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Magnetic moments of T = 3/2 mirror pairs
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We predict values of the magnetic moments of T = 3/2 proton-rich fp-shell nuclei in the mass range
A = 43–53, by using known values for their neutron-rich mirrors together with shell-model estimates for small
quantities. We extend the analysis to those T = 3/2 sd-shell mirror pairs for which both the Tz = −3/2 and
Tz = +3/2 magnetic moments have been measured. We find that these obey the same linear relation as previously
deduced for T = 1/2 mirror pairs.
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I. INTRODUCTION

Techniques involving radioactive ion beams have recently
been used to determine the magnetic moments of β-unstable
nuclei [1,2]. It is useful in these circumstances to have reliable
estimates of the moments, conventionally obtained from large-
basis shell-model calculations [3–5]. Focusing on T = 1/2
odd-even mirror pairs, we have previously investigated a
different method of making these estimates, which either does
away with the structure calculations altogether [6] or, more
accurately, uses them to determine the small contributions [7]
to the magnetic moments coming from the even type of
nucleon [8]. Here we extend the method to the Tz = ±3/2
members of a T = 3/2 quadruplet, specifically to cases where
the magnetic moment of the Tz = +3/2 neutron-rich member
is accurately known and where predictions for the proton-rich
member are required.

When isospin is conserved the magnetic moments of an
odd-even mirror pair can be written (in units of µN ) as [6]

µp = gpJ + (Gp − gp) (So − Se)

+ [(Gp − gp + Gn − gn)Se − (gp − gn)Je] (1)

and

µn = gnJ + (Gn − gn) (So − Se)

+ [(Gp − gp + Gn − gn)Se + (gp − gn)Je], (2)

where µp and µn are the magnetic moments of the odd-
proton and odd-neutron members of the odd-even mirror
pair. The free-nucleon values of the g factors are gp = 1.0,
gn = 0.0, Gp = 5.586, and Gn = −3.826. Se/o and Je/o are
the contributions from the even/odd type of nucleon to the z

components of the total spin S and total angular momentum J

of the mirror pair.
Eliminating (So − Se) from Eqs. (1) and (2) yields

(µp + �µp) = α(µn + �µn) + βJ, (3)

where �µp and �µn are small terms [7,8] involving the even
type of nucleon. Specifically,

�µp = −[(Gp − gp + Gn − gn)Se − (gp − gn)Je] (4)

and

�µn = −[(Gp − gp + Gn − gn)Se + (gp − gn)Je]. (5)

Dividing Eqs. (3), (4), and (5) by J and defining

γp,n = µp,n/J and �γp,n = �µp,n/J (6)

yields

(γp + �γp) = α(γn + �γn) + β, (7)

where α = (Gp − gp)/(Gn − gn) and

β = gp − αgn. (8)

We assume that for nucleons in nuclei the free-space g

factors can be replaced by a single set of effective values
denoted by G̃ and g̃. This then results in α and β being replaced
by α̃ and β̃ in Eqs. (7) and (8). Thus, given the values of
the global parameters α̃ and β̃, together with the small terms
�γp and �γn for a particular pair of mirror nuclei, we can
obtain either γp or γn from a knowledge of the other. For
example, an application to T = 1/2 mirror pairs yields α̃ =
−1.147 ± 0.013 and β̃ = 1.027 ± 0.013, which, when used
in an application of Eq. (7) to the mirror pair 57Cu and 57Ni
[8], results in γ = +1.698 ± 0.012 for 57Cu [8], in excellent
agreement with the recently measured value of γ = +1.721 ±
0.005 [1].

II. APPLICATION TO T = 3/2 MIRROR PAIRS

The technique described above for T = 1/2 mirror pairs is
more generally applicable for T = n/2, with n = 3, 5, . . . .
For T = 3/2 it has already been used under the assump-
tion that �γp = �γn = 0 [2,8]. Here we apply it to the
T = 3/2 mirror pairs in the mass range A = 43–53, with
values of �γp and �γn taken from a 0h̄ω shell-model
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TABLE I. Values of γp , and γn from data on magnetic dipole moments [10]. The contributions �γp and �γn have
been estimated from 0h̄ω shell-model calculations using Eqs. (4)–(6) and free-nucleon values for the g factors.

