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Collectivity in the light xenon isotopes: A shell model study
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The lightest xenon isotopes are studied in the shell model framework, within a valence space that comprises all
the orbits lying between the magic closures N = Z = 50 and N = Z = 82. The calculations produce collective
deformed structures of triaxial nature that encompass nicely the known experimental data. Predictions are made
for the (still unknown) N = Z nucleus 108Xe. The results are interpreted in terms of the competition between
the quadrupole correlations enhanced by the pseudo-SU(3) structure of the positive parity orbits and the pairing
correlations brought in by the 0h11/2 orbit. We also have studied the effect of the excitations from the 100Sn
core on our predictions. We show that the backbending in this region is due to the alignment of two particles
in the 0h11/2 orbit. In the N = Z case, one neutron and one proton align to J = 11 and T = 0. In 110,112Xe the
alignment begins in the J = 10, T = 1 channel and it is dominantly of neutron-neutron type. Approaching the
band termination the alignment of a neutron-proton pair to J = 11 and T = 0 takes over. In a more academic
mood, we have studied the role of the isovector and isoscalar pairing correlations on the structure on the yrast
bands of 108,110Xe and examined the possible existence of isovector and isoscalar pairing condensates in these
N ∼ Z nuclei.
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I. INTRODUCTION

The lightest xenon isotopes have been recently explored
down to 110Xe, only two neutrons away of the still unknown
N = Z nucleus 108Xe. In a very demanding experiment carried
out at the University of Jyväskylä, using the recoil-decay
tagging technique [1], the excitation energies of the lowest
members of the yrast band were measured. The experimental
spectrum shows appreciable rotational-like features. The
authors of this work argue that such a behavior is unexpected
and they invoke a large depletion of the doubly magic closure
in 100Sn to explain it. However, it is well known that nuclei
with six neutrons and four protons on top of a N = Z

doubly magic core develop collective features that can be
explained microscopically without resorting to extensive core
excitations. The same is true, and even more accentuated, for
the nuclei with four neutrons and four protons outside the
corresponding N = Z cores. Well-documented cases are 26Mg
and 24Mg in the sd shell (core of 16O) and 50Cr and 48Cr in the
pf shell (core of 40Ca). In both cases the closures correspond
to major shells of the harmonic oscillator. The next magic
numbers are originated by the spin-orbit interaction, giving
rise first to the 56Ni core and to the nuclei 66Ge and 64Ge,
which also show collective features, even if less prominent
than in the other cases. Indeed, the next N = Z spin-orbit
closure is 100Sn, and the replicas of the lower mass isotopes
are 110Xe and 108Xe.

For 26Mg and 24Mg, Elliott’s SU(3) [2] gives the explana-
tion of the onset of collectivity. Both nuclei are well deformed
and triaxial, due to the predominance of the quadrupole-
quadrupole part of the effective nuclear interaction, either in
the limit of degenerate sd-shell orbits [SU(3) proper] or in
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the limit of very large spin-orbit splitting [quasi-SU(3) [3]].
48Cr and 50Cr have became the paradigm of deformed nuclei
amenable to a fully microscopic shell model description in the
laboratory frame [4–6]. The underlying coupling scheme in
this region is quasi-SU(3).

As we shift to the spin-orbit-driven shell closures, the
situation varies again. For instance, the quasidegenerate orbits
above 56Ni, 1p3/2, 0f5/2, and 1p1/2, form a pseudo-SU(3)
sequence [7], with principal quantum number p = 2. (We will
use p for the principal quantum number of the harmonic
oscillator throughout the paper. We decided to do so upon
finding that N had already too many uses.) The physical
valence space in this region also includes the 0g9/2 orbit, the
down-going intruder of opposite parity, which couples to the
pseudo-SU(3) block through the off-diagonal pairing matrix
elements. Mutatis mutandis, the same physics occurs in the
region of very proton-rich nuclei beyond 100Sn. The valence
spaces between two spin-orbit closures contain orbits from two
major oscillator shells; the intruder orbit from the shell above
plus all the orbits from the shell below except the aligned orbit
j = p + 1/2, which in turn intrudes the next shell below. We
use the notation rpl for these spaces; rp indicates what remains
of shell p when the aligned orbit j = p + 1/2 is removed;
l is the orbital angular momentum of the orbit from the shell
p′ = p + 1 with j ′ = p′ + 1/2 (in spectroscopic notation).
This leads to the spaces r2f , r3g, r4h, r5i, etc.

