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Model dependence of the 2H electric dipole moment
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Background: Direct measurement of the electric dipole moment (EDM) of the neutron is in the future;
measurement of a nuclear EDM may well come first. The deuteron is one nucleus for which exact model
calculations are feasible. Purpose: We explore the model dependence of deuteron EDM calculations. Methods:
Using a separable potential formulation of the Hamiltonian, we examine the sensitivity of the deuteron EDM
to variation in the nucleon-nucleon interaction. We write the EDM as the sum of two terms, the first depending
on the target wave function with plane-wave intermediate states, and the second depending on intermediate
multiple scattering in the 3P1 channel, the latter being sensitive to the off-shell behavior of the 3P1 amplitude.
Results: We compare the full calculation with the plane-wave approximation result, examine the tensor force
contribution to the model results, and explore the effect of short-range repulsion found in realistic, contemporary
potential models of the deuteron. Conclusions: Because one-pion exchange dominates the EDM calculation,
separable potential model calculations will provide an adequate description of the 2H EDM until such time as a
measurement better than 10% is obtained.
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I. INTRODUCTION

With the discovery of parity (P) violation, which was
suggested by Lee and Yang [1], Landau [2] deduced that
charge conjugation and parity (CP) invariance implies that
the electric dipole moment (EDM) of particles, for example,
the neutron, should be zero. Any CP violation would also
imply a corresponding time-reversal (T) invariance violation
if the CPT theorem is valid, which is the case for gauge
theories. Predating the discovery of parity violation in the weak
interaction, Purcell and Ramsey [3] had pointed out that there
was no experimental test of parity conservation in the strong
interaction. With their student Smith [4], they set limits on the
EDM of the neutron of the order of dn < 5 × 10−20e cm. The
standard model of fundamental interactions predicts values
for EDMs (due to second-order W boson exchange) that
are significantly smaller than contemporary experiments can
detect, of the order of 10−31e cm. Therefore, an unambiguous
observation of a nonzero EDM at current capabilities would
imply a yet-to-be-discovered source of CP violation [5,6].
The new physics could arise in the strong interaction sector
(e.g., the θ term) or in the weak interaction sector [e.g.,
supersymmetric models or left-right (boson mass) symmetry
breaking]. Current limits on the nucleon EDM are of the order
of 10−26e cm. Even if one were to establish a nonzero neutron
and proton EDM, those two results would at best determine
the isoscalar and isotensor components but would not isolate
any isovector component. Thus, one would need a third
measurement, such as the deuteron EDM, to fully elucidate
the isospin nature of the EDM operator. Both PT-violating and
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P-conserving, T-violating potentials may give rise to an EDM
[5], but one-pion exchange contributes only to the former.
We concentrate here upon the effects due to PT invariance
violation in the nuclear potential.

The deuteron is attractive as the focus of an EDM
investigation, both theoretically and experimentally, because
a method has been proposed to directly measure the EDM of
charged ions in a storage ring [7–10]. A permanent EDM can
arise because a PT-violating interaction can induce a small
P-state admixture in the deuteron wave function, one which
produces a nonvanishing matrix element of the charge dipole
operator τ z

−e�r . Although this two-body EDM contribution
must be disentangled from the one-body contributions of the
neutron and proton, the neutron and proton EDMs tend to
cancel in the case of the isospin zero 2H. (If the nucleon
EDM were a pure isoscalar as is the case in the θ model,
then this cancellation would be exact.) Therefore, the PT-
violating nucleon-nucleon (NN) interaction can contribute
significantly to the deuteron EDM. Because the deuteron
is reasonably understood and has been accurately modeled,
reliable calculations are possible. Our purpose is to address
the sensitivity of the deuteron EDM to the nuclear physics
in the modeling of the nucleon-nucleon interaction. Beyond
understanding the model dependence of the 2H EDM, our
goal is to determine an appropriate model approximation
with which one might reliably calculate the nuclear physics
contribution to the 3He and 3H EDMs. Therefore, we
examine the uncertainties in the deuteron EDM calculation
arising from the short-range repulsion in the ground-state wave
function, the dependence on the size of the deuteron D state,
and the properties of the 3P1 continuum in intermediate states.

