r ′
83 − r83)

r ′
83

2 φJ8 (8Be)[Y�83 (r̂ ′
83)

×χ 1
2
(t)]j83

]
J

∣∣∣∣�J (11B)

〉
, (16)
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where r74 (r83) denotes the radial part of the relative coordinate
between 7Li and α (8Be and t). The wave function φJ7 (7Li)
[φJ8 (8Be)] of 7Li (8Be) with the total angular momentum J7

(J8) is obtained with the α + t OCM (α + α OCM). The
spectroscopic factor S2 is defined as

S2 =
∫ ∞

0
dr[Y(r)]2, (17)

where Y denotes the reduced width amplitude.

B. Complex-scaling method with α + α + t OCM

The CSM is taken to study the resonant structures of
11B. The CSM is a powerful tool to investigate the resonant
parameters (energies and widths) of the resonant states as well
as the binding energies of the bound states [41]. Application
of the CSM is easy in the framework of the α + α + t OCM.

In the CSM, we transform the relative coordinates of the
α + α + t model shown in Fig. 1, {r ij , rk} with (ij, k) =
(12, 3), (23,1), and (32,1), by the operator Uθ as

Uθ r ij = r ij e
iθand Uθ rk = rke

iθ , (18)

where θ is a scaling angle. Then, the Hamiltonian in Eq. (5) is
transformed into the complex-scaled Hamiltonian,

Hθ = UθH(Uθ )−1. (19)

The corresponding complex-scaled Schrödinger equation is
expressed as

Hθ�θ
J = E�θ

J , (20)

�θ
J = e(3/2)iθ×2�J ({r ij e

iθ , rke
iθ }), (21)

where �J is given in Eq. (1). The eigenstates �θ
J are obtained

by solving the eigenvalue problem of Hθ in Eq. (20). In the
CSM, all the energy eigenvalues E of bound and unbound
states are obtained on a complex energy plane, according to
the so-called ABC theorem given by Aguilar, Combes, and
Balslev [41]. In this theorem, it is proven that the boundary
condition of Gamow resonances is transformed to the damping
behavior at the asymptotic region. Thanks to this condition, the
same theoretical method as that used for the bound states can
be employed to obtain the many-body resonances. For 11B, the
continuum states of 7Li + α, 8Be + t , and α + α + t channels
are obtained on the branch cuts rotated with the 2θ dependence
[41]. On the contrary, bound states and resonances are discrete
and obtainable independently of θ . Thus, these discrete states
are located separately from the many-body continuum spectra
on the complex energy plane. One can identify the resonance
poles of complex eigenvalues: E = Er − i�/2, where Er

and � are the resonance energy measured from the α + α + t

threshold and the decay width, respectively.
In the present study, we adapt the folding potentials for

the α-α and α-t interactions in H in Eq. (19) (see also
Sec. II A). The functional form of the folding potentials is
analytically described in terms of the single Gaussian or the
sum of the Gaussian functions, including the error function
corresponding to the folding-type Coulomb potential. Thus,
the CSM is applicable for the present model because our
folding potentials are analytical [41].

In order to solve the complex-scaled Schrödinger equation,
Eq. (20), we expand the wave function Eq. (21) in terms of the
Gaussian basis functions shown in Eq. (1),

�θ
J =

∑
c

∑
ν,µ

F θ
c (ν, µ)�(12,3)

c (ν, µ)

+
∑

c

∑
ν,µ

Gθ
c (ν, µ)

[
�(23,1)

c (ν, µ)�(31,2)
c (ν,µ)

]
. (22)

The expansion coefficients Fθ
c (ν, µ) and Gθ

c (ν, µ) together
with the discrete energy spectrum E are obtained by solving an
eigenvalue problem derived from Eqs. (20) and (22) [42–44].
This complex scaling method with the Gaussian basis func-
tions is known to give the high precision needed to maintain
the numerical stability of the complex eigenvalue problem.

III. RESULTS AND DISCUSSION

The energy levels of 3/2− and 1/2+ states in 11B with
respect to the α + α + t threshold are shown in Fig. 2, which
are obtained with the α + α + t OCM using the GEM. In the
present calculation, we found that three 3/2− states and two
1/2+ states come out as either bound states against particle
decays or resonant states.