Theoretical work on the proton-rich nuclei above 100Sn
has focused mainly on their α and cluster decays [8–10]
described by different cluster models. The possible existence
of hyperdeformed structures in the region has been addressed
in Ref. [11] in the framework of the cranked relativistic
mean-field theory. Closer to our work are two very recent
articles dealing with spectroscopic issues. In the first one,
Nomura et al. explore the region using the interacting boson
model [12]. In the second one, Delion et al. study the role of the
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proton-neutron correlations in the quasiparticle random phase
approximation [13]. Some of their findings will be discussed
along with our results.

The plan of the paper is as follows. In Sec. II we describe
the framework of the calculations; valence space, effective
interaction, etc. We also deal with the group theoretical
issues of the pseudo-SU(3) scheme, and advance some of its
predictions. In Sec. III we discuss the results for 110,112Xe,
comparing them with the experimental results, and we make
predictions for 108Xe. Then, we study the influence of the core
excitations on the different observables. Finally, we analyze the
mechanisms that produce the backbending of the yrast bands
of both 108Xe and 110Xe. In Sec. IV we examine in detail
some (much debated) aspects of the physics of the N = Z

nuclei, including the role of the isovector and isoscalar L = 0
pairing components of the interaction. In Sec. V we gather our
conclusions.

II. VALENCE SPACE: EFFECTIVE INTERACTION

The valence space is the one comprised between the magic
closures N = Z = 50 and N = Z = 82, r4h. This means that
we have an inert core of 100Sn. The space contains two doubly
magic nuclei, 132Sn and 164Pb.

We use the effective interaction GCN50:82, which is
obtained from a realistic G matrix [14] based upon the Bonn-C
potential [15]. Taking the G matrix as the starting point,
different combinations of two-body matrix elements are fitted
to a large set of experimental excitation energies, comprising
low-lying states in the following nuclei:

(i) All even-even and even-odd semi-magic nuclei.
(ii) All even-odd Sb isotopes and N = 81 isotones.

(iii) Some known odd-odd nuclei around 132Sn.

(In total, about 400 data points from 80 nuclei.) The procedure
is similar to the one used in a recent set of papers [16] by
Honma et al., which applied the so-called linear combination
method to derive the GXPF1 interaction for the pf shell.
This method allows discriminating among the different linear
combinations of the interaction parameters—the single par-
ticle energies and the two-body matrix elements—those that
can be well determined by the data set considered, from those
that are too uncertain to be uniquely determined. In our case,
for the final fit, 70 linear combinations were considered as
well determined. After several trial runs, it turned out that the
solution was not unique. In addition, the modifications brought
to the initial realistic interaction were quite large. We solved
this problem by modifying the fitting procedure as follows:
Instead of varying each one of the 70 well-determined linear
combinations at each iteration, we only varied the ten that
improved most the interactions (and these were different at
each iteration). The fit ended when no other modifications
that could significantly improve the interaction could be made
with the 70 well-determined linear combinations. We call this
procedure “step-by-step” fitting since it successively varies the
worst terms of the initial realistic interaction. The final result
can be equivalently obtained by successively adding by hand
the known relevant parameters of the interaction in the classical

TABLE I. Evolution of the rms deviation when
the different components of the realistic interaction
are varied in the fit.

rms (MeV)

G (bare) 1.350
+monopole 0.250
+pairing 0.180
+multipole 0.110

fitting method: monopole, pairing, quadrupole, etc. As can be
seen in Table I, the modifications of the monopole Hamiltonian
are, as usual, the ones that most improve the agreement with
the data. Subsequent modifications of the pairing and multipole
Hamiltonians bring the root-mean-square (rms) deviation to a
very satisfactory value of 110 keV [17].

