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Effect of particle-vibration coupling on single-particle states: A consistent study
within the Skyrme framework
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We discuss calculations of the single-particle states in magic nuclei, performed within the particle-vibration
coupling (PVC) approach by using consistently the Skyrme effective interaction. The vibrations are calculated
within fully self-consistent random-phase approximation and the whole interaction is also used in the PVC
vertex. Our main emphasis is therefore the discussion of our results in comparison with those in which some
approximation is made. The perspectives for improving current density functional theory (DFT) calculations are
also addressed.
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I. INTRODUCTION

The nuclear implementation of density functional theory
(DFT), namely, the mean-field calculations based on effective
interactions, are believed to be the most microscopic way to
study in a systematic way the ground states and excitations
of medium-heavy and heavy nuclei (up to the limiting case of
infinite nuclear matter). This is in keeping with the fact that
the so-called ab initio approaches cannot be used except for
light nuclei.

There are different studies carried out by mean-field prac-
titioners. On the one side, several groups are trying to apply
existing models to more neutron-rich or proton-rich nuclei, as
well as to exotic excited states (e.g., pygmy resonances), to
test the performances of the different parameter sets and/or to
suggest improvements. At the same time, there are attempts
to link the mean-field models to more basic theories such as
Brückner-Hartree-Fock or even in-medium QCD. For a general
review on mean field models, one can consult Ref. [1].

However, the basic question underlying any kind of
mean-field approach concerns the understanding of which
many-body correlations are effectively included implicitly
(no matter whether one starts from an effective two-body
interaction or directly from an effective functional). The DFT
purists argue that if a functional is general enough, that is,
if it includes the most general density dependence allowed
by symmetry considerations, it should, in principle, provide
accurate results for variational quantities such as the total
energy. One possible objection is whether this is possible in
practice: If the density dependence is rather involved and the
associated parameters are many, the guideline provided by
explicit calculations of the many-body correlations should
be quite useful. At the conceptual level, however, the more
serious problem is associated with the fact that there are
quantities that, strictly speaking, do not belong to the DFT
framework, such as the single-particle (s.p.) states.

In this case (as for other observables), two possible routes
can be undertaken. Some authors [2–5] are currently trying
to improve the accuracy of present DFT implementations
aiming at functionals with so-called “spectroscopic” accuracy

(referring to, of course, s.p. spectroscopy). In this case, the
Kohn-Sham theorem applied to finite nuclei (see Ref. [6] for
a recent contribution about open problems on this issue) only
guarantees that the energy of the lowest state with given quan-
tum numbers can be exact if the functional is exact. However,
within that route, one cannot solve the problem of evaluating
the fragmentation of the s.p. strength and, in particular, the
so-called spectroscopic factors. Another point of view, which
lies at the basis of the present piece of work, is to generalize the
shell model to the so-called “dynamical” shell model [7–10].

In this latter case, one considers the Hartree-Fock
description of s.p. states as the first step in a more complete
many-body description. The s.p. properties of the system
are associated with the s.p. Green’s function, which is the
solution of the Dyson equation including the self-energy
�. The self-energy is, in general, nonlocal both in space
and in time (or momentum- and energy-dependent). The
Hartree-Fock potential can be seen as the lowest-order term
of the self-energy. To which extent further corrections are
relevant depends, in general, on the many-body system
under study. In the case of nuclei, owing to the dominance
of collective modes in the low-lying part of the spectrum,
coupling of the s.p. states with vibrations (in spherical
systems) or rotations (in deformed systems) is believed to
provide the main contribution to the s.p. self-energy.

If we restrict our discussion to magic nuclei, calculations
of the particle-vibration coupling (PVC) have been performed
for many decades and have indicated that the coupling effects
are relevant. In particular, the effective mass m∗ (to which the
density of levels is associated) is found to change from ≈0.7 m
for levels far from the Fermi energy to higher values close to
the bare mass m for levels close to the Fermi energy [7].