For the purpose of completeness and to place our work
in context, we note that Avishai [11] first estimated the
two-body deuteron EDM [see Eq. (2) ] d

(2)
D using a separable

potential model due to Mongan [12]. He reported a value of
−0.91 Ae fm when he utilized the physical pion mass for the
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exchanged meson. [Note: To exclude the PT-violating and
strong coupling constants in the one-pion-exchange nucleon-
nucleon interaction for the quoted values of the EDM, we
have introduced A = ḡ

(1)
πNNgπNN/(16π ).] However, there is an

ambiguity in Avishai’s results, in that he states his final result
in terms of A/2. Because the particular separable potentials
used by Avishai were not specified, we were unable to fully
confirm his reported numbers. Khriplovich and Korkin [13]
later estimated d

(2)
D using a zero-range approximation in the

chiral limit (mπ → 0) and obtained a value of −0.92 Ae fm.
This result does not depend upon the 3P1 interaction and
should therefore be directly comparable to our plane-wave
result. Finally, using the Argonne and Nijmegen contemporary
realistic potential models Av18, Reid93, and Nijm II [14], Liu
and Timmermans [15] obtained for the polarization component
of the two-body contribution to the deuteron EDM d

(2)
D

values of −0.72 Ae fm, −0.73 Ae fm, and −0.74 Ae fm,
respectively. These relatively model-independent results sug-
gest that pion exchange is indeed the essential aspect of
the model. The differing degree of softness of the three
potentials at intermediate range correlates with the values
for d

(2)
D , with the Nijm II potential being the softest and

producing the largest EDM. The important conclusion for our
purpose is that all three models yield essentially the same
result; within the range of uncertainty defined by the three
models utilized, the value of the polarization component of
d

(2)
D can be said to be ≈ −0.73 ± .01 Ae fm. Moreover, Liu

and Timmermans estimated that the meson exchange current
contribution was substantially smaller, calculated to be less
than 5% of the potential model contribution. In any case,
our goal is to determine an appropriately simple model with
which one can calculate reliably the 2H, 3He, and 3H EDMs,
so that our numerical comparisons will be made with the
−0.73 ± .01 Ae fm value.

II. NUCLEON CONTRIBUTIONS

The total one-body contribution d
(1)
D to the deuteron EDM

due to the neutron and proton is the sum of the individual
nucleon EDMs:

d
(1)
D = dn + dp, (1)

whereas the total deuteron EDM is the sum of this one-body
contribution and the two-body contribution d

(2)
D ,

dD = d
(1)
D + d

(2)
D = (dn + dp) + d

(2)
D . (2)

As has been noted, the neutron and proton EDMs can arise
from a variety of sources. Because we have nothing new to add
to prior analyses of the nucleon EDM, we adopt the approach
advanced by Liu and Timmermans [15]:

d
(1)
D � 0.22 × 10−2Ḡ(1)

π + O
(
Ḡ(0,2)

π , Ḡρ,ω,η

)
, (3)

which is expressed in terms of Ḡ
(i)
X , the product of the

strong coupling constant gXNN and the associated PT-violating
meson-nucleon coupling constant ḡ

(i)
X . (For example, Ḡ(1)

π =
ḡ

(1)
πNNgπNN.) As noted in Ref. [15], the contributions from

the neutron and proton EDMs have a sizable theoretical

uncertainty, but the significant cancellation between dn and
dp is clear. For the two-body contribution to d

(2)
D , the mean

value obtained by Liu and Timmermans can be expressed as

d
(2)
D = 1.45 × 10−2Ḡ(1)

π ; (4)

this corresponds to the EDM value of −0.73 Ae fm. Hence, for
the deuteron there can be little doubt that the nuclear physics
contribution to d

(2)
D dominates. Even an uncertainty of 50% in

d
(1)
D contributes only in a minor way. It is the nuclear model

aspects of the d
(2)
D -dominant term in the 2H EDM that we

investigate in detail.

