Magnetic moments of T = 3/2 mirror pairs

S. M. Perez, ^{1,2} W. A. Richter, ³ B. A. Brown, ⁴ and M. Horoi ⁵

¹Department of Physics, University of Cape Town, Private Bag, Rondebosch 7700, South Africa

²iThemba LABS, P. O. Box 722, Somerset West 7129, South Africa

³Department of Physics, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa

⁴Department of Physics and Astronomy, and National Superconducting Cyclotron Laboratory,

Michigan State University, East Lansing, Michigan 48824-1321, USA

⁵Department of Physics, Central Michigan University, Mount Pleasant, Michigan 48859, USA

(Received 23 August 2010; published 10 December 2010)

We predict values of the magnetic moments of T=3/2 proton-rich fp-shell nuclei in the mass range A=43–53, by using known values for their neutron-rich mirrors together with shell-model estimates for small quantities. We extend the analysis to those T=3/2 sd-shell mirror pairs for which both the $T_z=-3/2$ and $T_z=+3/2$ magnetic moments have been measured. We find that these obey the same linear relation as previously deduced for T=1/2 mirror pairs.

DOI: 10.1103/PhysRevC.82.064305 PACS number(s): 23.40.Hc, 21.10.Ky, 23.40.Bw, 27.40.+z

I. INTRODUCTION

Techniques involving radioactive ion beams have recently been used to determine the magnetic moments of β -unstable nuclei [1,2]. It is useful in these circumstances to have reliable estimates of the moments, conventionally obtained from largebasis shell-model calculations [3–5]. Focusing on T=1/2 odd-even mirror pairs, we have previously investigated a different method of making these estimates, which either does away with the structure calculations altogether [6] or, more accurately, uses them to determine the small contributions [7] to the magnetic moments coming from the even type of nucleon [8]. Here we extend the method to the $T_z=\pm 3/2$ members of a T=3/2 quadruplet, specifically to cases where the magnetic moment of the $T_z=+3/2$ neutron-rich member is accurately known and where predictions for the proton-rich member are required.

When isospin is conserved the magnetic moments of an odd-even mirror pair can be written (in units of μ_N) as [6]

$$\mu_p = g_p J + (G_p - g_p)(S_o - S_e) + [(G_p - g_p + G_n - g_n)S_e - (g_p - g_n)J_e]$$
 (1)

and

$$\mu_n = g_n J + (G_n - g_n)(S_o - S_e) + [(G_p - g_p + G_n - g_n)S_e + (g_p - g_n)J_e], \quad (2)$$

where μ_p and μ_n are the magnetic moments of the odd-proton and odd-neutron members of the odd-even mirror pair. The free-nucleon values of the g factors are $g_p = 1.0$, $g_n = 0.0$, $G_p = 5.586$, and $G_n = -3.826$. $S_{e/o}$ and $J_{e/o}$ are the contributions from the even/odd type of nucleon to the z components of the total spin S and total angular momentum J of the mirror pair.

Eliminating $(S_o - S_e)$ from Eqs. (1) and (2) yields

$$(\mu_p + \Delta \mu_p) = \alpha(\mu_n + \Delta \mu_n) + \beta J, \tag{3}$$

where $\Delta \mu_p$ and $\Delta \mu_n$ are small terms [7,8] involving the even type of nucleon. Specifically,

$$\Delta \mu_p = -[(G_p - g_p + G_n - g_n)S_e - (g_p - g_n)J_e]$$
 (4)

and

$$\Delta \mu_n = -[(G_p - g_p + G_n - g_n)S_e + (g_p - g_n)J_e]. \tag{5}$$

Dividing Eqs. (3), (4), and (5) by J and defining

$$\gamma_{p,n} = \mu_{p,n}/J$$
 and $\Delta \gamma_{p,n} = \Delta \mu_{p,n}/J$ (6)

yields

$$(\gamma_n + \Delta \gamma_n) = \alpha(\gamma_n + \Delta \gamma_n) + \beta, \tag{7}$$

