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Extended approximation for the lowest-lying states in odd-mass nuclei
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An enhanced model, based on the extended boson approximation, for the lowest-lying states in odd-mass
nuclei is presented. Our approach is built on the quasiparticle phonon model, extending it to take into account
the ground-state correlations due to the action of the Pauli principle more accurately than in the conventional
theory. The derived interaction strengths between the quasiparticles and the phonons in this model depend on the
quasiparticle occupation numbers explicitly coupling the odd-mass nucleus equations with those of the even-even
core. Within this model we calculated the transition probabilities in several Te, Xe, and Ba isotopes with A ≈ 130.
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I. INTRODUCTION

Due to its simplicity and numerous successful applications
the random phase approximation (RPA) [1–3] is widely
considered as a good first approximation to study small
fluctuations in atomic nuclei. However, this simple model
enjoys only a limited success when one needs to describe
properties of states from the lowest part of the spectrum
in nuclei remote from the magic configurations. The quasi-
boson approximation (QBA), underlying the RPA, stimulates
a discussion concerning its applicability to the problem of
correctly taking into account the ground state correlations
(GSC) in even-even nuclei. Numerous improvements of this
theory with respect to adding correlations in the ground states
of even-even nuclei have been attempted, as for example
in [3–7]. These enhanced models stem from the disregard
of the QBA and are related to more precise inclusion of the
Pauli principle when calculating matrix elements of various
operators. An enhanced version of this approximation, referred
to as an extended RPA (ERPA), which was proposed a long
time ago [8] and later developed in [9,10], proved successful
in improving the theoretical results for most measurable
quantities near the nuclear ground states as, for example, the
transition charge densities in the interior region.

In the present work, we follow the ERPA approach,
extending it to provide a refined version of the quasiparticle
phonon model (QPM) for odd-even nuclei [11–14]. The
interaction strengths between the quasiparticles and phonons
in the presented model depend on the number of quasiparticles
in the ground state. In this way, the core-particle equations
couple with the generalized equations describing the pairing
correlations and the excited vibrational states of the even-even
core, thus forming a large nonlinear system. This model
is applicable to open-shell spherical and transitional odd-A
nuclei where the Pauli principle effects are becoming essential
as the number of nucleons in the unclosed shell increase.

Our research descends from the studies presented in
[14,15]. There it has been shown that the backward amplitudes
in the wave functions of these nuclei play a very important
role for better agreement with the experimentally measured
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spectroscopic factors and the properties of the states from the
lower part of the energy spectrum. The theory in the latter
papers is based however on the QBA, which we intend to
improve by taking into account the action of the Pauli principle
more precisely due to the extended boson approximation
(EBA) [8].

Another widely adopted approach to study odd-A nuclei
uses the interacting boson-fermion model (IBFM). The IBFM,
introduced in [16] and further extended in numerous papers
(e.g., [17]), differs from our approach in that the excited states
of the even-even core nucleus are created by operators of a
pure boson nature. In the IBFM the core-particle interaction
depends on a number of free parameters which are usually
fitted to match the spectrum in the odd-A nucleus. In this
respect the QPM is closer to the interacting shell model where
this interaction is derived from the dynamics of the constituting
nucleons.

This paper first outlines the QPM and its extension based
on the EBA in even-even nuclei. A comparison between the
models built on the QBA and EBA is established on the basis of
the reduced transition probabilities from the ground to the first
2+ state in even-even nuclei with A ≈ 130. In Sec. III, we give
the QPM theory for odd-even nuclei, emphasizing the effect
of the renormalization on the interaction vertices. Calcula-
tions on the spectroscopic factors and transition probabilities
between states in some odd-even Te, Xe, and Ba nuclei, where
experimental data are available, are presented in Sec. IV.
Conclusions are drawn in Sec. V.

II. EVEN-EVEN NUCLEI

This section aims to mark the basic building blocks of the
QPM and its EBA extension (EQPM) for one-phonon states.
The notations used in the following are the same as in [10]
and [14].