III. TWO-BODY CONTRIBUTIONS

The interaction Hamiltonian for the ground state of the
system consists of two components: (i) The strong interac-
tion component v based on nucleon-nucleon potentials with
parameters adjusted to fit the experimental phase shifts, and
(ii) the PT-violating component V , which we parametrize
in terms of one-pion exchange with one strong interaction
vertex gπNN and a PT-violating vertex ḡ

(1)
πNN. As a result, our

Hamiltonian takes the form

H = HS + H PT where HS = H0 + v and

H PT = V. (5)

Because H PT will mix different parity states (i.e., for the
deuteron we get coupling between the 3S1–3D1 large com-
ponent and the 3P1 small component), we can write the
Schrödinger equation for the Hamiltonian in Eq. (5),

H |�〉 = E|�〉, (6)

as a set of coupled equations of the form

(E − H0)|�L〉 = v|�L〉 + V |�S〉 (7)

(E − H0)|�S〉 = v|�S〉 + V |�L〉, (8)

where the total wave function is the sum of the large and small
components: |�〉 = |�L〉 + |�S〉.

Because V � v, we have that V |�S〉 � v|�L〉, and we
can, to a good approximation, write Eq. (7) as

(E − H0)|�L〉 = v|�L〉, (9)

which is the Scrödinger equation for the ground state of the
system in the absence of the PT-violating interaction. On the
other hand, the small component of the wave function |�S〉 is
given by the solution of Eq. (8) in terms of the amplitude t(E)
for the strong potential v as

|�S〉 = G(E)V |�L〉 with

G(E) = G0(E) + G0(E)t(E)G0(E), (10)

where G0(E) = (E − H0)−1 is the free Green’s function and
t(E) is the amplitude in the partial wave of the small compo-
nent of the wave function, for example, for the deuteron, t(E) is
the amplitude in the 3P1 partial wave at the ground-state energy.

Because the dipole operator

Od = e

2

∑
i

�ri τz(i) (11)
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is odd under parity, we can write the two-body deuteron EDM
(d (2)

D ) in terms of the total ground-state wave function |�〉 =
|�L〉 + |�S〉 as

d
(2)
D = 〈�|Od |�〉 = 〈�L|Od |�S〉 + 〈�S |Od |�L〉, (12)

where the matrix element of the dipole operator between the
small and large component of the wave function can be written
in terms of the charge e and the constant A as

〈�L|Od |�S〉 = 〈�L|OdG0(E)V |�L〉
+ 〈�L|OdG0(E)t(E)G0(E)V |�L〉 (13)

≡ e

2
[dPW + dMS]A with A ≡ ḡ

(1)
πNNgπNN

16π
.

(14)

In Eq. (13), the first term on the right-hand side (rhs) involves
a complete set of intermediate plane-wave states and is, up
to a constant, the plane-wave contribution dPW. The second
term on the rhs of Eq. (13) involves multiple scattering via
the amplitude t(E) and is the multiple-scattering contribution
dMS. One should note that E < 0 is the ground-state energy,
and as a result we need the amplitude t(E) at an unphysical
point corresponding to the 2H bound-state energy.

IV. NUMERICAL RESULTS

The primary motivations for the present investigation
are (i) to determine the sensitivity of d

(2)
D to properties of

the deuteron (e.g., the D-state probability and the short-range
behavior of the deuteron wave function), (ii) to determine
the relative importance of dPW and dMS—this will suggest
the significance of multiple-scattering terms as one proceeds
to heavier nuclei, and (iii) to determine the role of the 3P1

interaction in determining the magnitude of dMS and therefore
the appropriateness of the dPW approximation in heavier nuclei.
Before we proceed to illustrate the sensitivity of the deuteron
EDM to nuclear structure effects due to the nuclear interaction,
we should detail our choice of nucleon-nucleon interactions
and their fit to those aspects of the two-body data relevant to
the determination of the EDM.

A. Two-body potentials

The input two-body interactions consists of (i) the PT-
violating one-pion-exchange potential, (ii) the deuteron wave
function in the absence of the PT-violating interaction, and
(iii) the 3P1 interaction that couples to the deuteron 3S1–3D1

potential as a result of the introduction of the PT-violating
potential. The choice of these interactions is motivated by
the questions raised regarding the sensitivity of the EDM to
nuclear structure effects and the hope of extending the analysis
to 3H and 3He using the dPW approximation.