A. 3/2− states

First we discuss the structures of the three 3/2− states.
The 3/2−

1 state at E = −11.1 MeV measured from the
α + α + t threshold corresponds to the ground state of
11B. The calculated nuclear radius is RN = 2.22 fm (see
Table I), the value of which is in correspondence with the
experimental data 2.43 ± 0.11 fm [36]. According to the
analysis of the wave function, the main component of this
state is SU(3)[f ](λ,µ)L = [443](1, 3)1 with Q = 7 harmonic
oscillator quanta (95%) and its dominant angular momentum
channel is (L, S)J = (1, 1

2 ) 3
2
. Thus, this state has a compact

shell-model-like structure, in which the two α and one t

clusters are heavily overlapping and melting each other away
(due to antisymmetrization among nucleons) to have a shell-
model configuration. On the other hand, we found that the 3/2−

2
state at E = −9.4 MeV has also a compact shell-model-like
structure with the dominant component of SU(3)(λ,µ)L =
(1, 3)2 with Q = 7 and (L, S)J = (2, 1

2 ) 3
2
. The nuclear radius

of this state is RN = 2.23 fm, the value of which is similar
to that of the ground state. The energy difference between the
3/2−

1 and 3/2−
2 states is about 2 MeV, which is smaller than the

experimental data (∼5 MeV). This feature is recovered if we
take into account the SU(3)[4421] shell-model configuration
in the present OCM model space (or adopting an extended
α + α + d + n model space in the cluster-model terminology),
as pointed out by Nishioka et al. [20,21].

In addition to the two 3/2− states discussed above, the
3/2−

3 state appears at Ex = 8.2 MeV (E = −2.9 MeV with
respect to the α + α + t threshold). The nuclear radius of
3/2−

3 is RN = 3.00 fm. This value is about 30% larger
than that of the ground state of 11B and is consistent with
the AMD calculation (RN = 3.0 fm) [24]. The rms distance
between α and α [between 8Be(2α) and t] is Rα−α = 4.47 fm
(R8Be−t = 3.49 fm). Note that the value of Rα−α ∼ 4 fm in the
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TABLE I. Calculated nuclear radii (RN ), α–α rms distances
(Rα−α), and 8Be–t distances (R8Be−t ) for the 3/2− states of 11B
together with their α–t and 7Li–α rms distances (Rα−t and R7Li−α ,
respectively). They are given in units of fm.

J π RN Rα−α R8Be−t Rα−t R7Li−α

3/2−
1 2.22 2.45 2.14 2.47 2.13

3/2−
2 2.23 2.49 2.17 2.51 2.17

3/2−
3 3.00 4.47 3.49 4.15 3.82

ground state of 8Be with the α + α OCM calculation. Thus,
the intracluster distance between the two α’s in 3/2−

3 is a little
bit larger than that in the ground state of 8Be. In addition, the
intracluster distance between the α and t clusters in 3/2−

3 is
4.15 fm (see Table I), which is also larger than that (3.5 fm) in
the ground state of 7Li(α + t).

To study the structure of 3/2−
3 , it is interesting to compare

the reduced width amplitudes or overlap amplitudes of the
7Li(g.s) + α channel [8Be(g.s) + t] defined in Eq. (15) [(16)]
for the 3/2−

3 and 3/2−
1 states. The results are shown in Fig. 3.

One sees that (1) the reduced width amplitudes of the 7Li + α

and 8Be + t channels in 3/2−
3 are enhanced and significantly

larger than those in the ground state, in particular, in the
outermost-peak region, and (2) the number of the nodes of their
amplitudes in the former state increase by one larger than those
in the latter. It is noted that the radial behaviors of the reduced
width amplitudes in the ground state of 11B are determined by
the dominant nature of SU(3)(λ,µ) = (1, 3) in its state. As for
the S2 factors in 3/2−

3 , the 7Li(g.s) + α channel with the rela-
tive orbital angular momentum �74 = 0 has the largest value of
0.278 among all of the 7Li + α channels, and the second (third)
largest channel is the 7Li(g.s) + α [7Li(1/2−) + α] channel
(�74 = 2) with S2 = 0.126 (0.125), while the 8Be(g.s) + t

channel with the relative angular momentum j83 = 3/2 has
the largest value of 0.102. In the 3/2−

1 state, the corresponding
S2 factors are 0.144, 0.062, 0.052, and 0.062, respectively, for
7Li(g.s) + α (�74 = 0), 7Li(g.s) + α (�74 = 2), 7Li(1/2−) + α

(�74 = 2), and 8Be(g.s) + t (j83 = 3/2). Consequently, the
3/2−

3 state has an α + α + t cluster structure, although the
cluster structure of the α + t part is significantly distorted
from that of the ground state of 7Li.