where $\alpha = (G_p - g_p)/(G_n - g_n)$ and

$$\beta = g_p - \alpha g_n. \tag{8}$$

We assume that for nucleons in nuclei the free-space g factors can be replaced by a single set of effective values denoted by \tilde{G} and \tilde{g} . This then results in α and β being replaced by $\tilde{\alpha}$ and $\tilde{\beta}$ in Eqs. (7) and (8). Thus, given the values of the global parameters $\tilde{\alpha}$ and $\tilde{\beta}$, together with the small terms $\Delta \gamma_p$ and $\Delta \gamma_n$ for a particular pair of mirror nuclei, we can obtain either γ_p or γ_n from a knowledge of the other. For example, an application to T=1/2 mirror pairs yields $\tilde{\alpha}=-1.147\pm0.013$ and $\tilde{\beta}=1.027\pm0.013$, which, when used in an application of Eq. (7) to the mirror pair 57 Cu and 57 Ni [8], results in $\gamma=+1.698\pm0.012$ for 57 Cu [8], in excellent agreement with the recently measured value of $\gamma=+1.721\pm0.005$ [1].

II. APPLICATION TO T = 3/2 MIRROR PAIRS

The technique described above for T=1/2 mirror pairs is more generally applicable for T=n/2, with $n=3,5,\ldots$. For T=3/2 it has already been used under the assumption that $\Delta \gamma_p = \Delta \gamma_n = 0$ [2,8]. Here we apply it to the T=3/2 mirror pairs in the mass range A=43-53, with values of $\Delta \gamma_p$ and $\Delta \gamma_n$ taken from a $0\hbar \omega$ shell-model

TABLE I. Values of γ_p , and γ_n from data on magnetic dipole moments [10]. The contributions $\Delta \gamma_p$ and $\Delta \gamma_n$ have
been estimated from $0\hbar\omega$ shell-model calculations using Eqs. (4)–(6) and free-nucleon values for the g factors.

A, J^{π}	Nucleus	$\gamma_{\scriptscriptstyle P}$	Nucleus	γ_n	$\Delta \gamma_p$	$\Delta \gamma_n$
43,7/2-	⁴³ V		⁴³ Ca	-0.3765(-)	+0.0000	0.0000
45,7/2-	⁴⁵ Sc	+1.3590(-)	⁴⁵ Cr		+0.1312	-0.1691
47,5/2-	^{47}Mn		⁴⁷ Ti	-0.3154(-)	+0.0606	-0.0925
49,7/2-	^{49}V	(+)1.28(1)	⁴⁹ Fe		+0.1462	-0.1810
51,7/2-	⁵¹ Co		⁵¹ Cr	-0.267(1)	+0.0675	-0.0992
53,7/2-	⁵³ Mn	(+)1.435(2)	⁵³ Ni		+0.0442	-0.0751

TABLE II. Predicted magnetic moments for T = 3/2 proton-rich nuclei in the mass range A = 43-53.

Nucleus	μ (nm)		
⁴³ V	$+5.106 \pm 0.049$		
⁴⁵ Cr	-0.822 ± 0.052		
⁴⁷ Mn	$+3.586 \pm 0.035$		
⁴⁹ Fe	-0.585 ± 0.068		
⁵¹ Co	$+4.828 \pm 0.049$		
⁵³ Ni	-1.117 ± 0.057		

calculation with the GPFX1A Hamiltonian [9] using freenucleon values for the g factors in Eqs. (4) and (5). Table I summarizes the information that, together with $\tilde{\alpha}=-1.147\pm0.013$ and $\tilde{\beta}=1.027\pm0.013$, results in the predictions for the magnetic moments of the proton-rich nuclei given in Table II.

In Fig. 1 we reproduce a plot of $\gamma_p + \Delta \gamma_p$ versus $\gamma_n + \Delta \gamma_n$ for the T=1/2 mirror nuclei from Ref. [8] (Table I). On the plot we have superposed, in red, points corresponding to the three sd-shell T=3/2 mirror pairs for which measurements of both γ_p and γ_n are available (see Table III, where for completeness we have included pertinent theoretical

FIG. 1. (Color) $\gamma_p + \Delta \gamma_p$ versus $\gamma_n + \Delta \gamma_n$. The line is the result of fit (B) in Ref. [8]. The single-particle model using free-nucleon values for the coupling constants model is shown by the dashed line.