For the PT-violating interaction, we have chosen the
standard isovector one-pion exchange given by [16]

V = −A[(�σ (−) · r̂)τ (+)
z + (�σ (+) · τ (−)

z )]f (r), (15)

where the radial dependence is given by

f (r) = − 1

mπ

d

dr

(
e−mπ r

r

)
, (16)

with mπ being the pion mass. Here we have combined the
strength of the strong and PT-violating vertices in the constant
A given in Eq. (14). This allows us to express the numerical
value of the EDM in terms of Ae with e being the charge on
the proton. Finally, the spin and isospin operators in Eq. (15)
are given by �σ (±) = (�σ (1) ± �σ (2)) and τ (±)

z = (τ (1)
z ± τ (2)

z ).
The strong 3S1–3D1 interaction basically defines the

deuteron wave function. Here we resort to a separable
representation of the interaction to simplify the computation
when we proceed to the EDM for the three-nucleon system. As
a result, the partial-wave expansion of the strong interaction
in momentum space is written as

〈�k|v|�k′〉 =
∑
Sjtm

∑
		′

〈
k̂|Y t

(	S)jm

〉
v

Sjt

		′ (k, k′)
〈
Y t

(	′S)jm|k̂′〉, (17)

with |Y t
(	S)jm〉 eigenstates of the orbital angular momentum

	, spin S, total angular momentum j , and isospin t . The
separability of the potential is defined by the requirement that

vα
		′(k, k′) = gα

	 (k) λα
		′ gα

	′(k′), (18)

where α = (Sjt). Here we examine the role of the D-state
probability and short-range nature of the nucleon-nucleon
interaction. For that we consider two classes of interactions:
(i) The first is the Yamaguchi and Yamaguchi (YY) [17]
separable potential with 4% and 7% D-state probability.
Each has a different D-state probability and no short-range
repulsion. (ii) The second is the unitary pole approximation
(UPA) [18,19] to the original Reid soft-core potential (Reid68)
[20] and the Nijmegen modified Reid potential (Reid93) [14].
The UPA potential by definition generates the same deuteron
wave function as the original potential [19] that provided the
optimum fit to the available data at the time the potentials were
constructed and includes short-range repulsion. In addition, the
models have different D-state probabilities for the deuteron.

For the Yamaguchi and Yamaguchi potentials [17], the form
factor gα

	 (k) is given by

g	(k) = k	

(
k2 + β2

	

)(	+2)/2 , (19)

where the parameters β	 and λ		′ are detailed in Table I.
Also included in this table are the binding energy εD and
the quadrupole moment QD for these two potentials.

In constructing the UPA to the Reid68 [20] and Reid93
potentials [14], we have used the method of moments [19] to
solve the Schrödinger equation for the deuteron wave function

TABLE I. Parameters for the Yamaguchi-Yamaguchi potentials
[17] with 4% and 7% D-state probability for the deuteron. Also
included are the binding energy and quadrupole moments.

D state β0 β2 λ00 λ02 λ22 εD (MeV) QD

4% 1.3134 1.5283 −0.6419 1.0849 −1.8320 2.2234 0.2821
7% 1.2410 1.9480 −0.3776 1.6975 −7.6301 2.2265 0.2826
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TABLE II. The strength λ		′ for the UPA approximation to the
Reid68 [20] and Reid93 [14] potentials.

Potential λ00 λ02 λ22

Reid68 −5.289 672 5 × 10−2 −2.438 578 6 1.185 092 6
Reid93 −4.770 478 9 × 10−1 −1.811 176 4 2.582 546 7 × 10−1

in coordinate space using the original potentials. This was
achieved by taking the form factors such that the resultant
deuteron wave functions for the Reid68 and Reid93 potentials
are linear combinations of the Yamaguchi-Yamaguchi-type
wave functions with different range parameters βi and there-
fore are of the form

g	(k) =
12∑
i=1

ci
	 k	

(
k2 + β2

i

)(	+2)/2 . (20)

The strengths of the UPA potential (λ		′), adjusted to reproduce
the matrix elements of the original Reid68 and Reid93
potentials, are given in Table II, while the parameters of the
UPA form factors βi and ci

	 for 	 = 0 and 2 are given in
Table III. Here, we have chosen the range parameters βi to be
multiples of the pion mass with the hope of reproducing some
of the analytic structure of the one pion tail in the original Reid
potentials.