Kawabata et al. measured the isoscalar monopole transition
rate B(E0:IS) for 3/2−

3 with the 11B(d,d ′) reaction [23]. The
experimental value is as large as 96 ± 16 fm4, comparable to
that of the Hoyle state in 12C [B(E0:IS) = 120 ± 9 fm4]. The
calculated result in the present model is B(E0:IS) = 92 fm4,
in good agreement with the experimental data. On the other
hand, the AMD calculation also reproduces the experimental
data [BAMD(E0:IS) = 94 fm4]. They analyzed the density
distributions of the ground state and excited states in 11B
and 12C and concluded that the 3/2−

3 state in 11B is a dilute
cluster state, and its features are similar to those of the Hoyle
state 12C(0+

2 ), which is likely to be a gas state of 3α clusters.
However, it is not self-evident in the AMD calculation whether
the 3/2−

3 state possesses an α-condensate nature like the Hoyle
state having about 70% probability of the α particle occupied
in a single S orbit. To see the single-cluster properties in
11B, we study the single-cluster orbits and their occupation

FIG. 3. (Color online) Reduced width amplitudes or overlap
amplitudes of the (a) 7Li(3/2−; g.s) + α and (b) 8Be(0+; g.s) + t

channels in the 3/2−
1 (solid line) and 3/2−

3 (dashed line) states of 11B.
The relative angular momentum of the amplitudes are �74 = 0 for (a)
and j83 = 3/2− for (b). The dotted lines in (a) and (b) represent,
respectively, the reduced width amplitudes of 7Li(3/2−; g.s) + α

(� = 1) and 8Be(0+:g.s) + t (� = 0) in the 1/2+
1 state.

probabilities in the 3/2−
3 state by solving the eigenvalue

equation of the single-cluster density matrices in Eqs. (12)
and (13) and compare them with those in the Hoyle state.

Figure 4 shows the occupation probabilities of the nth
L-wave single-α-particle (single-t-particle) orbits in the
3/2−

1 and 3/2−
3 states (see also Table II). In the 3/2−

1
state, the occupation probabilities of the single-α-particle
orbits spread out in several orbits. These features can be
understood from the fact that the 3/2−

1 state has the dominant
configuration of SU(3)[f ](λ,µ)L = [443](1, 3)1 (Q = 7)
coupled with the spin of the t-cluster. In fact, the SU(3) wave
function is expressed in terms of the harmonic oscillator basis
|(n44�44) ⊗ (n83�83)〉,
|[443](1, 3)L=1〉

=
√

64

225
|(2S) ⊗ (1P )〉 −

√
56

225
|(1D) ⊗ (1P )〉

−
√

24

225
|(1D) ⊗ (0F )〉 +

√
81

225
|(0G) ⊗ (0F )〉, (23)

where (n44�44) [(n83�83)] represents the harmonic oscillator
wave function, n and � denoting the number of nodes and
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(a)

(c) (d)

(b)

FIG. 4. (Color online) Occupation probabilities of the single-α-particle and single-t-particle orbits for the (a) 3/2−
1 (g.s.) and (b) 3/2−

3

states in 11B. For reference, we show those of the single-α-particle orbits for the (c) 0+
1 (g.s.) and (d) 0+

2 (Hoyle) states in 12C calculated by the
3α OCM [9]. The specific numbers of the occupation probabilities for the L1 orbits are given in Table II. Note that the occupation probability
of the Ln orbit with n � 2 is less than 0.05.

the orbital angular momentum, respectively, with respect
to the relative coordinate r44 between the two α clusters
(r83 between the 2α and t clusters). From the definition of
the single-α-particle density matrix in Eq. (12), one obtains
the occupation probabilities as follows: 22.3%, 11.4%,
28.0%, 10.0%, and 28.3% for S1, P1, D1, F1, and G1 orbits,

respectively. These results agree well with those in Fig. 4 and
Table II. The radial behaviors of the S1-, D1-, and G1-wave
single-α-particle orbits as well as the P1 and F1 orbits
are shown in Fig. 5(a). One sees strong oscillations in the
inner regions, coming from the strong Pauli-blocking effect,
reflecting the nature of the compact shell-model-like structure

TABLE II. Occupation probabilities of the single-α-particle and single-t-particle orbits for 3/2−
1 (g.s.), 3/2−

3 , 1/2+
1 ,

and 1/2+
2 in 11B. For reference, we show those of the single-α-particle orbits for 0+

1 (g.s.) and 0+
2 (Hoyle) in 12C [9]. In

the table, “Others” means orbits higher than those shown in the table. The reasons why the single-t-particle occupation
probability with odd (even)-parity orbits is exactly zero in 3/2− (1/2+) are given in the text.