Most of the calculations of these effects have been per-
formed at the level of second-order perturbation theory. We
use the same approach here. At the same time, somewhat
surprisingly, most of these calculations are based on purely
phenomenological inputs. In Tables 4.3a and 4.3b of Ref. [7],
an extensive review of the results obtained in 208Pb by
nine groups in the period 1968–1983 can be found. Rather
different frameworks had been adopted, none being fully
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self-consistent: s.p. potentials range from harmonic oscillator
(HO) to Woods-Saxon (WS) or Hartree-Fock (HF) with
Skyrme forces; residual interactions at the particle-vibration
vertex are either multipole-multipole forces, forces of Landau-
Migdal type, Skyrme forces but with velocity-dependent
terms dropped, or even G-matrix interactions. Consequently,
although there is qualitative agreement about several calcu-
lations, it is rather hard to assess seriously the quantitative
impact of all the approximations done and compare in detail
with DFT-based calculations.

The issue is quite burning. As discussed in detail in
Ref. [11], if one looks, for example, at neutron states in
208Pb, results from DFT and from different implementations
of PVC on top of self-consistent mean field (SCMF) differ
substantially among themselves and with the experimental
findings. The understanding of this discrepancy being, of
course, one of the ultimate goals for the whole nuclear
structure community, we undertake a preliminary and quite
relevant step in the present work.

The relativistic calculations of Ref. [9] are fully self-
consistent, because the whole interaction is considered both
to build the phonons within the relativistic random-phase
approximation (RRPA) framework and to construct the PVC
vertex. Also, those calculations go beyond the simple second-
order perturbation theory. However, within the framework
of nonrelativistic effective interactions there is no fully self-
consistent version of PVC. We are not aware of calculations
based on the Gogny interaction, and in the case of Skyrme
forces the pioneering calculations of Ref. [8] have neglected
the velocity-dependent part of the force when coupling
particles with vibrations. Consequently, we deem it to be rather
timely to study the PVC effects in magic nuclei based on
a fully self-consistent RPA calculation of the vibrations and
without dropping any term in the coupling vertex. We present
calculations of the energy shift owing to PVC for neutron
particle and hole states around the core of two benchmark
double-magic nuclei, namely, 40Ca and 208Pb.

We present our formalism in Sec. II and selected results in
Sec. III: In particular, we focus on the shifts just mentioned,
by commenting the differences between complete calculations
and approximate calculations. In Sec. IV we draw our
conclusions and discuss perspectives for future work. The
Appendix is devoted to the details of the calculation of the
full PVC vertex.

II. FORMALISM

We discuss in this section the main theoretical ingredients of
our calculations. We start by solving the radial HF equations in
a radial mesh. The radial step is 0.1 fm and the mesh extends
up to 15 fm in the case of 40Ca. The values are 0.15 and
24 fm in the case of 208Pb. After the HF solution is found, we
solve the RPA equations in the usual matrix formulation. The
continuum is discretized by imposing box boundary conditions
at the upper limit of the radial mesh. Consequently, in addition
to occupied states denoted by h in what follows, we obtain
unoccupied states that are also labeled by a discrete index p

(the corresponding energies are εh and εp). We do not discuss
the details of RPA here because we have used it for several

earlier publications (see, e.g., Ref. [12]). The interaction used
is SLy5 [13]. We treat tensor in a perturbative way; namely, we
introduce the tensor terms on top of SLy5 in the same way (and
with the same parameters) as has been done in Ref. [14]. These
terms are used to correct the s.p. HF states but they are not
introduced at higher order; that is, they are not used in RPA nor
they are introduced in the PVC vertex. A consistent treatment
of tensor, by using the parameter sets introduced in Ref. [15],
will be the subject of a forthcoming work. Tensor within RPA
has been introduced recently, in the study of both non-charge-
exchange [16] and charge-exchange [17,18] excitations.