In the r4h valence space the dimensions grow rapidly,
reaching O(1010) in some of the calculations presented here.
In spite of this, one can anticipate the kind of results that
can be achieved in this model space by taking the limit of
pure pseudo-SU(3) symmetry. This requires adopting the r4
space with degenerate single particle energies and a pure
quadrupole-quadrupole interaction. The quadrupole properties
of the Nilsson-like orbits of pseudo-SU(3) in a shell with
principal quantum number p′ are the same as those of the
SU(3) orbits with principal quantum number p = p′ − 1.
The SU(3) orbits with principal quantum number p have
intrinsic quadrupole moments given in Ref. [18], q0(p, χ, k) =
(2p − 3χ )b2, where χ can take integer values between 0
and p, k = ±( 1

2 · · · 1
2 + χ ), and b is the harmonic oscillator

length parameter. This result is trivially obtained using the
Cartesian representation of the SU(3) solutions. The total
intrinsic quadrupole moment Q0 is the sum of the contributions
of all the valence protons and neutrons with the corresponding
effective charges. In this work we adopt standard effective
charges qeff

π = 1.5qπ and qeff
ν = 0.5qπ . The orbits are filled

orderly, starting from χ = 0 or χ = p, depending on which
choice gives the largest total intrinsic quadrupole moment
in absolute value. This is true because in this scheme the
correlation energy is proportional to Q2

0.
The four valence protons of the xenons can adopt several

degenerate configurations as follows:
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)2(
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)2
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2

)2(
χ = 1, k = ± 1
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)
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χ = 1, k = ± 3

2

)
,

leading to K = 0 and K = 2. Even a small K mixing
produces triaxiality, and we should expect it to show up in
the experiments and in the realistic calculations.

Moving to the neutron side, the model predicts that the
triaxiality should be larger in 108Xe than in 110Xe because
of the neutron contribution. In addition, it turns out that for
p = 3 the contribution to the intrinsic quadrupole moments of
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TABLE II. B(E2)(2+ → 0+) for the xenon isotopes (in e2 fm4).

A = 114 116 118 120 122

p-SU(3) 2100 2540 3040 3200 3240
EXP. 1860(120) 2420(120) 2800(140) 3460(220) 2800(120)

the valence neutrons in excess of six is zero. The predicted
values for the light xenon isotopes are: Q0(108Xe) = 210e fm2

and Q0(110−116Xe) = 225e fm2. This corresponds to B(E2)
(2+ → 0+) of 870e2 fm4 and 1000e2 fm4, respectively. There-
fore, the increase of collectivity that is seen experimentally
toward mid-shell, reaching a maximum in 120Xe with 16
valence neutrons cannot be explained in this scheme. To obtain
more quadrupole collectivity we need to enlarge the valence
space, and the more conservative choice is to include the 1f7/2

neutron orbit, which is the quasi-SU(3) partner of the 0h11/2.
Assuming that the valence neutrons in excess of six occupy
the lowest quasi-SU(3) intrinsic orbits corresponding to p = 5,
the quadrupole moments will keep increasing up to 120Xe, as
demanded by the experimental data.

In Table II, we compare the predictions of this schematic
model with the experimental results compiled in Ref. [19].
The agreement is surprisingly good in view of its simplicity.
We have made exploratory calculations for 112Xe finding an
increase of the B(E2) from 1130e2 fm4 in the pseudo-SU(3)
valence space to 1460e2 fm4 in the space corresponding to the
proposed pseudo + quasi-SU(3) scenario.

110
Xe

0+ 0

2+ 350

4+ 920

6+ 1710

8+ 2640

10+ 3730

12+ 4950

14+ 5980

2+ 1100
3+ 1330
4+ 1560

5+ 1880

6+ 2210

0+ 0

2+ 470

4+ 1110

(6+) 1890

shell model exp.

1005

1450

1568

1591

1530

1431

0.05

1774
1395
938

600

FIG. 1. The energy levels of 110Xe.

III. SPECTROSCOPY OF THE LIGHT XENON ISOTOPES

A. 110Xe

Let us start with the results for 110Xe. The calculated energy
levels are shown in Fig. 1, in comparison with the experimental
results from Ref. [1]. The agreement is quite satisfactory
even if the theoretical calculation predict a moment of inertia
slightly larger than the experimental one. We have checked
that it is possible to obtain perfect agreement for the excitation
energies, without changing the quadrupole properties of the
band, but by just increasing ∼20% the isovector pairing
channel of the effective interaction. Nevertheless, this residual
discrepancy does not justify making modifications in the
effective interaction GCN50:82, which was designed to give
good spectroscopy in the full r4h valence space. Notice that the
rotational features of the shell model calculation persist until
the backbending that occurs at J = 14, due to the alignment
of two neutrons to J = 10 in the 0h11/2 orbit. In addition,
the calculation produces a γ band, which we will analyze
below.