Nucleus J π Orbits S1 P1 D1 F1 G1 Others

3/2−
1 α 0.223 0.111 0.276 0.096 0.268 0.026

t − 0.532 − 0.444 − 0.024
3/2−

3 α 0.286 0.109 0.283 0.048 0.091 0.183
11B t − 0.518 − 0.233 − 0.249

1/2+
1 α 0.070 0.333 0.051 0.298 0.034 0.214

t 0.325 − 0.198 − 0.019 0.458
1/2+

2 α 0.519 0.180 0.035 0.036 0.015 0.215
t 0.933 − 0.026 − 0.004 0.037

12C 0+
1 α 0.350 − 0.353 − 0.273 0.024

0+
2 α 0.720 − 0.063 − 0.027 0.190
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FIG. 5. (Color online) Radial behaviors of the single-α-particle orbits in the (a) 3/2−
1 and (b) 3/2−

3 states, where the solid line (dashed,
dotted, dash-dotted, and dash-two-dotted) denotes the S1 wave (D1, G1, P1, and F1, respectively), and those of the single-t-particle orbits in
the (c) 3/2−

1 and (d) 3/2−
3 states, where the solid line (dashed) denotes the P1-wave (F1-one) [see Figs. 4(a) and (b)]. For reference, those of

the single-α-particle orbits in the (e) ground state of 12C and (f) Hoyle state are shown [9], where the solid line (dashed and dotted) denotes the
S1 wave (D1 and G1, respectively). [see Figs. 4(a) and (b)].

in this state. These behaviors are quite similar to those of the
ground state of 12C shown in Fig. 5(e) [9], the structure of
which is shell-model-like [2–4,13].

On the other hand, the single-t-particle occupation proba-
bilities in the 3/2−

1 state concentrate mainly on the two orbits,
P1 and F1 [see Fig. 4(a) and Table II]. These results originate
from the SU(3) nature of the 3/2−

1 state. In fact, the definition
of the single-t-particle density matrix in Eq. (13) gives 53.3%
for theP orbit and 46.7% for the F orbit, when one uses
the SU(3) wave function in Eq. (23). The reason why the
single-t-particle probability with odd parity is exactly zero

in 3/2− is due to the symmetric nature of the total wave
function of 11B in Eq. (1). In fact, the symmetric character
in Eq. (1) with respect to the exchange between two α clusters
causes even-parity orbital angular momentum between the two
α’s and, thus, only odd-parity-wave single-t-particle orbits are
allowed in the negative-parity 11B state. This is discussed in
detail in the case of 12C with the 3α OCM (see Ref. [9]).
The radial behavior of the P -wave single-t-particle orbit in
Fig. 5(c) indicates a strong oscillation in the inner region,
reflecting the compact shell-model-like feature of the 3/2−

1
state.
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As for the 3/2−
3 state possessing an α + α + t cluster

structure, the occupation probabilities of the single-α-particle
orbits have no concentration on a single orbit [see Fig. 4(b)
and Table II]. One notices that P (α)(S1) ∼ P (α)(D1) ∼ 30%,
where P (α)(Ln) denotes the occupation probability for nth
L-wave α orbit. It is noted that there is a close relation between
the occupation probability P (α) and the S2 factor of the α

reduced width amplitudes, as discussed in Ref. [9]. In fact,
in the present calculation, the S-wave and D-wave S2 factors
of the 7Li + α reduced width amplitudes in 3/2−

3 amount to
0.26 and 0.29, respectively, the ratio of which is similar to
P (α)(S1)/P (α)(D1) ∼ 1.

The radial behaviors of the single-α-particle S1, D1, and
G1 orbits are shown in Fig. 5(b). Compared with the results
of the ground state [see Fig. 5(a)], the strong oscillation in
the inner region is rather suppressed, although the outermost
peak is enhanced in the 3/2−

3 state. For reference, we show in
Fig. 5(f) the S-wave single-α-particle orbit in the Hoyle state
of 12C [9] (which is a typical example of α condensation
in nuclei), where the α particle occupies the S orbit with
about 70% probability. In this Hoyle state, one sees no nodal
behaviors (but small oscillations) in the inner region together
with a long tail, and the radial behavior is likely to be of the
0S-type Gaussian. This Gaussian behavior and its occupation
probability as large as about 70% are the evidence that the
Hoyle state has a 3α-condensate structure [7,9,10]. Comparing
them with the case of the 3/2−

3 state in 11B, we find remarkable
qualitative differences between them: (1) the 3/2−

3 state has no
concentration of occupation probability on a single-α-particle
orbit and (2) nodal behaviors remain in the inner region in
3/2−

3 , indicating a rather large Pauli-blocking effect. These
results show that the 3/2−

3 state does not have α-condensate
nature like the Hoyle state.