In calculating the different multipole responses we have
deemed it necessary to check both the sum rules and the
properties of specific states that are known to couple strongly to
nucleons, that is, the low-lying states. In 40Ca (208Pb) we have
calculated natural parity phonons with multipolarity L from 0
to 4 (from 0 to 5). In the RPA model space all the occupied
states are included, together with the lowest six unoccupied
states having increasing values of the radial quantum number
n (for each of the values of l and j that are allowed by selection
rules). With this choice, in 40Ca the energy-weighted sum rules
satisfy the double commutator value by about 97%. The same
is true in 208Pb (only for the 5− the exhaustion is 95%).

After calculating the RPA phonons, only those having
energy smaller than 30 MeV and fraction of the total isoscalar
or isovector strength larger than 5% have been considered
for the coupling with s.p. states. In the next section, we
see that the low-lying 3−

1 state in 40Ca and the 2+
1 and 3−

1
states in 208Pb are the most effective. Their properties are
shown in Table I. It is clear that, although their energies
are somewhat overestimated with respect to the experimental
values as a consequence of the value of m∗ associated with the
force SLy5 (m∗/m = 0.70), the description of the transition
probabilities is quite reasonable. The choice of the phonon
model space is the only free parameter of the present
approach. The phonons we consider are labeled by nL in the
following (their energies will be written as ωnL). Introducing
noncollective states (and consequently also states far above the
giant resonance region and/or higher multipoles) would make
it necessary to take seriously into account the issue of the Pauli
principle correction and would be outside the spirit of the PVC.

Once we dispose of a model space built with single-nucleon
states and phonon states, we calculate the energy of the state i

TABLE I. Properties of the low-lying phonons that contribute
most to the PVC in 40Ca and 208Pb. The experimental data are from
Ref. [22].

Multipole Theory Experiment

Energy B(EL, 0 → L) Energy B(EL, 0 → L)
[MeV] [e2 fm2L] [MeV] [e2 fm2L]

40Ca
3−

1 3.99 1.14 × 104 3.74 1.80 × 104

208Pb

2+
1 5.12 3.02 × 103 4.09 3.10 × 103

3−
1 4.11 5.96 × 105 2.61 6.21 × 105

064307-2



EFFECT OF PARTICLE-VIBRATION COUPLING ON . . . PHYSICAL REVIEW C 82, 064307 (2010)

i

p

i

(a)

i

h

i

(b)

i

i

h

(c)

i

p

i

(d)

FIG. 1. The four diagrams associated with the single-nucleon
self-energy. See the text for details.

by means of second-order perturbation theory, that is,

εi = ε
(0)
i + �εi. (1)

In this expression, ε
(0)
i is the HF (unperturbed) energy, �εi

is the energy shift calculated as �i(ω = ε
(0)
i ), where �i is the

self-energy, and finally εi is the corrected (dressed) s.p. energy.
The expression of the full second-order self-energy �i is the
same as in all previous publications on the subject [7,8]. We
report it here for the sake of completeness. It reads

�i(ω) = 1

2ji + 1

⎛⎝ ∑
nL, p>F

|〈i||V ||p, nL〉|2
ω − εp − ωnL + iη

+
∑

nL, h<F

|〈i||V ||h, nL〉|2
ω − εh + ωnL − iη

⎞⎠ , (2)

where the s.p. and phonon energies have been defined
previously, the (small) imaginary part η is set at 0.05 MeV
in the present calculations, and the numerators contain the
squared modulus of a reduced matrix element called PVC
vertex and discussed below. The two terms on right-hand side
of Eq. (2) correspond to the diagrams shown in Fig. 1. In this
figure, diagrams (a) and (b) [(c) and (d)] define the self-energy
of a particle (hole) state i. Diagrams (a) and (d) correspond
to the first term of Eq. (2), whereas diagrams (b) and (c)
correspond to the second term of Eq. (2). All four diagrams
can be evaluated by standard rules, namely, by associating a
matrix element to every vertex and writing appropriate energy
denominators: The sum in the first term is over the particle
states for the diagrams (a) and (d), while the sum in the second
term is over the hole states for the diagrams (b) and (c). The
prefactor 1/(2ji + 1) in Eq. (2) arises from sum over final
states and average over initial states. We now provide details
on the calculation of the PVC vertex.