In EQPM one defines the quantities ρj , which are propor-
tional to the quasiparticle occupation numbers in the ground
state on the level j :

ρj = 1√
2j + 1

∑
m

〈|α†
jmαjm|〉, (1)

where α denotes a quasiparticle (qp),

αjm = ujajm − (−)j−mvja
†
j−m. (2)
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The other key constituent of the theory is the phonon operators
(ph) defined as

Q
†
λµi =

1

2

∑
jj ′

[
ψλi

jj ′ A
†(jj ′; λµ) − (−1)λ−µϕλi

jj ′ A(jj ′; λ− µ)
]
.

(3)

The ground state |〉 in Eq. (1) is the vacuum state for the phonon
operators: Qλµi |〉 = 0.

We study the dynamics of nuclear systems governed by the
simple Hamiltonian in the form

H =
(n,p)∑

τ

{∑
jm

(Ej − λτ )a†
jmajm − 1

4
G(0)

τ : (P †
0 P0)τ :

− 1

2

∑
λµ

κ (λ) : (M†
λµMλµ) :

}
. (4)

accounting for the nuclear mean field, the pairing, and the
isoscalar multipole-multipole interactions, respectively.

If the pairing vibrations are not taken into consideration then
one can obtain [10] the following modified QPM equations
describing the states in even-even nuclei:

1

2

∑
j

(2j + 1)

{
1 − (1 − 2ρj )(Ej − λ)√

(Ej − λ)2 + �2

}
= n, (5)

G

4

∑
j

2j + 1√
(Ej − λ)2 + �2

(1 − 2ρj ) = 1, (6)

κλ

2λ + 1

∑
jj ′

(1 − ρjj ′ )

(
f λ

jj ′u
+
jj ′

)2
(εj + εj ′ )

(εj + εj ′ )2 − ω2
λi

= 1, (7)

∑
jj ′

(1 − ρjj ′ )
[(

ψλi
jj ′

)2 − (
ϕλi

jj ′
)2] = 2, (8)

ρj = 1

2

∑
λij ′

2λ + 1

2j + 1
(1 − ρjj ′ )

(
ϕλi

jj ′
)2

. (9)

The emergence of the factors (1 − ρjj ′ ) takes into account the
blocking effect due to the Pauli principle and requires one to
solve these equations as a system of coupled equations.

The multipole-multipole interaction strengths κ (λ) are
treated as free parameters in our study. In the numerical
calculations we kept the quadrupole-quadrupole term only
because it gives the dominant part of the long-range interaction
for the determination of the low-lying states’ properties in
the nuclei of interest. One way to fix the parameter κ (2) is
to have it reproduce the energy of the first 2+ state (ω2+

1
).

Since a one-to-one correspondence between ω2+
1

and κ (2)

exists, we show most of the calculated quantities as a function
of ω2+

1
because its values are more intuitive and closer to

the experimental values than the corresponding interaction
strength values.

In the following we discuss the results obtained within the
EQPM for the quasiparticle and particle occupation numbers
as well as for the transition probabilities in even-even nuclei.

The differences between the quasiparticle and particle
occupation numbers in 130Ba as a function of the first
quadrupole phonon’s energy within the QPM and EQPM are
presented in Fig. 1. From this figure we see that the smearing
of the Fermi surface increases together with the strength of the
field force (and, correspondingly, ω21 decreases). In the right
panel we point out that the relative difference of the particle
occupation numbers calculated within the two model variants
can reach up to 5%, as is the case for the proton subshell 2d5/2.