Concerning the single-t-particle motions in 3/2−
3 , the P1

orbit has the largest probability of 51.8%. The radial behavior
of the P1 orbit is shown in Fig. 5(d), and it has no nodal
behaviors but somewhat largely oscillating behaviors in the
inner region, in contrast with the case of the single-α-particle
orbits. The reason why the nodal behavior disappears is due
to the fact that the rms distance between the center-of-mass of
2α and the triton is as large as R8Be−t 
 3.4 fm (see Table I),
and thus the Pauli-blocking effect is weakened significantly to
make the small oscillation in the inner region.

From the abovementioned results, the 3/2−
3 state could not

be described by the product states of clusters, although its state
has the α + α + t cluster structure. The essential reason why
the 3/2−

3 state does not have the nature of the cluster product
states is due to the fact that the 3/2−

3 state is bound by 2.9 MeV
with respect to the α + α + t threshold, while the Hoyle state
appears by 0.38 MeV above the 3α threshold; that is, the
energy level is located around the Coulomb barrier produced
by the clusters. This extra binding energy of the 3/2−

3 state
with respect to the three-body threshold hinders significantly
the development of the gas-like α + α + t structure with a
large nuclear radius in the state. In Refs. [7,19], the authors
discussed important requirements for the emergence of the
cluster-gas states with a large radius, in which all the clusters
occupy an 0S orbit, and thus its dominant configuration is
(0S)n (n denotes the number of the clusters): (1) The state

FIG. 6. (Color online) Calculated energy levels of the positive-
parity states in 11B with respect to the α + α + t threshold together
with the experimental data [36].

should be located above the constituent cluster threshold to
make a dilute cluster structure with a large nuclear radius,
that is, it should appear around the Coulomb barrier produced
by the relevant constituent clusters, and (2) all of the clusters
interact dominantly in S-wave with each other to avoid the
Pauli-blocking effect among the clusters as well as to reduce
the effect of the centrifugal barrier among them. These are the
necessary conditions for the appearance of the cluster product
states. These conditions are not fulfilled in the 3/2−

3 state as
discussed in the present study. Thus, the 3/2−

3 state does not
have the cluster-product-state nature.

B. 1/2+ states

The positive-parity levels of 11B obtained by the present
α + α + t OCM calculation are shown in Fig. 6 (only 1/2+
states as well as 3/2− states are given in Fig. 2). The 1/2+

1 ,
3/2+

1 , and 5/2+
1 states are stable against any particle decays.

Other calculated states correspond to resonant states that are
identified with use of the CSM, as explained in Sec. II B. One
can see rather good correspondence to the experimental data.
In the present article, we concentrate on studying the structure
of 1/2+ states. The structures of other positive-parity states
will be discussed elsewhere, although we found that some
even-parity states shown in Fig. 6 have cluster structures.

The calculated nuclear radius of 1/2+
1 is RN = 2.82 fm.

This value is similar to the 3/2−
3 state, which has the

α + α + t cluster structure (see Table I). Figure 3(a) shows
the reduced width amplitude or overlap amplitude for the
7Li(3/2−: g.s) + α channel with the relative orbital angular
momentum �74 = 1. One sees that the shape of the outermost
peak at r ∼ 5 fm is similar to that of 3/2−

3 . The S2 factor
for this channel is 0.203. This is the largest among all of
the 7Li + α channels with 7Li(g.s, 1/2−, 7/2−, 5/2−), where
the corresponding S2 factors are 0.203, 0.099, 0.120, and
0.047, respectively. As for the 8Be + t channel, the S2 factor
for 8Be (g.s) + t [8Be(2+) + t] is 0.130 (0.134). The reduced
width amplitude of the 8Be(g.s) + t channel is shown in
Fig. 3(b). On the other hand the α–t distance (7Li − α) in 1/2+

1
is Rα−t = 3.81 fm (R7Li−α = 3.45 fm). This value is a little
bit larger than that of the 7Li ground state (Rα−t = 3.5 fm)
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(a) (b)

FIG. 7. (Color online) Occupation probabilities of the single-α-particle and single-t-particle orbits for the (a) 1/2+
1 and (b) 1/2+

2 states
in 11B.

obtained by the α + t OCM calculation. Thus, the 1/2+
1

state has a dominant structure of 7Li(g.s) + α with P -wave
relative motion. As discussed in Sec. III A, the 3/2−