In the case of the coupling with density modes, the basic
vertex depicted in Fig. 2 can be calculated starting from the
representation of the nth phonon with multipolarity L (here L

is the same as the total angular momentum J and parity is the
natural one) as

|nLM〉 = �†
n(LM)|RPA〉, (3)

�†
n(LM) =

∑
ph

(
XnL

ph A
†
ph(LM) − YnL

ph Aph(L̃M)
)
, (4)

where A and A† are standard creation and annihilation
particle-hole operators coupled to LM and |RPA〉 is the RPA
ground-state (cf. also p. 249 of Ref. [19]). If the interaction V

j Ln

i

FIG. 2. The basic particle-vibration vertex.

is used at the vertex, we obtain for the reduced matrix element

〈i||V ||j, nL〉 = √
2L + 1

∑
ph

XnL
ph VL(ihjp)

+ (−)L+jh−jpY nL
ph VL(ipjh), (5)

where VL is the p-h coupled matrix element,

VL(ihjp) =
∑
all m

(−)jj −mj +jh−mh〈jimijj − mj |LM〉

× 〈jpmpjh − mh|LM〉
× 〈jimi, jhmh|V |jjmj , jpmp〉.

(6)

The derivation of formula (5) is provided in the Appendix.
The aim of this work is to consider the full (antisym-

metrized) Vph. We include in it the rearrangement terms so
that this interaction is the same as that used within the fully
self-consistent RPA. So far, the only existing microscopic
calculations of the PVC within the Skyrme framework [8]
have been performed by using only the (central, velocity-
independent) t0 and t3 part of the force, that is, by neglecting
the velocity-dependent, spin-orbit, and Coulomb terms of Vph.
Moreover, the additional approximation used in Ref. [8] was
that phonons that are predominantly excited by an external
field carrying spin S and isospin T are only coupled through
the (S,T ) component of the p-h interaction. In our case,
we treat properly the spin and isospin degrees of freedom
(i.e., without simplifying approximations). We present results
which include either the full p-h interaction or the t0 and t3
part only. In the latter case, Vph is simply Vqq ′ (r) · δ(�r1 − �r2)
(where the labels indicate that we treat properly the difference
between proton-proton, neutron-neutron, and proton-neutron
interactions), and the p-h coupled matrix elements reduce to

VL(ihjp) = i−li−lh+lj +lp

2L + 1
〈i||YL||j 〉〈p||YL||h〉

×
∫

dr

r2
Vqq ′ (r)ui(r)uj (r)up(r)uh(r), (7)

VL(ipjh) = (−)L+jp−jhVL(ihjp),

where the radial part of the s.p. wave functions, written as
φnljm(�r) ≡ unlj (r)

r
[Yl ⊗ χ1/2]jm, has been introduced. In this

simplified case,

〈i||V ||j, nL〉 = √
2L + 1

∑
ph

(
XnL

ph + YnL
ph

)
VL(ihjp). (8)
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We recall that the radial transition density of the state nL,
defined by means of the equation

δρ
(q)
nL (�r) = 〈nL|ρ̂q(�r)|0̃〉 = δρnL(r)Y ∗

LM (r̂), (9)

in which ρ̂q is the density operator and |0̃〉 is the RPA ground
state, is in fact given by

δρ
(q)
nL (r) = 1√

L+1

∑
ph∈q

(
X

(nL)
ph + Y

(nL)
ph

)〈p||YL||h〉up(r)

r

uh(r)

r
.

As in the discussion before Eq. (7), q is the charge index which
labels either neutrons or protons. Then one can also write

〈i||Vph||j, nL〉
=

∑
ph

(
XnL

ph + YnL
ph

) 1√
2L + 1

〈i||YL||j 〉〈p||YL||h〉

×
∫

dr

r2
Vqq ′ (r)ui(r)uj (r)up(r)uh(r)

= 〈i||YL||j 〉
∑
q ′

∫
dr Vqq ′ (r)ui(r)uj (r)δρ(q ′)

nL . (10)

In the general case, Eq. (5) cannot be further simplified.