In Table III, we collect the quadrupole properties of the
yrast band, B(E2)’s, and spectroscopic quadrupole moments
Qspec. We derive the intrinsic quadrupole moments Q0 either
from the B(E2)’s or from the spectroscopic ones using the
following well-known relations:

Q0 = (J + 1)(2J + 3)

3K2 − J (J + 1)
Qspec(J ), K �= 1, (1)

and

[B(E2), (J → J − 2)] = 5
16e2|〈JK20|J − 2,K〉|2Q2

0, (2)

for K �= 1
2 , 1. We conclude that the results are compatible with

a deformed intrinsic state with nearly constant quadrupole
moment Q0 = 200e fm2, corresponding to β = 0.16, not far

TABLE III. Properties of the yrast band of 110Xe [energies in
MeV, Q’s in e fm2, and B(E2)’s in e2 fm4].

J E∗ Eγ B(E2) Qspec Q0 Q0 β

from B(E2) from Qspec

2+ 0.35 0.35 1005 −62 225 217 0.17
4+ 0.92 0.57 1450 −78 226 215 0.17
6+ 1.71 0.79 1568 −83 224 208 0.17
8+ 2.64 0.93 1591 −87 220 207 0.17
10+ 3.73 1.09 1530 −86 213 198 0.17
12+ 4.95 1.22 1431 −85 204 191 0.16
14+ 5.98 1.03 0.05 −126
16+ 6.63 0.65 111 −125
18+ 7.51 0.88 1184 −130
20+ 8.51 1.00 1043 −134

064304-3



E. CAURIER, F. NOWACKI, A. POVES, AND K. SIEJA PHYSICAL REVIEW C 82, 064304 (2010)

TABLE IV. Properties of the γ band of 110Xe [energies in MeV,
Q’s in e fm2, and B(E2)’s in e2 fm4].

J E∗ Eγ B(E2) Qspec Q0 Q0 β

from B(E2) from Qspec

2+
2 1.10 +61 214 0.17

3+ 1.33 0.23 1774 −1.3
4+

2 1.56 0.23 1395 −38 219 261 0.18
5+ 1.88 0.32 938 −54 217 234 0.17
6+

2 2.21 0.33 600 −74 209 259 0.18

from the expectations of the pseudo-SU(3) model. Beyond
J = 12, the alignment regime takes over (as we shall analyze
in detail in the next sections), and the rotation is no longer
collective.

We can now come back to the γ band. Besides the
characteristic sequence of energy levels shown in Fig. 1,
the quadrupole properties of the band, gathered in Table IV,
strongly suggest that the γ band of 110Xe has K = 2. In the
first place, the intrinsic quadrupole moment, extracted from
the spectroscopic quadrupole moments or from the B(E2)’s,
assuming K = 2, is fairly constant and very close to that of
the yrast band. In addition, Q(2+

γ ) = −Q(2+
y ) and Q(3+) ≈ 0,

as it should be if the γ band were K = 2.
The question now is whether 110Xe is a triaxial nucleus

or not. For that, a certain amount of K mixing is required.
In fact, in the limit of pure pseudo-SU(3) symmetry the
mixing is zero and this would not be the case. In some
models [20], the amount of triaxiality, γ , is derived from the
ratio:

[B(E2), (2+
γ → 2+

y )]

[B(E2), (2+
γ → 0+

y )]
. (3)

With the shell model values for the B(E2)’s of these
transitions we extract a value of γ = 20o.

The valence space r4h contains a pseudo-SU(3) triplet
plus the intruder orbit 0h11/2. When we remove the intruder
orbit from the space, the moment of inertia of the nucleus
almost doubles, the backbending is suppressed, the triaxiality
is reduced to γ = 12o; and the magnetic moments become
fully consistent with the rotational model up to J = 20. The
changes in the E2 transition probabilities and quadrupole
moments below the backbending region are negligible. This is
in full agreement with what we had found in other regions [21];
the fact that when the rotational regime is established, the
main effect of the pairing interaction is to reduce the moment
of inertia. The disappearance of the backbending when the
0h11/2 orbit is not present seems to be particular for this region,
because (as we have already mentioned) the backbending is
due to the alignment of two neutrons in the intruder orbit,
which may not be a general rule.

B. 112Xe

The shell model description of this isotope is a real
challenge because the dimension of the basis in the full space
calculation (number of M = 0 Slater determinants) is ∼ 1010

TABLE V. Properties of the yrast band of 112Xe [energies in MeV,
Q’s in e fm2, and B(E2)’s in e2 fm4].