The transition probabilities in odd-even nuclei are directly
linked to the transition probabilities in their corresponding
even-even cores, as will be discussed in Sec. IV. We therefore
perform a comparative study of the reduced transition prob-
abilities B(E2|g.s. → 2+

1 ) in several even-even nuclei within
the QPM and EQPM. The transition probabilities in the EQPM
are given as

B(Eλ|g.s. → λi) =
⎡
⎣1

2

∑
jj ′

(1 − ρjj ′ )f λ
jj ′u

+
jj ′g

λi
jj ′

⎤
⎦

2

. (10)
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FIG. 1. Left: Quasiparticle occupation numbers ρj × 100 in the ground state of 130Ba within a one-phonon QPM and EQPM theory for the
subshells in the valence shell. Right: Same as in the left panel but for the quantities (nEQPM

j − n
QPM
j /n

QPM
j ) × 100, where nj is the number of

particles on the level j . The quantities in both panels are plotted as a function of the first quadrupole phonon’s energy.
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FIG. 2. The reduced transition probabilities B(E2|g.s. → 2+
1 ) (in units of e2fm4) in several Te, Xe, and Ba isotopes plotted against the

energy ω2+
1

of the first quadrupole phonon. The solid lines represent the experimental energies and transitions.

The nuclei presented in Fig. 2 were chosen to be close to
spherical ones, having E(4+

1 )/E(2+
1 ) < 2.5. From this figure

we can see that the blocking effect due to the Pauli principle
exerts a large impact on this measurable quantity. The obvious
superiority of the EQPM in this region serves as a motivation
to study odd-even systems with a core described within
the framework of this model. Besides, the transition charge
densities, being related to the reduced transition probabilities,
were studied in [10]. There it was shown that the application of
the EQPM leads to a better reproduction of the experimentally
measured distributions in the nuclear interior.

III. ODD-EVEN NUCLEI

In our treatment the states in odd-even nuclei are de-
scribed as mixed states composed of pure quasiparticle and

quasiparticle×phonon (qp×ph) states including backward-
going amplitudes [14,15]

�ν(JM) = CJνα
+
JM +

∑
jλi

Djλi(Jν)P †
jλi(JM) − EJνα̃JM

−
∑
jλi

Fjλi(Jν)P̃jλi(JM)|〉, (11)

where P
†
jλi(JM) = [α†

jQ
†
λi]JM is the qp×ph creation operator

and˜stands for time conjugation, according to the convention
ãjm = (−1)j−maj−m.

The structure coefficients from (11) and the energies of
the states in the odd-A nucleus can be obtained by making
use of the equation-of-motion method. In conformance to the
relation (1), when calculating the matrix elements, we obtain
the following generalized eigenvalue problem:

⎛
⎜⎜⎝

εJ V (Jj ′λ′i ′) 0 −W (Jj ′λ′i ′)
V (Jjλi) KJ (jλi|j ′λi ′) W (Jjλi) 0

0 W (Jj ′λ′i ′) −εJ −V (Jj ′λ′i ′)
−W (Jjλi) 0 −V (Jjλi) −KJ (jλi|j ′λi ′)

⎞
⎟⎟⎠

⎛
⎜⎜⎝

CJν

Dj ′λ′i ′(Jν)
−EJν

−Fj ′λ′i ′(Jν)

⎞
⎟⎟⎠

= ηJν

⎛
⎜⎜⎜⎝

1 0 0 0
0 1 − L∗(Jjλi) 0 0
0 0 1 0
0 0 0 1 − L∗(Jjλi)

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

CJν

Dj ′λ′i ′(Jν)
−EJν

−Fj ′λ′i ′(Jν)

⎞
⎟⎟⎟⎠ (12)
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FIG. 3. The matrix elements V (ν2d3/2|ν3s1/2 × 2+
1 ) and W (ν2d3/2|ν2d3/2 × 2+

1 ) in 131Ba plotted against the energy ω2+
1

of the first

quadrupole phonon in 130Ba.