III. RESULTS

Our results for the neutron states of 40Ca are reported in
Table II. In the column labeled “SLy5” the bare HF energies ε

(0)
i

are displayed. In the next column the same energies are shown
when the force “SLy5 + T” of Ref. [14] is employed. In it,
the tensor part is added perturbatively on top of SLy5. For
40Ca the tensor effects are almost negligible: This is expected
because this nucleus is �l · �s saturated and the spin-orbit
densities give essentially no contribution to the tensor part
of the energy functional and of the mean field (see Ref. [14]
for a detailed discussion on this point).

TABLE II. Results for the s.p. neutron energies in 40Ca
obtained within HF by employing the Skyrme force SLy5 without
(second column) or with (third column) the tensor terms. In the
fourth and fifth columns, respectively, the energy shifts and the s.p.
corrected energies defined by means of Eq. (1) are provided in the
case in which only the velocity-independent part of the Skyrme force
(t0 and t3 terms) is considered in the PVC vertex. The same values
are provided in the next two columns when the full Skyrme force is
used in the PVC vertex. Finally, in the last column the experimental
energies are shown (from Ref. [23]).

SLy5 SLy5+T t0,t3 only Whole Skyrme

ε(0) ε(0) �εi εi �εi εi ε
exp
i

1f5/2 −1.28 −1.26 −3.74 −5.00 −1.55 −2.81 −3.38
2p1/2 −3.10 −3.11 −3.44 −6.55 −2.05 −5.16 −4.76
2p3/2 −5.29 −5.28 −3.87 −9.15 −2.15 −7.43 −6.76
1f7/2 −9.67 −9.69 −2.67 −12.36 −0.95 −10.64 −8.62
1d3/2 −15.19 −15.17 −2.25 −17.42 −0.63 −15.80 −15.64
2s1/2 −17.27 −17.26 −4.46 −21.72 −1.06 −18.32 −18.19
1d5/2 −22.09 −22.10 −0.99 −23.09 −0.29 −22.39 −22.39

In the columns labeled �εi the shifts owing to PVC are
displayed. The most evident feature is the strong cancellation
between the results obtained with only the t0 and t3 (i.e.,
velocity-independent) part and with the whole Skyrme force
at the vertex. An argument to justify this cancellation can be
obtained by considering the coupling with a pure isoscalar (IS)
phonon (which is appropriate in the case at hand, namely, 40Ca,
because isospin is a good quantum number and the low-lying
3− state is providing most of the effect, as is shown in what
follows). The velocity-independent part of the interaction reads

V
(t0,t3)

ph, IS = F0(r)δ(�r1 − �r2), (11)

where

F0(r) = 3

4
t0 + t3

48
ρα(r)

[
3(α+1) (α+2) + α(1−α) (1 + 2x3)

×
(

ρn(r) − ρp(r)

ρ(r)

)2
]

. (12)

The effect of the velocity-dependent part can be estimated by
using the Landau-Migdal approximation (see, e.g., Ref. [20]):
within this approximation, one would introduce a correction
to the function F0(r), which is given by

δF0(r) = [3t1 + (5 + 4x2)t2]
k2
F

8
. (13)

For interior nuclear densities of the order of 0.16 fm−3 and
associated kF = 1.33 fm−1, the term (13) cancels Eq. (12) by
about 75%, while at half density corresponding roughly to the
nuclear surface this cancellation is reduced and it is of the
order of 50%. It is interesting to notice that these values are
qualitatively in agreement with the reduction of the energy
shifts, respectively, for holes and particles: The former are in
fact expected to be localized more inside the nucleus, with
respect to the latter.

To study this point in more detail, we display in Fig. 3 the
values of the energy shifts obtained using the Landau-Migdal
approximation, in the case of the f7/2 neutron state in 40Ca.

