Neutron decays of ${}^{13}\text{Be}^*$ to the 0^+_2 state of ${}^{12}\text{Be}$

H. T. Fortune¹ and R. Sherr²

¹Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA ²Department of Physics, Princeton University, Princeton, New Jersey, USA (Received 20 September 2010; published 3 December 2010)

We suggest that an appreciable portion of the $1/2^-$ peak in a recent ${}^{13}\text{Be}^* \rightarrow {}^{12}\text{Be} + n$ experiment is actually due to $5/2^+$ decays to the excited 0^+ state.

discuss.

DOI: 10.1103/PhysRevC.82.064302

I. INTRODUCTION

A recent paper [1] studied the reaction ${}^{1}\text{H}({}^{14}\text{Be}, {}^{13}\text{Be}^*)$ and detected the outgoing ${}^{13}\text{Be}^*$ as ${}^{12}\text{Be} + n$ coincidences, gating on the absence of a fast γ ray in ${}^{12}\text{Be}$ of energy 2.1(2⁺) or 2.7(1⁻) MeV. They observed a peak at a ${}^{12}\text{Be} + n$ relative energy of $E_n = 0.51$ MeV with a width of 0.45 MeV (after correcting for experimental resolution). They identify this peak as a $1/2^-$ state expected in this region. (The history is well summarized in Ref. [1].) They quote a single-particle (sp) l = 1 width of 0.55 MeV for a resonance at this energy, implying a spectroscopic factor of 0.82.

II. THE $1/2^{-}$ STATE

In any reasonable model of ¹²Be, the ground state (g.s.) is written, in an obvious notation, as

$$^{12}\text{Be}(g.s.) = A \left[{}^{10}\text{Be}_{CK}(g.s.) (sd)^2 \right] + B \left[{}^{12}\text{Be}_{CK}(g.s.) \right],$$

where the subscript CK (for Ref. [2]) is used to denote pure *p*-shell structures. Various models give different values of *A*, *B*, but most would have $A \ge B$. Our favorite wave function [3] has $A^2 = 0.68$, $B^2 = 0.32$. The g.s. could contain a component of ${}^{10}\text{Be}_{\text{CK}}$ (2⁺) (sd) ${}^2_{2+}$, but it should be small, and we ignore it here. In our model, the excited 0⁺ state is

$$^{12}\text{Be}(0_2^+) = -B\left[{}^{10}\text{Be}_{\text{CK}}(g.s.)(sd)^2\right] + A\left[{}^{12}\text{Be}_{\text{CK}}(g.s.)\right].$$

The first $1/2^{-}$ state of ¹³Be is mostly

$$\gamma \left[{}^{11}\text{Be}_{\text{CK}}(1/2^{-})(\text{sd})_{01}^{2} \right] + \delta \left[{}^{9}\text{Be}_{\text{CK}}(1/2^{-})(\text{sd})_{02}^{4} \right] \\ + \varepsilon \left[{}^{9}\text{Be}_{\text{CK}}(3/2^{-})(\text{sd})_{22}^{4} \right].$$

where the double subscripts denote JT, where T is isospin. We expect the last two terms to be small. The spectroscopic factor for decay of this $1/2^-$ state to the g.s. of ¹²Be by *n* emission is

$$S[{}^{13}\text{Be}(1/2^{-}) \rightarrow {}^{12}\text{Be}(g.s.) + n] = A^2 \gamma^2 S[{}^{11}\text{Be}(1/2^{-}) \rightarrow {}^{10}\text{Be}(g.s.) + n]$$

The latter factor has the value [2] 0.60. Even with our large value of A^2 , and even if γ^2 is near unity, the limit on the expected value of *S* is thus $S \leq 0.40$, compared to 0.82 in Ref. [1]. Furthermore, our calculated sp width, in a Woods-Saxon well with r_0 , a = 1.25, 0.65 fm, is $\Gamma_{sp} = 0.40$ MeV, implying S = 1.1 [1]. The authors do state that if they analyze the upper part of their energy range differently (two *d* states rather than one), the experimental $1/2^-$ width changes by

0.13 MeV. Even then, *S* would be 0.85 (with our sp width) still more than twice the expected value. (See Table I.) Thus we conclude that a large portion of their $1/2^-$ peak must contain another contribution that has another origin, which we now

PACS number(s): 25.60.Je, 21.10.Tg, 27.20.+n

III. THE $5/2^+$ STATES

The first
$$5/2^+$$
 state of ¹³Be should be

$${}^{13}\text{Be}(5/2^+_1) = \alpha \Big[{}^{12}\text{Be}_{\text{CK}}(g.s.) \times 1d5/2 \Big] + \beta \Big[{}^{10}\text{Be}_{\text{CK}}(g.s.) (\text{sd}){}^{3}_{5/2} \Big].$$