A, J π Nucleus γp Nucleus γn �γp �γn

43,7/2− 43V 43Ca −0.3765(−) +0.0000 0.0000

45,7/2− 45Sc +1.3590(−) 45Cr +0.1312 −0.1691

47,5/2− 47Mn 47Ti −0.3154(−) +0.0606 −0.0925

49,7/2− 49V (+)1.28(1) 49Fe +0.1462 −0.1810

51,7/2− 51Co 51Cr −0.267(1) +0.0675 −0.0992

53,7/2− 53Mn (+)1.435(2) 53Ni +0.0442 −0.0751

TABLE II. Predicted magnetic moments for
T = 3/2 proton-rich nuclei in the mass range
A = 43–53.

Nucleus µ (nm)

43V +5.106 ± 0.049
45Cr −0.822 ± 0.052
47Mn +3.586 ± 0.035
49Fe −0.585 ± 0.068
51Co +4.828 ± 0.049
53Ni −1.117 ± 0.057

calculation with the GPFX1A Hamiltonian [9] using free-
nucleon values for the g factors in Eqs. (4) and (5). Table I
summarizes the information that, together with α̃ = −1.147 ±
0.013 and β̃ = 1.027 ± 0.013, results in the predictions for
the magnetic moments of the proton-rich nuclei given in
Table II.

In Fig. 1 we reproduce a plot of γp + �γp versus γn + �γn

for the T = 1/2 mirror nuclei from Ref. [8] (Table I). On the
plot we have superposed, in red, points corresponding to the
three sd-shell T = 3/2 mirror pairs for which measurements
of both γp and γn are available (see Table III, where
for completeness we have included pertinent theoretical
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FIG. 1. (Color) γp + �γp versus γn + �γn. The line is the
result of fit (B) in Ref. [8]. The single-particle model using
free-nucleon values for the coupling constants model is shown by the
dashed line.

results for all sd-shell T = 3/2 mirror pairs, using the new
interaction USDB). We see that the points corresponding to
the T = 1/2 mirror pairs and to the T = 3/2 mirror pairs
all fall accurately on a universal α̃ = −1.147 and β̃ = 1.027
line, in support of a single set of effective g factors. This
important conclusion needs to be reinforced by the inclusion
of more T = 3/2 data, but we note here that an application
of Eq. (7) using the results of Table III for γn, �γp, and
�γn yields γp = 1.569, 1.560, and 0.237 for 21F, 23Al, and

TABLE III. Values of γp and γn from theory (USDB) and from data on magnetic dipole moments [2,10–12]. The contributions �γp and
�γn have been estimated from 0h̄ω shell-model calculations using Eqs. (4)–(6) and free-nucleon values for the g factors.

A, J π Nucleus γp(theor) γp Nucleus γn(theor) γn �γp �γn

19,5/2+ 19Na 1.7343 19O −0.6126 0.0000 0.0000
21,5/2+ 21F 1.5115 1.5678 21Mg −0.3392 −0.393 0.2233 −0.2739
23,5/2+ 23Al 1.5462 1.56(9) 23Ne −0.4198 −0.4318 0.0796 −0.1023
25,5/2+ 25Na 1.3468 25Si −0.2348 0.1332 −0.1657
27,1/2+ 27P 2.0738 27Mg −0.8238 0.1501 −0.1975
29,5/2+ 29Al 1.4370 29S −0.3186 0.1210 −0.1469
31,3/2+ 31Cl 0.5051 31Si 0.4180 0.1179 −0.1035
33,1/2+ 33P 2.8706 33Ar −1.5306 0.1155 −0.1265
35,3/2+ 35K 0.0906 0.245(5) 35S 0.7411 0.667(27) 0.1084 −0.0728
37,3/2+ 37Cl 0.2346 37Ca 0.6385 0.0000 0.0000
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35K, in excellent agreement with the measured values 1.5678,
1.56(9), and 0.245(5), respectively.

III. CONCLUSIONS

We have extended previous analyses of the correlations
between magnetic dipole moments of T = 1/2 mirror pairs
to T = 3/2 mirror pairs. This has been done by explicitly
including contributions made by the even type of nucleon in

these odd-even nuclei. A number of predictions of magnetic
dipole moments of β-unstable proton-rich nuclei in the mass
range A = 43–53 have been made.
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