3 state has
the largest S2 factor for the 7Li(g.s) + α channel with S-wave
relative motion. This means that the state includes significantly
the structure of 7Li(g.s) + α. In the nonidentical two-cluster
states, for example, in the 16O + α states of 20Ne, there appear
the parity-doublet states, 0+ and 1−, around the 16O + α

threshold, in which the relative motion between 16O and α is of
the S wave and P wave, respectively [2,45]. Thus, the 1/2+

1 and
3/2−

3 states of 11B, which are located around the 7Li(g.s) + α

threshold, can be interpreted as the parity doublet in 11B.
The occupation probabilities of the single-α-particle and

single-t-particle orbits for 1/2+
1 are shown in Fig. 7(a) (see also

Table II). The P1 (F1) orbit of the α particle has the largest
(secondarily largest) occupation probability of 33% (30%).
One sees a close relationship between the cluster occupation
probabilities and the S2 factors (as well as one between
the single-cluster orbits and the reduced width amplitudes):
(1) the S2 factor of 7Li(g.s) + α with �74 = 1 (�74 = 3) is the
largest (second largest) among all of the 7Li + α channels, as
discussed above, and (2) the radial behavior of the P1 orbit in
Fig. 9(a) is similar to that of the reduced width amplitude of the
7Li(g.s) + α channel in Fig. 3(a). It should be noted that
the occupation probabilities satisfy with a sum rule, while
the S2 factors do not. On the other hand, the occupation
probabilities of single-t-particle orbits spread out over three
orbits, S, D, and G. This feature is similar to the results of
the S2 factors for the 8Be + t channels. The reason why the
odd-parity t-orbit occupation probabilities are exactly zero
comes from a symmetric feature of the α + α + t cluster model
with respect to the exchange of the two α’s, as mentioned
before. The present results indicate that the 1/2+

1 state does
not correspond to the product states of clusters, in which all
clusters dominantly occupy the 0Sα orbit. The main reason why
the 1/2+

1 state does not have a dilute structure like the Hoyle
state is due to the fact that 1/2+

1 is bound by 4.2 MeV with
respect to the α + α + t threshold. This fact hinders strongly
the growth of a gas-like α + α + t structure in 1/2+

1 .
The CSM with the α + α + t OCM is a powerful tool

to identify resonant states, in particular, those around the
α + α + t threshold. Figure 8 displays the energy eigenvalues

obtained by solving the complex-scaled Schrödinger equation
in Eq. (20) with 2θ = 18◦ (θ denotes the scaling angle). As
explained in Sec. II B, one can identify bound states and
resonances as stationary points independently of θ . In the
present study, in addition to the bound 1/2+

1 state, we found that
the 1/2+

2 state appears at Ex = 11.85 MeV, (E = 0.75 MeV
just above the α + α + t threshold), as a resonant state with
the width of � = 190 keV. It is reminded that the Hoyle state
[12C(0+

2 )] appears at 0.38 MeV above the 3α threshold and has
the very small width of � = 8.5 ± 1.0 eV.

It is instructive to study the structure of the 1/2+
2 state

under the bound-state approximation, because the calculated
width is small. We found that the calculated nuclear radius
of 1/2+

2 is 5.93 fm, the value of which is significantly larger
than that of 1/2+

1 . This means that the 1/2+
2 state has a dilute

cluster structure. To study the structure further, we calculated
the occupation probabilities and radial behaviors of the

FIG. 8. (Color online) Energy eigenvalues of 1/2+ states obtained
by solving the complex-scaled Schrödinger equation in Eq. (20)
with 2θ = 18◦. The real energy Eα+α+t is measured from the
α + α + t threshold. In this figure, only the energy region of
0.6 MeV � Eα+α+t � 1.2 MeV is shown. A stationary point at E =
(0.75, −0.095), independent of the value of θ , gives the resonance
parameters. Other points correspond to the discretized α + α + t

and 8Be(0+) + t continuum states with 2θ = 18◦, which are located
around the dotted line of 2θ = 18◦.
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FIG. 9. Radial behaviors of the single-α-particle orbits in the 1/2+
1 and 1/2+

2 states: (a) P1 wave of 1/2+
1 with the largest occupation

probability P (α)(P1) = 33% and (b) S1 wave of 1/2+
2 with P (α)(S1) = 52% [see Figs. 7(a) and (b)]. Those of the single-t-particle orbits in the

two 1/2 states are shown in (c) for the S1 wave of 1/2+
1 with the largest occupation probability P (t)(S1) = 33% and in (d) for the S1 wave of

1/2+
2 with P (t)(S1) = 93%.