For conciseness, we provide only the leading terms of the
expressions for the matrix elements:

V (Jjλi) = 〈|{[αJM,H ], P †
jλi}|〉

= − 1√
2

[1 − ρj + L∗(Jjλi)]�(Jjλi), (13)

W (Jjλi) = 〈|{[α†
JM,H ], P̃ †

jλi}|〉

= πλ

πJ

εJ ρjϕ
λi
Jj − 1

4
[1 − ρj + L∗(Jjλi)]

πλ

πJ

×
∑
i1

A(λi1i)ϕ
λi1
Jj , (14)

KJ (jλi|j ′λ′i ′) = 1

2
[IJ (jλi|j ′λ′i ′) + IJ (j ′λ′i ′|jλi)]

= δjj ′δλλ′δii ′[1 − ρj + L∗(Jjλi)](εj + wλi)

− δjj ′δλλ′δii ′(1 + L(Jjλi))

× 1

4

∑
ı1

A(λii1)L∗
J |j (jλi|jλi1). (15)

For the numerical calculations we used a diagonal approx-
imation for L [12]. In the following we list the notations
entering into the matrix elements (13)–(15):

IJ (jλi|j ′λ′i ′) = 〈|{Pjλi(JM), [H,P +
j ′λ′i ′(JM)]}|〉, (16)

L∗
J |j ′ (jλi|j ′λ′i ′) = πλλ′

∑
j1

(1− ρj1j ′)ψλ′i ′
j1j

ψλi
j1j ′

{
j ′ j1 λ

j J λ′

}
,

(17)

L∗(Jjλi) = πλλ

∑
j1

(1 − ρj1j ′ )ψλi
1jψ

λi
1j

{
j j1 λ

j J λ

}
,

(18)

A(λii ′) =
∑

τ

Xλi(τ ) + Xλi ′ (τ )√
Yλi(τ )Yλi ′(τ )

, (19)

Xλi(τ ) =
τ∑

jj ′

(1 − ρjj ′ )
(
f λ

jj ′u
+
jj ′

)2
εjj ′

ε2
jj ′ − ω2

λi

, (20)

Yλi(p) = Yλi(n) = ωλi

∑
jj ′

(1 − ρjj ′ )
(
f λ

jj ′u
+
jj ′

)2
εjj ′(

ε2
jj ′ − ω2

λi

)2 .

(21)

In the limiting case ρj = 0, the problem in (12) is brought
to the model obtained in [14]. In the following we discuss the
effect of the correlations in the nuclear ground state on the
behavior of the matrix elements in (12).

The interaction between the quasiparticles and the phonons
will naturally become stronger when the smearing around the
Fermi level increases. In Fig. 3, the dependence of sample
qp-ph interaction strengths on ω2+

1
is plotted. The weakening

of this interaction within the extended model, as compared
to the interaction derived within the QBA, is getting more
salient as the ground-state correlations increase. It is also worth
noting that the strengths in the backward direction depend not
only on the structure of the phonon state |λi〉 building the
matrix element W (Jjλi) but also on all other phonons entering
into the sum in the second summand of the right-hand side
of Eq. (14). This implies that the higher-lying phonon states
influence the properties of the states near the ground state. We
estimated that the contribution of the higher-lying phonons
to the quantities W (Jjλi) can be up to 25%. The diagonal
matrix elements KJ (jλi|j ′λ′i ′) exhibit a similar effect due
to the second summand of the right-hand side of (14). This
sum generates an energy shift, which can contribute to the
appearance of intruder states in the lower part of the energy
spectrum, as discussed in detail in [12].

In our previous paper [14], it was found out that the decrease
in the energy of the first 2+ state leads to a considerable growth
of the quantities W (Jjλi). thus pushing the first solution very
close to the first qp×ph pole. This did not allow us to correctly
reproduce both the properties of the odd-even nucleus and
its even-even core using the same values for the multipole
constants κλ and correspondingly ωλπ

1
. We noticed that the
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values of ω2+
1

in the even-even core, which let us reproduce
the energies of the lowest part of the spectrum in the odd-
even nucleus with reasonable accuracy, were much higher than
their experimental counterparts. In this regard the weakened
interaction between the pure qp and qp×ph configurations (13)
and (14) caused by the quasiparticle blocking should yield
better agreement between the theory and the experiment.