To establish the quality of the UPA deuteron wave function
generated using the method of moments, we present in
Table IV the deuteron properties for the original potential and
the UPA for both Reid68 and Reid93 potentials. Also included
are the effective range parameters to illustrate the domain of
agreement in the scattering amplitude between the original and
the UPA potential. It is clear from these results that the method
of moments gives a very good representation of the original
deuteron wave function and can reproduce the effective range
parameters.

Finally, to examine the importance of multiple scattering
in determining the deuteron EDM, we need to introduce
a 3P1 interaction to calculate dMS. Here we need to know
the importance of the fit to the data and the role of the

TABLE IV. Comparison of the deuteron properties for the original
potential and the UPA potential for both Reid68 and Reid93
potentials. Tabulated are the binding energy εD , the asymptotic
S-wave normalization AS , the ratio η of the asymptotic D wave
to S wave, the quadrupole moment QD , and the D-state probability
PD . Also included are the scattering length at and effective range rt .

Reid68 Reid93

UPA Original UPA Original

εD 2.2246 2.2246 2.2246 2.2246
AS 0.87893 0.87758 0.8863 0.8853
η = AD/AS 0.026556 0.026223 0.02565 0.0251
QD 0.2800 0.27964 0.2709 0.2703
PD 6.4691 6.4696 5.699 5.699
at 5.408 5.390 5.445 5.422
rt 1.752 1.720 1.799 1.755

off-shell amplitude in determining the magnitude of dMS.
To simplify the evaluation of dMS, we have chosen to use
separable potentials with different form factors. The Mongan
[12] potentials used by Avishai [11] come with different form
factors and therefore different off-shell properties. They are
either rank 1 or rank 2 to optimize the fit to the data; that is,
the potentials are of the form

v3P1 (k, k′) =
n∑

i=1

gi(k)λigi(k
′), (21)

where n = 1 for rank 1 potentials and n = 2 for rank 2
potentials. For the form factors gi(k), we use the four different
forms chosen by Mongan (see Table V). Considering the fact
that Mongan adjusted the parameters of his potentials to fit
the Livermore data of the 1960s, we first need to compare the
phase shifts predicted by the Mongan potentials and those that
we constructed to fit the latest Nijmegen [21] neutron-proton
(np) data. In Fig. 1, we compare the 3P1 phase shifts for
rank 1 and rank 2 case I form factors for Mongan’s potentials
with those refitted to the Nijmegen data. Also included are the
Nijmegen [21] np phase shifts. It is clear from the the results

TABLE III. The form factor parameters of the UPA approximation to the Reid68 [20] and Reid93 [14] potentials.

i βi (fm−1) Reid68 Reid93

ci
0 ci

2 ci
0 ci

2

1 0.7 7.211 864 19 × 10−3 −2.244 570 73 × 10−3 6.306 467 24 × 10−3 −3.088 931 40 × 10−3

2 1.4 1.788 266 42 × 10−1 −3.310 630 31 × 10−1 2.128 465 33 × 10−1 −3.015 648 84 × 10−1

3 2.1 1.312 606 92 −1.047 452 93 6.054 506 38 −1.781 855 16
4 2.8 2.134 304 24 −1.436 280 43 −2.577 778 24 × 101 7.870 427 55 × 10−1

5 4.2 1.465 788 61 × 102 −1.956 952 56 × 101 3.200 797 33 × 102 −2.534 838 26 × 101

6 5.6 −8.103 877 28 × 102 3.127 821 73 −1.491 743 73 × 103 4.673 872 61 × 101

7 7.0 1.129 345 49 × 103 1.511 269 63 × 102 2.327 460 50 × 103 3.379 085 96 × 101

8 9.8 −5.877 797 28 × 102 −4.267 019 86 × 102 −2.574 026 58 × 103 −2.103 535 62 × 102

9 12.6 −2.276 385 08 × 102 5.923 980 37 × 102 2.532 234 23 × 103 3.414 120 20 × 102