results for all sd-shell T=3/2 mirror pairs, using the new interaction USDB). We see that the points corresponding to the T=1/2 mirror pairs and to the T=3/2 mirror pairs all fall accurately on a universal $\tilde{\alpha}=-1.147$ and $\tilde{\beta}=1.027$ line, in support of a single set of effective g factors. This important conclusion needs to be reinforced by the inclusion of more T=3/2 data, but we note here that an application of Eq. (7) using the results of Table III for γ_n , $\Delta\gamma_p$, and $\Delta\gamma_n$ yields $\gamma_p=1.569,1.560,$ and 0.237 for 21 F, 23 Al, and

TABLE III. Values of γ_p and γ_n from theory (USDB) and from data on magnetic dipole moments [2,10–12]. The contributions $\Delta \gamma_p$ and $\Delta \gamma_n$ have been estimated from $0\hbar\omega$ shell-model calculations using Eqs. (4)–(6) and free-nucleon values for the g factors.

A, J^{π}	Nucleus	γ_p (theor)	γ_{p}	Nucleus	γ_n (theor)	γ_n	$\Delta \gamma_p$	$\Delta \gamma_n$
19,5/2+	¹⁹ Na	1.7343		¹⁹ O	-0.6126		0.0000	0.0000
$21,5/2^{+}$	21 F	1.5115	1.5678	21 Mg	-0.3392	-0.393	0.2233	-0.2739
$23,5/2^{+}$	^{23}Al	1.5462	1.56(9)	²³ Ne	-0.4198	-0.4318	0.0796	-0.1023
$25,5/2^{+}$	²⁵ Na	1.3468	. ,	²⁵ Si	-0.2348		0.1332	-0.1657
$27,1/2^{+}$	$^{27}\mathbf{P}$	2.0738		27 Mg	-0.8238		0.1501	-0.1975
$29,5/2^{+}$	²⁹ Al	1.4370		²⁹ S	-0.3186		0.1210	-0.1469
$31,3/2^{+}$	³¹ Cl	0.5051		³¹ Si	0.4180		0.1179	-0.1035
$33,1/2^{+}$	33 P	2.8706		^{33}Ar	-1.5306		0.1155	-0.1265
$35,3/2^{+}$	35 K	0.0906	0.245(5)	³⁵ S	0.7411	0.667(27)	0.1084	-0.0728
37,3/2+	³⁷ Cl	0.2346	. ,	³⁷ Ca	0.6385	. ,	0.0000	0.0000

³⁵K, in excellent agreement with the measured values 1.5678, 1.56(9), and 0.245(5), respectively.

these odd-even nuclei. A number of predictions of magnetic dipole moments of β -unstable proton-rich nuclei in the mass range A=43-53 have been made.

III. CONCLUSIONS

We have extended previous analyses of the correlations between magnetic dipole moments of T=1/2 mirror pairs to T=3/2 mirror pairs. This has been done by explicitly including contributions made by the even type of nucleon in

ACKNOWLEDGMENTS

This work is partly supported by NSF Grant PHY-0758099, NSF/MRI Grant PHY-0619407, and the National Research Foundation of South Africa under Grant 2054166.

- [1] T. Cocolios et al., Phys. Rev. Lett. 103, 102501 (2009).
- [2] J. Krämer et al., Phys. Lett. B 678, 465 (2009).
- [3] I. S. Towner and F. C. Khanna, Nucl. Phys. A 399, 334 (1983).
- [4] B. A. Brown and B. H. Wildenthal, Phys. Rev. C 28, 2397 (1983).
- [5] B. A. Brown and B. H. Wildenthal, At. Data Nucl. Data Tables 33, 347 (1985).
- [6] B. Buck and S. M. Perez, Phys. Rev. Lett. 50, 1975 (1983).
- [7] C. F. Clement and S. M. Perez, Phys. Lett. B 81, 269 (1979).
- [8] S. M. Perez, W. A. Richter, B. A. Brown, and M. Horoi, Phys. Rev. C 77, 064311 (2008).
- [9] M. Honma, T. Otsuka, B. A. Brown, and T. Mizusaki, Eur. Phys. J. A 25, (Suppl. 1), 499 (2005).
- [10] N. J. Stone, At. Data Nucl. Data Tables **90**, 75 (2005).
- [11] T. J. Mertzimekis, P. F. Mantica, A. D. Davies, S. N. Liddick, and B. E. Tomlin, Phys. Rev. C 73, 024318 (2006).
- [12] A. Ozawa et al., Phys. Rev. C 74, 021301 (2006).