IV. NUMERICAL RESULTS

In this section, we present numerical results showing
the influence of the backward propagating terms on the
spectroscopic factors and the transition probabilities between
states in odd-even nuclei using the two approximations—QBA
and EBA—giving rise to different variants of the model. The
latter are denoted in a similar way as in [14]:

QPM P: one-phonon model, including Pauli principle
corrections (as in [12]);
QPM BCK P: one-phonon model, including backward
amplitudes and Pauli principle corrections (as in [14]);
EQPM BCK P: one-phonon model, including both back-
ward amplitudes and Pauli principle corrections having a
core described within the EQPM.

In the following we give technical details on the calculations
performed.

For simplicity, we employed a Wood-Saxon mean field with
parameters fitted to reproduce the nuclear binding energies.
In a similar way, the pairing strengths Gτ were obtained to
match the odd-even mass differences in neighboring nuclei (for
details see [14]). We included quadrupole phonons only since
the quadrupole-quadrupole interaction, along with the pairing
interaction, plays a dominant role for the low-lying collective
states in even-even nuclei, as already pointed out in Sec. II.
We let the quadrupole strength κ (2), correspondingly ω2+

1
,

vary and analyze the dependence of the quantities of interest
on ω2+

1
. The phonons’ energy cutoff is set to 15 MeV. One

appealing feature of the QPM and in particular of the variant
described in this paper is that the interaction strengths between
the quasiparticles and phonons depend only on the parameters
describing their internal structure, thereby introducing no extra
degrees of freedom.

From the computational perspective solving the algebraic
system (5)–(9) is a more challenging task than solving the
equations of the standard QPM. As an initial approximation
to the solution of the coupled problem we take the solutions
obtained from the uncoupled equations (i.e., ρj = 0).

We tested the so-developed approximation on several odd-A
Te, Xe, and Ba isotopes entering into the transitional region. As
has already been pointed out in Sec. II, where we investigated
the properties of the corresponding even-even cores, the use
of the EQPM improves the agreement between the results of
the calculations and the experimental data significantly.

First, we head off to investigate the single-particle com-
ponents of the wave function. In the model versions which
take into account the backward amplitudes we found a serious
depletion of the quasiparticle strengths as exemplified in Fig. 4
for the case of the qp state ν2d5/2. We found a similar behavior
for the rest of the states from the valence shell in all nuclei

 0
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C
2  +

 E
2

η [MeV]

131Ba
QPM-BCW-P

QPM-P
EQPM-BCW-P

FIG. 4. Quasiparticle strength distribution (C2 + E2) of the state
ν2d5/2 in 131Ba. The quadrupole-quadrupole interaction strength κ (2)

is kept constant in the calculations within the three model versions.

within the considered region. An appropriate experimentally
measurable quantity to study the single particle strength is the
spectroscopic factor (SF) for the (d,p) reaction, calculated as

SJν = (CJνuJ − EJνvJ )2. (22)

From Fig. 5 we see that the value of ω2+
1
, at which the

experimentally measured spectroscopic factor is reproduced,
is lower in the case of EQPM BCK P than in QPM BCK P
by about 50 keV and is therefore closer to the energy of the
first 2+ state in 130Ba. In Table I, this comparison between
the two model versions is extended for several nuclei where
experimental data are available. From there we see a systematic
improvement with respect to ω2+

1
ranging from 50 to 150 keV

in favor of EQPM BCW P.
While the spectroscopic factors are influenced mainly

by the properties of the last, unpaired particle, the electric
transition probabilities depend strongly on the bulk properties
of the even-even core. The largest contribution to these
quantities is due to transitions between pure qp and qp×ph
states represented by the sum in the right-hand side of the
following expression:

Bodd(Eλ; J1ν1 → J2ν2)

= 1

π2
J1

(
CJ1ν1CJ2ν2enpf λ

J1J2
v−

J1J2

+
∑

i

U (J1ν1J2ν2λi)
√

B(Eλ; g.s. → λi)

)2

, (23)
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FIG. 5. Spectroscopic factor for the (d,p) reaction in 131Ba as a
function of ω2+

1
.
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FIG. 6. Same as Fig. 5 but for B(E2|3/2+
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1 ) in 123Te, 129Xe, and 131Ba.