0 0.5 1 1.5 2
kF [fm

-1
]
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E
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rg
y 
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 [M
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FIG. 3. Shift of the f7/2 neutron state in 40Ca, calculated using the
Landau-Migdal approximation for the velocity-dependent part of the
interaction at the PVC vertex, as a function of adopted values of kF . It
is crucial to remember that the exact value of this energy shift, namely,
the one calculated with the full, nonapproximated velocity-dependent
interaction, is −0.95 MeV (cf. Table II).
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FIG. 4. Separate contributions of the phonons having different
multipolarity to the energy shift of the neutron states in 40Ca.

Because the exact value of this energy shift is −0.95 MeV, the
Landau-Migdal approximation provides values in reasonable
agreement if kF is taken of the order of 1.33 fm−1 or even larger.

Although we have included all phonons according to the
prescription of last section, we have clearly identified the
low-lying 3− state as the most effective in producing
the energy shifts. In Fig. 4 we display, for all neutron states,
the values of �εi obtained from the inclusion in the mass
operator of phonons having different multipolarity. It is clear
that L = 3 is by far dominant owing mainly to the low-lying
state, although L = 2 plays some role owing to the isoscalar
giant quadrupole resonance (ISGQR) and L = 4 is also not
negligible. The monopole and dipole phonons play a minor
role. For particle states, all contributions are negative. This
is attributable to the dominance of diagram (a) in Fig. 1:
These have negative energy denominators and this does fix
their sign, if the state under study is not far from the Fermi
energy. Reversing the arguments, one should expect positive
contributions for the shifts of the hole states. However, in
this case, diagram (c) is associated with hole states having
all the same positive parity, and only positive parity phonons,
such as the ISGQR, can give non-negligible contributions,
because the parity between the hole state (i) and the PV state
(j ⊗ L) in Eq. (2) should be conserved. Thus, only the ISGQR
gives a large positive contribution in diagram (c). In the other
multipoles with negative parity, such as the 3−

1 state, diagram
(d) in Fig. 1 can contribute to the energy shift. Diagram (d)
[first term on the right-hand side of Eq. (2)] has an energy
denominator with opposite sign (at least close to the Fermi
energy) to the contribution (c) and therefore produces negative
shifts as shown in the bottom panel of Fig. 4.

In the last column of Table II the experimental values for
the s.p. states (taken from Ref. [23]) are shown so that one can
compare with them the energies ε

(0)
i or εi . In Fig. 5 the same

results are displayed in a way that is more easy to visualize.
We have calculated the r.m.s. deviation σ between theoretical
and experimental s.p. states. σ is equal to 0.94, 0.95, and
0.62 MeV in the case of SLy5, SLy5 + T, and SLy5 + T
plus PVC, respectively. We can conclude that PVC leads to

FIG. 5. Neutron states in 40Ca. The four columns, from left to
right, correspond to the HF calculation with SLy5 and SLy5 + T,
to the HF plus PVC calculation, and to the experimental findings.
The values plotted are the same reported in columns 2, 3, 7, and 8 of
Table II.

an improvement of the description of these neutron states
(although this is not the case if one focuses only on the s.p. gap).

In Table III and Fig. 6, the same results are shown for
the case of 208Pb. In this case, the effect of tensor is not
negligible (again, as discussed in Ref. [14]). The cancellation
in the energy shifts (between the velocity-independent and
velocity-dependent part of the vertex function) already found
in 40Ca is visible here as well. The energy shifts are, in general,
smaller in the present case than in 40Ca. In fact, more occupied
states and states with larger angular momenta are involved in
the PVC in 208Pb. Owing to this fact, the different contributions
(a) and (b) (for particles), or (c) and (d) (for holes), tend to
cancel each other, whereas this does not happen in 40Ca.

Also in this case, it is possible to compare either the bare
or the dressed s.p. energies with the experimental findings that
are shown in the last column of Table III. We have calculated
the r.m.s. deviation σ between theory and experiment already
discussed for 40Ca. There is still improvement when PVC is
included, but it is rather small: In fact, σ is equal to 1.44,
1.51, and 1.21 MeV in the case of SLy5, SLy5 + T, and
SLy5 + T plus PVC, respectively. In Ref. [9] it has been found
that the PVC on top of the relativistic mean field leads to a
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TABLE III. The same as Table II in the case of the neutron states
of 208Pb. The experimental s.p. energies shown in the last column are
from Ref. [24].