Another competing component is ${}^{12}\text{Be}(2^+)2s1/2$, which could be appreciable, but we omit it here because we want to keep things simple and because this component has no direct *n* decay to the 0⁺ states of ${}^{12}\text{Be}$. We return to this point later. In a two-state model, the next $5/2^+$ state would be

$${}^{13}\text{Be}(5/2_2^+) = -\beta \Big[{}^{12}\text{Be}_{\text{CK}}(\text{g.s.}) \times 1d5/2 \Big] \\ + \alpha \Big[{}^{10}\text{Be}_{\text{CK}}(\text{g.s.}) (\text{sd}){}^{3}_{5/2} \Big].$$

In both cases, the $(sd)^3$ configuration is primarily a combination of $s_0^2 d$ and d^3 . In the simplest two-state model for the 0⁺ and 2⁺ states, we would expect β^2/α^2 to be about 2 (actually near 0.68/0.32; see earlier). Mixing of the $2^+ \times 2s1/2$ component into these two $5/2^+$ states would reduce both β and α but should not drastically alter the ratio.

We have computed the decays of this second $5/2^+$ state to the g.s. of ¹²Be and to the excited 0^+_2 state at 2.24 MeV. We find that for a wide range of values of β/α , the decay to

TABLE I. Properties of $1/2^{-}$ resonance in ¹³Be (energies and widths in MeV).

E_n	$\Gamma_{exp}{}^{a}$	$\Gamma_{\rm sp}$	$S = \Gamma_{\rm exp} / \Gamma_{\rm sp}$
0.51	0.45	0.55 ^b	0.82
		0.40 ^c	1.1
0.49 ^d	0.32 ^d	0.38 ^c	0.84
Theory ^e			$\leqslant 0.41$

^aReference [1], after correcting for experimental resolution. ^bQuoted in Ref. [1].

^cOur value.

^dAlternative analysis in Ref. [1].

 ${}^{e}S = A^{2}\gamma^{2}S[{}^{11}\text{Be}_{CK}(1/2^{-}) \rightarrow {}^{10}\text{Be}_{CK} + n]$ (see text).

 0_2^+ is highly favored, even with the limited phase space. For $1 < \beta^2/\alpha^2 < 4$, the BR is less than unity. We propose that this $5/2_2^+$ state is near $E_n = 2.8$ MeV so that decay to the 0_2^+ state would contribute to the 0.51 MeV peak. One of the analyses in Ref. [1] had a second d state at about 2.9 MeV. In our calculations, the sp width for l = 2 is 34 keV for $E_n = 0.51$ MeV and 1.1 MeV for $E_n = 2.8$ MeV. Thus, from phase space, the g.s. decay branch is favored by more than a factor of 30. But the structure goes very heavily in the other direction. In Fig. 1, we plot the ratio $S\Gamma_{sp}/S'\Gamma'_{sp}$, where S and Γ_{sp} refer to the decay of the second $5/2^+$ state to the g.s., and S' and Γ'_{sp} refer to the 0^+_2 state. The S's are computed from the wave functions given earlier. Note that for a very wide variation in the wave function, the 0^+_2 decay is favored. Other components in the wave functions will undoubtedly fill in the minimum somewhat, but the principal feature should remain. The experimental setup in Ref. [1] could not rule out decays to 0^+_2 because of its long mean life; rather they argued that the 0.5 MeV peak could not be due to decays of a \sim 2.7 MeV state to 0^+_2 because such decays should be accompanied by much stronger (on penetrability grounds) decays to the g.s.. If we are correct and the $5/2^+$ states have the structure suggested here, these g.s. decays are severely inhibited, and their argument is therefore not valid.

The width of a peak arising from these proposed decays to 0_2^+ would be nearly all resolution width. For the proposed decays to the excited 0^+ state to cause a widening of the 0.5 MeV peak, their energy should be slightly different from the energy of the *p*-wave resonance. If so, it might be possible

FIG. 1. For the second $5/2^+$ state of ¹³Be, the ratio of widths for decay to the g.s. and excited 0^+ state is plotted vs β^2/α^2 , the ratio of sp to (sd)³ in the $5/2^+$ state.

to observe different momentum distributions for the left and right halves of the 0.5 MeV peak in the data of Ref. [1]. The decays suggested here should have a *d*-wave momentum distribution.

There is also the question of forming these $5/2^+$ states from ¹⁴Be. With a reasonable wave function of ¹⁴Be(g.s.), we expect that the $5/2_2^+$ state will have about 50%–70% of the strength of $5/2_1^+$ in the breakup of ¹⁴Be(g.s.).

We think it would be very interesting to look for decays of $^{13}\text{Be}^*$ to the excited 0^+ state of ^{12}Be .

- [1] Y. Kondo et al., Phys. Lett. B 690, 245 (2010).
- [2] S. Cohen and D. Kurath, Nucl. Phys. A 101, 1 (1967).
- [3] H. T. Fortune and R. Sherr, Phys. Rev. C 74, 024301 (2006).