single-α-particle and single-t-particle orbits by diagonalizing
the single-cluster density matrices defined in Eqs. (10) and
(11). The results are shown in Fig. 7(b). We see that the
occupation probability of the S1-wave α orbit (Sα) is as large
as about 52%, and that of the S1-wave t orbit (St ) amounts to
about 93%. Then the probability of the (Sα)2(St ) configuration
in 1/2+

2 can be estimated to be 1.97/3 ∼ 65%, where the
dominator denotes the total cluster number (3 clusters) and the
numerator is the cluster number occupied in the (0Sα)2(0St )
configuration, that is, 2 × 0.55 + 0.93 = 1.97. The radial
behaviors of the Sα orbit and the St orbit are depicted in
Figs. 9(c) and 9(d), respectively, showing a Gaussian behavior
with no nodes. Thus, we could call this state the Hoyle analog,
where all clusters are mainly in their respective 0S orbits,
that is, (0Sα)2(0St ) with a probability of about 65%, which is
similar to the Hoyle state with the main configuration of (0Sα)3

possessing a probability of about 70%. Note that the present
1/2+

2 state satisfies the necessary conditions of the appearance
of the product states of clusters as discussed in Sec. III A. The
peak position in the Sα orbit (St orbit) is around 3.5 fm (7.0 fm).
This result means that the triton cluster moves outside of the α

clusters. Thus, the 1/2+
2 state has a t-halo-like structure around

the two α clusters. It should be noted that the S-wave α-α
interaction is attractive enough to produce the resonant state
of 8Be(g.s), but the S-wave α-t interaction is weakly attractive

and has no ability to produce bound/resonant states in 7Li. This
qualitative difference makes the t-halo-like structure around
the two α clusters in the 1/2+

2 state.
Here, it is interesting to discuss the reason why the

calculated width of the 1/2+
2 state is small (�cal = 190 keV),

despite the large excitation energy (Ex = 11.85 MeV). The
decay width is composed of the contributions from the
two-body decays (7Li + α and 8Be + t) and the three-body
decay (α + α + t). As for the three-body decay, it is suppressed
strongly due to the very small phase space arising from the fact
that the 1/2+

2 state is located at 0.75 MeV above the α + α + t

threshold. On the other hand, the 8Be(g.s) + t decay is
possible, because its state appears at about 0.7 MeV above the
8Be(g.s) + t threshold. But, its energy level is located inside
the Coulomb barrier (no centrifugal barrier for the S-wave
decay of 8Be(g.s) + t), and thus its decay is hindered. As for
the 7Li + α decay, the energy of 1/2+

2 measured from the
7Li(g.s:3/2−) + α threshold is about 3.8 MeV. In this case, the
orbital angular momentum of the decaying α particle should
be P wave, but the P -wave occupation probability of the
α particle in the state is as small as 20% (see Fig. 7). Thus,
the P -wave decay of 7Li(g.s) + α is suppressed largely due
to the small occupation probability and the Coulomb and cen-
trifugal barriers. On the contrary, the S-wave decay of 7Li + α

is also possible, because the S-wave occupation probability of
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the α particle is about 53%. However, the bound and/or reso-
nant states of positive-parity 7Li states have not been identified
experimentally so far in the low-energy region up to Ex ∼
15 MeV [40]. This experimental fact indicates a large hin-
drance of the S-wave 7Li + α decay with even-parity 7Li states.
Consequently the calculated width of the 1/2+

2 state becomes
small.

It is interesting to discuss the experimental situation on the
1/2+ states (isospin T = 1/2) of 11B around the α + α + t

threshold. As mentioned in Sec. I, the 1/2+(3/2+) state
at Ex = 12.56 MeV with � = 210 ± 20 keV (located at
1.4 MeV above the α + α + t threshold), which was identified
so far as the isospin T = 3/2 state [36], has recently been
observed through the α + 7Li decay channel [33–35]. Thus,
the latter experiments indicate that the Ex = 12.56 MeV
state is T = 1/2. Comparing the experimental results with
our present theoretical results, the energy and width of
the 1/2+

2 state obtained by the present study are in good
correspondence with the experimental data. Thus, the present
calculated results indicate that the 12.56-MeV state could be
assigned as the 1/2+

2 state (T = 1/2), the wave function of
which has the nature of the product states of the clusters, 2α

and t , all in the lowest 0S orbit. Our results also support
the experimental indication of the 12.56-MeV state being
T = 1/2 [34].