SLy5 SLy5+T t0,t3 only Whole Skyrme

ε(0) ε(0) �εi εi �εi εi ε
exp
i

3d3/2 0.28 0.34 −0.44 −0.10 −0.32 0.02 −1.40
2g7/2 −0.02 0.15 −1.02 −0.87 −0.52 −0.37 −1.45
4s1/2 −0.13 −0.10 −0.35 −0.45 −0.23 −0.33 −1.90
3d5/2 −0.69 −0.65 −0.67 −1.32 −0.45 −1.10 −2.37
1j15/2 −3.65 −1.20 −2.08 −3.28 −0.52 −1.72 −2.51
1i11/2 −1.91 −1.02 −0.97 −1.99 −0.32 −1.34 −3.16
2g9/2 −3.20 −3.22 −0.71 −3.73 −0.39 −3.61 −3.94
3p1/2 −8.15 −8.05 0.05 −8.00 0.04 −8.01 −7.37
2f5/2 −9.14 −8.95 0.17 −8.78 0.03 −8.92 −7.94
3p3/2 −9.25 −9.19 0.33 −8.86 0.04 −9.15 −8.27
1i13/2 −9.41 −10.19 0.27 −9.92 0.08 −10.11 −9.00
1h9/2 −12.76 −12.07 0.69 −11.38 0.12 −11.95 −10.78
2f7/2 −12.09 −12.07 2.40 −9.67 0.64 −11.43 −9.71

more substantial improvement of this r.m.s. deviation (from
1.92 MeV in the case of NL3 to 0.44 MeV in the case of NL3
plus PVC). The reason for this difference should be further
investigated, and we describe in the next section some of the
actions that we envisage to undertake.

FIG. 6. The same as Fig. 5 for the neutron states in 208Pb.

IV. CONCLUSIONS

Our work is motivated by the fact that, despite many
phenomenological calculations and qualitative arguments
about the PVC effects in atomic nuclei, only few consistent
microscopic calculations are available. In particular, in the
case of Skyrme interactions, the only existing calculations
are based on approximate evaluations of the PVC vertex in
which the velocity-dependent terms are dropped. Therefore,
we have implemented a scheme in which the s.p. states
are obtained either within HF and or within HF plus PVC,
but with the vibrations calculated using fully self-consistent
RPA and with the whole Skyrme force employed for the
vertices.

In our scheme, second-order perturbation theory is used
when PVC is introduced. We have focused on the single-
neutron states in both 40Ca and 208Pb and we have analyzed
whether bare HF energies, or energies obtained by including
the shift owing to PVC, match experiment better. Our main
result is that the velocity-dependent part of the Skyrme force
tends to reduce the coupling strength to phonons arising from
the velocity-independent terms. The resulting shifts are, as
a consequence, not very large but rather of the order of
≈MeV in the case of 40Ca and of the order of few hundreds
of keV in the case of 208Pb. The dressed single-nucleon
energies obtained by summing these shifts to the bare HF
energies are in better agreement with experiment than the HF
energies. This improvement is more significant in 40Ca than in
208Pb.

The remaining discrepancy with experimental s.p. energies
should be further explored. As a future perspective, one should
certainly investigate whether perturbation theory is appropriate
or not, by comparing with exact solutions of the Dyson
equation. Eventually, one expects to be able to judge whether
it is possible to match the experimental results by refitting a
new Skyrme force and using it in this self-consistent scheme
or whether the Skyrme ansatz has problems to be applied at
the HF plus PVC level.