10 15.4 5.337 848 64 × 102 −3.735 331 99 × 102 −1.312 465 53 × 103 −2.421 261 56 × 102

11 21.0 −2.537 461 05 × 102 9.684 007 08 × 101 2.663 299 30 × 102 7.606 099 41 × 101

12 26.6 6.638 700 56 × 101 −2.095 137 06 × 101 −4.841 064 37 × 101 −1.899 791 13 × 101
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TABLE V. The parameters of the new rank 1 and rank 2 potentials with the different
Mongan form factors. The parameters are adjusted by minimizing the χ2 defined in Eq. (22),
taking the experimental phases from the latest Nijmegen [21] np phase-shift analysis. The
form factor for case III is written in terms of Q1(ξ ), the Legendre function of the second
kind.

Potential Form factor gi(k) Rank β1 λ1 β2 λ2 χ 2

Case I k/(k2 + β2
i ) 1 1.725 0.95 0.62

2 0.90 0.059 3.58 −2.0 0.02
Case II k/(k2 + β2

i )3/2 1 2.38 9.35 0.81

Case III
[

1
k2π

Q1

(
1 + β2

i

2k2

)]1/2

1 1.68 60.0 0.19

2 1.20 120.0 4.4 −2.3 0.12
Case IV k/(k2 + β2

i )2 1 2.715 147.0 0.78

in Fig. 1 that the original Mongan potentials give a poor fit
to the current data, while the new fits reproduce the data to
a much better degree. Since the 3P1 amplitude required for
the determination of dMS is evaluated at the deuteron binding
energy (i.e., below the elastic threshold), it is essential that we
fit well the low-energy phase shifts. Because these are small,
we have chosen the criteria for a good fit χ2 defined as

χ2 =
n∑

i=1

∣∣δth
i − δ

exp
i

∣∣2

∣∣δexp
i

∣∣2 , (22)

where n = 11 is the number of data points below 300 MeV. In
Table V, we present new fits to the Nijmegen np data for the
different form factors used by Mongan.1 Included are rank 1
and rank 2 potentials and the χ2 for each potential. It is clear
from the χ2 that the rank 2 potentials give a better fit. This
is especially true for the case I form factor. In the following
discussion of the deuteron EDM, we consider these different
3P1 potentials to establish the importance of fitting the data
and the role of the off-shell behavior of the amplitude.

B. The deuteron EDM

We now turn to the study of the sensitivity of the
deuteron EDM to the nuclear structure effects as defined by
the strong nucleon-nucleon interactions detailed previously.
We first consider the sensitivity of the two-body deuteron
EDM d

(2)
D to the D-state probability (PD). In Table VI, we

summarize the contributions to the deuteron EDM for the four
different deuteron wave functions being considered. For the
3P1 interaction, we use a rank 2 Mongan case I potential (fitted
to the latest Nijmegen phase shifts [21]). Also included are the
results of Khriplovich and Korkin [13]. We observe that in
the plane-wave approximation (dPW) there is little variation
with PD , and the short-range repulsion incorporated in the
two Reid potential wave functions provides no more than a
10% reduction in dPW. Moreover, the results are effectively

1The case III form factor was motivated by the observation that the
on-shell Born amplitude for a rank 1 separable potential is identical to
the on-shell Born amplitude resulting from meson exchange potential
with a meson mass β1.

consistent with the zero-range (chiral limit) approximation
of Khriplovich and Korkin. In particular, the plane-wave
results for the two YY models suggest that the dependence
upon the deuteron D-state probability is such that an S-state
deuteron result would approach that of Ref. [13]. In contrast,
the multiple-scattering contribution (dMS), which is of the
opposite sign of the plane-wave term, varies considerably
depending upon the short-range character of the deuteron
wave function. In particular, the two Reid potentials with
different PD values yield quite similar values of dMS, but
these are only half those generated by the YY potentials.
The difference between the YY and Reid potential models
can be understood in light of our knowledge that there is
no explicit short-range repulsion in the YY potentials. We
return to this difference when we address the role of the
off-shell behavior of the 3P1 amplitude in determining the
magnitude of the multiple-scattering contribution dMS. From
these results, we may conclude that the strong repulsion at
short distance in realistic nucleon-nucleon potentials reduces
the effects of multiple scattering in the matrix element to such
an extent that the multiple-scattering contribution dMS is only

0 100 200 300
–50

–40

–30

–20

–10

0

E (MeV)

δ 
(d

eg
)

3P1 Phase Shifts Case I

Exp.