where enp is 1 if the unpaired particle is a proton and 0 if it is a
neutron; B(Eλ; g.s. → λi) is the reduced transition probability
in the corresponding even-even nucleus given by formula (10)
and

U (J1ν1J2ν2λi) = πJ1

πλ

[CJ2ν2DJ2λi(J1ν1)

−EJ2ν2FJ2λi(J1ν1)][1 + L(J1J2λi)]

+ (−1)J1−J2+λ πJ2

πλ

[CJ1ν1DJ1λi(J2ν2)

−EJ1ν1FJ1λi(J2ν2)][1 + L(J2J1λi)]. (24)

In expression (23) the termsn corresponding to transitions
between pure qp×ph states have been neglected as being small.
In systems where the last particle is a neutron we make the
approximation

Bodd(Eλ; J1ν1 → J2ν2)

= 1

π2
J1

[∑
i

U (J1ν1J2ν2λi)
√

B(Eλ; g.s. → λi)

]2

≈ 1

π2
J1

U 2(J1ν1J2ν2λ1)B(Eλ; g.s. → λ1), (25)

which stems from the fact that the coefficients U (J1ν1J2ν2λi)
are non-negligible for the lowest-lying states only and out
of these states the transition to the first excited state is the
strongest.

The dependence Bodd(E2|3/2+
1 → 1/2+

1 ) = Bodd(E2|
3/2+

1 → 1/2+
1 )(ω2+

1
) is plotted in Fig. 6 within the three

TABLE I. Spectroscopic factors for the (d,p) reaction of the state
3/2+

1 in 123Te, 125Te, 127Te, and 131Ba. The second column gives the
experimental [18] values (Exp). The third and fourth columns give
the energies ω2+

1
(in MeV) of the corresponding even-even cores

calculated within QPM and EQPM at which the experimental values
of the SF are reproduced.

Nuclide Exp ω2+
1

, QPM BCW P ω2+
1

, EQPM BCW P

123Te 0.5 1.4 1.3
125Te 0.46 1.5 1.3
127Te 0.38 1.5 1.35
131Ba 0.25 1.05 1

model versions. This function shows an almost linear behavior
in the case of the QPM P while in the calculations which
take into account the backward amplitudes a peak emerges.
This peak is a result of the increased fragmentation in the
latter pair of model versions (cf. Fig. 4), which contributes
to the enhanced values of the coefficients U (J1ν1J2ν2λi).
As a result, the maximum value of the presented transition
probabilities in the EQPM BCK P and QPM BCK P is about
three times as large as the maximum value obtained within
the QPM P, bringing us closer to the experimental values. It
is also worth noting that the values of ω2+

1
, which correspond

to the peak values obtained within the EQPM BCK P, are
about 100 keV lower than in the QPM BCK P. We therefore
conclude that the effect of the renormalization yields better
results with respect to the experimentally measured energy
of the corresponding even-even core though it is still rather
higher from it.

V. SUMMARY AND OUTLOOK

In this work we extended the model presented in [14] by tak-
ing into account the blocking effect due to the Pauli principle,
following the approach prescribed in [8] and [10]. Renormal-
ized quasiparticle-phonon interaction strengths in both the for-
ward and backward directions have been derived. Numerical
calculations on the spectroscopic factors and transition proba-
bilities in several Te, Xe, and Ba isotopes have been performed
using a Wood-Saxon potential well and residual interaction
of a pairing+quadrupole type. The results indicate an overall
improved description of these experimentally measured quan-
tities due to the weakened quasiparticle-phonon interaction
strengths.

However, despite the adoption of this elaborate approxi-
mation, further improvements of the theory toward weakening
of the qp-ph interaction could resolve some of the existing
discrepancies with the experiment. Some steps in this direction
would be the inclusion of higher multipolarities, the use of
multiphonon configurations, and the development of a more
elaborate approach to account for further correlation effects.
We finally conclude that our understanding of the properties
of the lowest-lying states in relatively stable odd-A nuclei still
lacks the desired accuracy [19].
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