APPENDIX: EXPLICIT CALCULATION
OF THE PVC VERTEX

We provide in this Appendix the derivation of the reduced
matrix element associated with the PVC vertex and written in
Eq. (5), namely,

v ≡ 〈imi |V |jmj , LMn〉 = 〈0|aimi
V a

†
jmj

�†
n(LM)|0〉. (A1)

We use definition (4) of the phonon creator operator
together with

A
†
ph(LM) =

∑
mpmh

(−)jh−mh〈jpmpjh − mh|LM〉a†
jpmp

ajhmh
,

Aph(L̃M) =
∑
mpmh

(−)L+M+jh−mh〈jpmpjh − mh|L − M〉

× a
†
jhmh

ajpmp
. (A2)

In the case of TDA one could assume that |0〉 is the HF ground
state and apply directly the Wick’s theorem. In the case of RPA
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phonons, we make the following approximations:

v ≈ 〈0|aimi
V �†

n(LM)a†
jmj

|0〉 ≈ 〈0|aimi
[V,�†

n(LM)]a†
jmj

|0〉.
(A3)

The commutator appearing in the last expression is

[V,�†
n(LM)] =

∑
ph

Xph[V,A
†
ph(LM)] − Yph[V,Aph(L̃M)],

(A4)

and we shall call v1 and v2 the contributions to v arising
from, respectively, the first and the second term in this latter
equation. The commutators between V and the operators A†

and A must be evaluated at the same level of approximation
as in the RPA, that is, consistently with the linearization of
the equations of motion. These commutators can be found, for
example, in Ref. [21]. The first one reads

[V,A
†
ph(LM)] =

∑
mpmh

(−)jh−mh〈jpmpjh − mh|LM〉[V, a†
pah]

=
∑
mpmh

(−)jh+mh〈jpmpjh − mh|LM〉

×
∑
αβ

vαhpβ a†
αaβ, (A5)

and consequently,

v1 =
∑

ph

Xph

∑
mpmh

(−)jh−mh〈jpmpjh − mh|LM〉

×
∑
αβ

vαhβp〈0|aimi
a†

αaβa
†
jmj

|0〉

=
∑

ph

Xph

∑
mpmh

(−)jh−mh〈jpmpjh − mh|LM〉vihjp. (A6)

The second commutator appearing in Eq. (A4) is

[V,Aph(L̃M)]

=
∑
mpmh

(−)L+M+jh−mh〈jpmpjh − mh|L − M〉[V, a
†
hap]

=
∑
mpmh

(−)L+M+jh−mh〈jpmpjh−mh|L−M〉
∑
αβ

vαphβ a†
αaβ,

(A7)

which gives

v2 =
∑

ph

Yph

∑
mpmh

(−)L+M+jh−mh〈jpmpjh − mh|L − M〉

×
∑
αβ

vαpβh〈0|aimi
a†

αaβa
†
jmj

|0〉

=
∑

ph

Yph

∑
mpmh

(−)L+M+jh−mh〈jpmpjh − mh|L − M〉vipjh.

(A8)

We are interested in the reduced matrix element defined by

v = 1√
2ji + 1

〈jjmjLM|jimi〉〈i||V ||j, nL〉

= (−)jj −mj

√
2L + 1

〈jimijj − mj |LM〉〈i||V ||j, nL〉. (A9)

The contribution to this reduced matrix element which includes
the forward RPA amplitudes is, from v1 in Eq. (A6),

√
2L + 1

∑
mimj

(−)jj −mj 〈jimijj − mj |LM〉
∑

ph

Xph

×
∑
mpmh

(−)jh−mh〈jpmpjh − mh|LM〉vihjp (A10)

and this can be written using the p-h coupled matrix elements
of Eq. (6) as

√
2L + 1

∑
ph

XphVL(ihjp). (A11)

The contribution to the reduced matrix element from v2 in
Eq. (A8) is

√
2L + 1

∑
mimj

(−)jj −mj 〈jimijj − mj |LM〉
∑

ph

Yph

×
∑
mpmh

(−)L+jh−mp 〈jhmhjp − mp|LM〉vipjh (A12)

and this can be written as
√

2L + 1
∑

ph

(−)L+jh−jpYphVL(ipjh). (A13)

The sum of Eqs. (A11) and (A13) is the result of Eq. (5).
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COLÒ, SAGAWA, AND BORTIGNON PHYSICAL REVIEW C 82, 064307 (2010)
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