Case I R=1 New 

Case I R=2 New

Case I R=1 Old

Case I R=2 Old

FIG. 1. (Color online) Comparison of the 3P1 phase shifts for the
Mongan potentials (old) with case I form factor and rank 1 (R = 1)
and rank 2 (R = 2) with the new fit (new) and the experimental (Exp.)
Nijmegen [21] np data.
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TABLE VI. The variation of the two-body EDM with D-state
probability of the deuteron. For the 3P1 interaction. we use the new fit
case I rank 2 potential. Also included are the results of Khriplovich
and Korkin [13].

3S1–3D1 Pd dPW(A e fm) dMS(A e fm) d
(2)
D (A e fm)

YY 4% 4% −1.035 0.411 5 −0.623 4
Reid93 5.7% −0.971 5 0.200 9 −0.770 6
Reid68 6.5% −0.962 0 0.171 8 −0.790 2
YY 7% 7% −1.083 0.427 1 −0.656 4
Khriplovich et al. −0.92

about 20% of the plane-wave contribution dPW. Furthermore,
as noted previously, the final results are not particularly
sensitive to PD .

To establish the importance of the multiple-scattering
contribution (dMS) to the total two-body deuteron EDM, we
turn to the dependence of d

(2)
D on the choice of the 3P1

interaction. First we need to examine the sensitivity of the
multiple-scattering contribution to the 3P1 phase shifts. This
can be achieved by comparing the results for the EDM using
the old Mongan fit to the 1960s Livermore phase-shift analysis
and the new fit with the same separable potential form factors
to the latest Nijmegen [21] np data. We have in Table VII the
EDM results for the rank 1 separable potentials with case I
and III form factors. For the deuteron wave function, we have
used either the UPA to the Reid68 or the YY 4% potentials.
It is clear from these results that the multiple-scattering
contribution (dMS) is reduced as a result of the fit to the more
recent phase-shift analysis (compare rows 4 and 5 or rows
6 and 7 in Table VII). This reduction in dMS is consistent
with the observation that the new 3P1 potentials provide less
repulsion (i.e., smaller phase shifts; see Fig. 1) and, therefore,
substantially smaller multiple-scattering contributions than the
old fits due to Mongan. This observation is encouraging for
extending the analysis based on dPW to the three-nucleon EDM,
as the new np data suggest a reduced contribution from the
multiple-scattering term.

We now return to the role of the short-range repulsion in
the deuteron wave function on the magnitude of the multiple-
scattering term dMS as illustrated in Table VI. In comparing
the results for the Reid68 and 4% YY deuterons (columns 3

TABLE VII. Variation in the deuteron EDM with changes in the
np phase shifts for two rank 1 separable potentials having different
form factors as defined by Mongan [12]. Here “new” refers to the fit
to the latest Nijmegen [21] np phase shifts while “old” refers to the
original Mongan fit.

3S1–3D1 Reid68 YY 4%

Case χ 2 dPW = −0.96 dPW = −1.04

dMS d
(2)
D dMS d

(2)
D

I (new) 0.62 0.21 −0.75 0.57 −0.47
I (old) 1.90 0.31 −0.66 0.78 −0.26
III (new) 0.19 0.25 −0.71 0.77 −0.27
III (old) 6.67 0.42 −0.54 1.16 0.12

and 5 in Table VII) for the case I and case III 3P1 potentials,
we find that the multiple-scattering term is suppressed for
both 3P1 potentials. This suggests that the effect tabulated in
Table VI might be valid in general, which implies that the
inclusion of multiple scattering will require a more realistic
treatment of the deuteron wave function than is the case
for the zero-range approximation employed by Khriplovich
and Korkin [13]. In fact, for some combination of deuteron
wave function and 3P1 interaction (4% YY and case III old),
the multiple-scattering contribution (dMS) is about the same
size as the plane-wave approximation (dPW) and as a result the
deuteron EDM d

(2)
D is suppressed by an order of magnitude

compared to the combination Reid68 and case I new.
We now turn to the role of the off-shell behavior of the

3P1 amplitude in the deuteron EDM. Here again we make use
of the different separable potentials with the different form
factors used by Mongan after readjusting the parameters of
the potential to fit the latest Nijmegen [21] np phase shifts.
The parameters of these new potentials are given in Table V.
In Table VIII, we report the multiple-scattering contribution
dMS and the two-body EDM d

(2)
D for these separable potentials.