J E∗ Eexp B(E2) Qspec Q0 Q0 β

from B(E2) from Qspec

2+ 0.38 0.46 1063 −62 217 231 0.17
4+ 1.00 1.12 1560 −75 206 236 0.17
6+ 1.82 1.91 1727 −76 190 236 0.17
8+ 2.79 2.78 1783 −74 176 232 0.17
10+ 3.72 3.55 600 −97
12+ 4.20 4.47 1471 −118

(exactly 932 475 1339). The results are gathered in Table V
and compared with the available experimental data [22]. For
the lowest part of the yrast band they closely resemble those
of 110Xe and the agreement with the experimental excitation
energies is even better. Nevertheless, when entering in the
backbending region, which is predicted by the calculation at
the right spin (J = 10), the accord deteriorates. As we have
discussed in the previous sections, this can be a manifestation
of the limitations of our valence space for the description
of the heavier xenon isotopes. The backbending corresponds
with the alignment of two neutrons in the 0h11/2 orbit as in
the lighter isotope 110Xe. This change of structure is clearly
seen in the drastic reduction of the B(E2) of the 10+ → 8+
transition, which is simultaneous with an increase of the
spectroscopic quadrupole moment of the 10+ state. In both
110Xe and 112Xe, the shell model deformation parameters
β are in good accord with the ones obtained in Ref. [12].
On the contrary, the interacting boson model solutions peak
at γ = 0 in contradistinction with our results. Nevertheless,
as the IBM projected energy surfaces are rather flat in the
γ direction, triaxiality may be restored after configuration
mixing.

C. 108Xe

The N = Z isotope of Xenon has not been experimentally
studied yet. The shell model predictions for the yrast band
are collected in Table VI. The results at low spin very
much resemble the ones obtained for the heavier isotopes,

TABLE VI. Properties of the yrast band of 108Xe [energies in
MeV, Q’s in e fm2, and B(E2)’s in e2 fm4].

J E∗ Eγ B(E2) Qspec Q0 Q0 β

from B(E2) from Qspec

2+ 0.41 0.41 888 −57 200 211 0.16
4+ 1.03 0.62 1285 −71 195 210 0.16
6+ 1.89 0.86 1345 −65 163 208 0.16
8+ 2.90 1.01 1404 −64 154 206 0.16
10+ 4.03 1.13 1334 −67 160 198 0.15
12+ 5.37 1.34 1129 −71 175 182 0.15
14+ 6.69 1.32 990 −79 176 168 0.14
16+ 7.75 1.06 0.1 −137
18+ 8.34 0.59 830 −140
20+ 9.24 0.90 753 −143

064304-4



COLLECTIVITY IN THE LIGHT XENON ISOTOPES: A . . . PHYSICAL REVIEW C 82, 064304 (2010)

TABLE VII. Properties of the γ band of 108Xe [energies in MeV,
Q’s in e fm2, and B(E2)’s in e2 fm2].

J E∗ Eγ B(E2) Qspec Q0 β

from Qspec

2+
2 1.03 +59 196 0.16

3+ 1.28 0.25 1624 −1.3
4+

2 1.51 0.23 1090 −38 265 0.18
5+ 1.84 0.33 882 −51 220 0.17
6+

2 2.25 0.41 372 −83 290 0.19

even if the the quadrupole collectivity is slightly smaller.
The backbending occurs at J = 16 and it is preceded by an
upbending at J = 14, while in 110Xe the backbending occurs
sharply at J = 14. We shall discuss this issue in the next
section. As predicted by the pseudo-SU(3) model, 108Xe also
exhibits a γ band whose properties are listed in Table VII.
Notice that in spite of some small irregularities both the
yrast and the γ band share a common intrinsic state whose
quadrupole moment is very close to the pseudo-SU(3) number.
Using Eq. (3) we can deduce a value of γ = 24o, indicating
the triaxial nature of this nucleus. This value of γ is larger
than the one obtained for 110Xe, again in good accord with the
model predictions.