IV. SUMMARY

We have studied the structure of 3/2− and 1/2+ states in
11B with the α + α + t OCM using the GEM. The model space
covers the description of 7Li + α and 8Be + t cluster structures
and α + α + t gas-like structures including the shell-model-
like structures. Full levels up to 3/2−

3 and 1/2+
2 around the α +

α + t threshold are reproduced. The 3/2−
1 (g.s) and 3/2−

2 states
are found to have the shell-model-like compact structures,
the results of which are consistent with the previous cluster
model analyses by Nishioka et al. [20–22]. The 3/2−

3 state is
characterized by the monopole transition strength as large as
0+

2 at Ex = 7.65 MeV in 12C. The present study succeeded
in reproducing its excitation energy and monopole transition
strength. We found that this state has an α + α + t cluster
structure with a nuclear radius of RN = 3.00 fm. The study
of the single-cluster properties such as single-cluster orbits
and occupation probabilities for 3/2−

3 showed that there is
no concentration of the single-α occupation probability on
a single orbit and the radial part of the single-α orbits has
nodal behaviors in the inner region, illustrating rather strong
Pauli-blocking effect. These results are in contrast with those
of the Hoyle state with the dilute 3α-condensate-like character
(0Sα)3, in which the α particle occupies a single 0S orbit (zero
node) with about 70% probability. Consequently the 3/2−

3
state could not be identified as a product state of clusters,
possessing a dominant gas-like configuration of (0Sα)2(0St ).
The reason why the 3/2−

3 state does not have such a gas-like
configuration can be understood from the following facts: The
3/2−

3 state is bound by 2.9 MeV with respect to the α + α +
t threshold, while the Hoyle state is located by 0.38 MeV
above the 3α threshold and has a dilute 3α structure. The
extra binding energy of the 3/2−

3 state with respect to the

α + α + t threshold is likely to suppress strongly the growth
of the gas-like α + α + t structure in this state.

As for the 1/2+ states, the 1/2+
1 state appears as a bound

state at E
exp
x = 6.79 MeV around the 7Li + α threshold. This

low excitation energy indicates that α-type correlation should
play an important role in the state. In fact, we found that the
1/2+

1 state with RN = 3.14 fm has the 7Li(g.s) + α structure
with P -wave relative motion, although the 7Li(α + t) part
is rather distorted in comparison with the ground state of
7Li. Because the 3/2−

3 state has the largest S2 factor for the
7Li(g.s) + α channel with S-wave relative motion compared
with those of other 7Li + α and 8Be + t channels, the 1/2+

1
and 3/2−

3 states of 11B can be interpreted as the parity-doublet
partners of each other. They are similar to the typical example
of the parity doublet, 0+

1 and 1−
1 states in 20Ne, with the 16O + α

cluster structure [2,45].
In addition to 1/2+

1 , we found that the 1/2+
2 state appears

as a resonant state at Ex = 11.95 MeV (� = 190 keV) around
the α + α + t threshold with CSM. The large radius (RN =
5.98 fm) indicates that the state has a dilute cluster structure.
The analysis of the single-cluster properties showed that this
state has a main configuration of (0Sα)2(0St ) with about 65%
probability. Thus, we could call the 1/2+

2 state the product
states of clusters with (0Sα)2(0St ), which is similar to the Hoyle
state possessing the main configuration (0Sα)3 with about 70%
probability. It should be noted that 1/2+

2 is located by 0.75
MeV above the α + α + t threshold, while 1/2+

1 is bound by
4.2 MeV with respect to the three-cluster threshold. The latter
binding energy leads to the suppression of the development of
the gas-like α + α + t structure in 1/2+

1 , whereas the gas-like
structure with a large nuclear radius grows up in 1/2+

2 because
the state appears above the three-body threshold.

Recently, the 1/2+(3/2+) state at Ex = 12.56 MeV with
� = 210 ± 20 keV (located at 1.4 MeV above the α + α + t

threshold) was observed through the α + 7Li decay channel
[33–35]. The experimental energy and width of the 12.56-MeV
state (T = 1/2) are in good correspondence with the present
calculated results of the 1/2+

2 state. The product states of
clusters in 11B, thus, could be assigned as the 12.56-MeV state.
In addition, the present study supports the experimental result
[34] that the 12.56-MeV state is T = 1/2, not T = 3/2 [36].

It is interesting to study the α + α + 3He cluster structures
and product states of the clusters in the 11C mirror nucleus.
Their states should correspond to the 3/2+

3 , 1/2+
1 , and 1/2+

2
states in 11B. The theoretical study is now in progress.
The results will be given elsewhere. Since the experimental
situation in 11C is not very clear in comparison with the
case of 11B, it is highly hoped that the measurements of the
monopole transition rates and the decay properties in 11C will
be performed in the near future.
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