D. The effect of the excitations of the 100Sn core

Above, we introduced the question about the stiffness of
the 100Sn core and the eventual need of a soft core in order
to understand the collective aspects found in very proton-rich
xenon isotopes. We have argued in extenso that collectivity
can be obtained without any opening of the doubly magic
100Sn core. However, such a thing does not exist in nature as
a perfectly closed core. The dimensions of the basis make it
impossible to perform calculations adding the 0g9/2 orbit to
the r4h valence space. Thus, we have proceeded as follows:
In the first place, we have repeated the calculations in the
r4 space (i.e., removing the 0h11/2 orbit). The quadrupole
properties of the low-lying states—the ones we are after—
remain unchanged in all cases. For the lower part of the
yrast band, the effect of this removal is just an increase of
the moments of inertia by a factor of 2. Correspondingly,
the spectra are much more compressed. In the next set of
calculations we allow 1p-1h and 2p-2h excitations from the
0g9/2 orbit into the r4 space. Even in this case the dimensions
are huge (5 × 109 for the 2p-2h calculation in 110Xe), and in
fact, the 2p-2h calculation for 112Xe is out of reach. In these
calculations, 100Sn is still a very good doubly closed shell. At
the 1p-1h level only 0.25 particles (out of 20) are promoted
to the r4 orbits. At the 2p-2h level 0.5 particles are promoted.
In spite of the small size of the vacancy, its effect in the E2
properties is not negligible at all. The 1p-1h excitations are the
ones that are more efficient in the building up of the quadrupole
collectivity, leading to increases of the intrinsic quadrupole
moments of 15%, 17%, and 20% for 108Xe, 110Xe, and 112Xe,
respectively. Adding the 2p-2h excitations does not change
these numbers a lot; they rise to 19% and 21% for 108Xe and
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FIG. 2. (Color online) Backbending plot of the theoretical yrast
bands of 108Xe and 110Xe.

110Xe, respectively. Notice that these percentages have to be
doubled to get the effect on the transition probabilities.

E. Backbending and alignment

We have represented the energies of the E2 γ cascade
along the yrast bands of 108Xe and 110Xe in the form of a
backbending plot in Fig. 2. We can observe a very similar
(collective) behavior up to the backbending that occurs at
J = 14 in both cases. The differences are related to the
alignment mechanisms that produce it, whose nature we will
explore now. In order to do so, we have constructed operators
that count the number of 0h11/2 pairs coupled to J = 11, T = 0
and to J = 10, T = 1. In the first case, the particles that align
must be one neutron and one proton, while in the second mode
they can be two neutrons or two protons as well. Let us start
with 108Xe.

The number of J = 11, T = 0 neutron-proton pairs along
the yrast band is shown in Fig. 3. We observe a sudden
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FIG. 3. (Color online) The number of J = 11, T = 0 pairs in
the yrast band of 108Xe and for the yrast states of the configuration
(r4)6(h11/2)2.
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FIG. 4. (Color online) The yrast band of 108Xe. Also plotted are
the yrast states of the configuration (r4)6(h11/2)2 (circles) and the
lowest (r4)8-like states beyond J = 16 (lozenges) to illustrate the
origin of the backbending.

transition from zero aligned pairs up to J = 14, to nearly
one fully aligned pair at J = 16. From there, up to the band
termination, the number of aligned pairs slowly approaches
1. This reflects in the backbending in a subtle way. As we
can see, the real backbending in this case is preceded by an
upbending, which does not involve alignment but is probably
due to the mixing associated to the band crossing. In Fig. 3
we have plotted the yrast band of the configuration that has
two particles blocked in the 0h11/2 orbit. Here, the alignment
is much smoother. Notice that only when this configuration is
fully aligned does it become the physical yrast band.

This is better seen in Fig. 4, where the mechanism of
the band crossing is evident. At low spin the yrast band is
dominated by the (r4)8 configurations, with the (r4)6(h11/2)2

ones lying at about 4 MeV. The crossing happens at J = 16,
producing local distortions in the backbending plot. We have
been able to locate the states belonging to the (r4)8 yrast band
beyond the crossing point. Once the crossing has taken place,
the backbending disappears.
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FIG. 5. (Color online) The number of J = 10, T = 1 and J = 11,
T = 0 pairs in the yrast band of 110Xe.
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FIG. 6. (Color online) Backbending plot of the yrast band of
108Xe. Results with the GCN5082 interaction before (squares) and
after (circles) removing the isovector J = 0 pairing.

The situation is quite different in the case of the N �= Z

nucleus 110Xe, as can be gathered from Fig. 5. Here, the
backbending occurs abruptly at J = 14 and corresponds to the
alignment of (mostly) two neutrons to J = 10, T = 1. Beyond
J = 16, the yrast line becomes parallel to the low energy one,
as if the angular momentum put in the system were again
of a collective nature. At J = 22, the isovector alignment
is depressed and the isoscalar one takes over until the band
termination, producing new irregularities in the backbending
plot.

IV. THE ROLE OF THE ISOSCALAR
AND ISOVECTOR PAIRING

Quite some time ago, there was an increase of interest in
the question of the pairing modes near N = Z as more and
more experimental data accumulated about this class of nuclei.
Among the topics of interest were the Wigner energy and the
possibility of finding manifestations of an isoscalar pairing
condensate (deuteron-like) in the yrast bands of these proton-

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28
J

0

0.5

1

1.5

2

2.5

3

nu
m

be
r 

of
 J

=
0 

T
=

1 
pa

ir
s

108
Xe

110
Xe

FIG. 7. (Color online) The number of J = 0, T = 1 pairs in the
yrast bands of 108Xe and 110Xe.
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FIG. 8. (Color online) The number of J = 1, T = 0 pairs in the
yrast bands of 108Xe and 110Xe.

rich nuclei in the form of delayed alignments, etc. [23,24].
It was realized relatively soon that these effect were bound
to be elusive, because, in normal circumstances, spin-orbit
splitting strongly hinders the deuteron-like condensation [21].
Recent studies of the β decay of 62Ge, where super-allowed
β transitions due to the existence of the T = 0 collective 1+
state were predicted [25], have ruled out such a possibility as
well.

On the contrary, the effect of the isovector pairing channel
in the rotational properties of the N ∼ Z is well understood.
It is directly linked to the moment of inertia of the band,
and does not affect appreciably its electromagnetic decay
properties. We have verified this for the light xenon isotopes.
In Fig. 6, we compare the energies of the γ cascades along the
yrast band for 108Xe using the effective interaction GCN5082
on one side and, on the other side, this same interaction
after removal of an schematic isovector pairing Hamiltonian
whose coupling strength is obtained as in Ref. [26]. Below the
backbending, the effect is just an increase of the moment of
inertia by a factor of 2. As expected, the E2 properties do not
change. The backbending is delayed by two units of angular
momentum. Removing a schematic T = 0 pairing produces
similar qualitative features that are quantitatively irrelevant.
Therefore, our results refute the claim of Ref. [13] about
the reduction of collectivity due to the neutron-proton pairing
interaction.

To verify the possibility of existence of pair condensates in
the ground states of Xenon isotopes, we have also constructed
pair counting operators and have computed their expectation

values along their yrast bands. The results for the isovector
pairs are plotted in Fig. 7. A fully condensed state should
have nearly four pairs for 108Xe and five pairs in 110Xe. What
we find for the ground states, which is consistent in both
cases, amounts to one- half of the value expected for the
condensate; indeed, quite an important pairing contribution. As
the angular momentum increases, the pair content decreases
linearly, reaching negligible values at the backbending. The
pattern in this region is simpler in 108Xe than in 108Xe due to
the different alignment mechanisms in both isotopes, which
we have discussed already.

The results for the isoscalar pairs are plotted in Fig. 8.
In the limit of an isovector condensate, typically, we should
expect four pairs, and we can see that we are far from that. In
addition, the a priori more favorable case, N = Z, is depressed
with respect to the N �= Z. All in all, there seems to be no
indications of any structural effect due to the isoscalar pairing
channel.

V. CONCLUSIONS

We have carried out large-scale shell model calculations
for the lighter xenon isotopes in the valence space r4h that
encompasses all the orbits between the magic numbers 50 and
82. We obtained collective behaviors of triaxial nature and
reproduced the experimental results without resorting to large
openings of the 100Sn core. We propose a mechanism that
can explain the very large values of the intrinsic quadrupole
moments of the xenon isotopes at the midneutron shell based
on variants of the SU(3) symmetry. We have shown that
the backbending in 108Xe is produced by the alignment of a
neutron-proton pair in the 0h11/2 orbit to the maximum allowed
spin J = 11. In 110Xe, it is a two-step process: first, a pair
of neutrons align to J = 10 and, second, the neutron-proton
alignment takes over. Finally, we have studied the pair content
of the yrast states. Isovector J = 0 pairs have a large presence
in the lowest states of the yrast bands of 108Xe and 110Xe. On
the contrary, the deuteron-like J = 1 isoscalar pairs have a
negligible presence in these nuclei.
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