In each case, we have made use of either the Reid93 or 4% YY
deuteron wave functions in the calculations. Here we observe
that for the Reid93 deuteron there is a smaller variation in
d

(2)
D than is the case for the 4% YY deuteron. This is due to

the fact that the multiple-scattering contributions, dMS, for the
4% YY deuteron have a substantially larger variation for the
different fits to the np data. This is consistent with the results
in Table VII and is due to the absence of short-range repulsion
in the YY potentials. Here we can raise a number of questions
regarding the role of the 3P1 amplitude in determining the
magnitude of the multiple-scattering contribution dMS. These
are as follows:

� Why is dMS almost a factor of two smaller for the Reid93
potential when compared to that for the 4% YY potential?

� Why, for the Reid93 deuteron, is dMS about the same for all
form factors with the possible exception of case III, which
gives the largest contribution?

� Why is it that for the 4% YY deuteron dMS has a much
larger variation than is the case for Reid93?

To address these questions and to try to correlate the results
in Table VIII with the off-shell behavior of the 3P1 amplitude,
we need to examine the analytic continuation of the P -wave-
scattering wave function to the deuteron pole. This is defined
in momentum space in terms of the half off-shell t matrix as

ψα(k) = G0(−εD, k) tα(k, iκ; −εD)

= G0(−εD, k) gα(k)τα(−εD)g†α(iκ)

≡ �α(k)τα(−εD)g†α(iκ), (23)

where α labels the 3P1 channel, εD = κ2

2µ
is the binding

energy of the deuteron, and µ is the np reduced mass. Here,
the free Green’s function at the deuteron energy is given
by G0(−εD, k) = −(2µ)(κ2 + k2)−1, while the amplitude
tα(k, iκ; −εD) is the half off-shell 3P1 t matrix evaluated at
the deuteron pole. In the second line of Eq. (23), we have
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TABLE VIII. The dependence of dMS on the 3P1 separable potential form
factor as defined by Mongan [12] and that are fit to the latest np phase shifts. The
Reid93 or the 4% YY deuteron wave function is used in all cases as indicated.

Case Rank χ 2 Reid93 YY 4%
dPW = −0.9715 dPW = −1.035

dMS(A e fm) d
(2)
D (A e fm) dMS(A e fm) d

(2)
D (A e fm)

I 1 0.62 0.258 3 −0.713 2 0.566 5 −0.468 4
I 2 0.02 0.200 9 −0.770 6 0.411 5 −0.623 4
II 1 0.81 0.222 9 −0.748 6 0.380 7 −0.654 2
III 1 0.19 0.307 5 −0.664 0 0.765 4 −0.269 6
III 2 0.12 0.380 5 −0.591 0 1.108 0.073 4
IV 1 0.78 0.215 3 −0.756 2 0.327 7 −0.707 2

written the off-shell t matrix in its separable form with

τ α(−εD) =
[
λα + 2µ

∫ ∞

0
dkk2 g†α(k)gα(k)

κ2 + k2

]−1

. (24)

For rank 1 potentials, τ α(−εD) is positive definite since the
potential is repulsive (i.e., λα > 0). As a result, the scattering
wave function can be written as

ψα(k) = χα(k)
√

τα(−εD) gα(iκ). (25)

This definition of the function χα(k) is motivated in the
following discussion of the matrix elements of the dipole
operator Od and the PT-violating one-pion-exchange potential
V that go into the evaluation of dMS.

In Fig. 2, we plot the function χα(k) for all the rank 1
potentials used in Table VIII. A careful inspection of this figure
reveals that (i) the scattered function χα(k) for the case III form
factor is substantially larger for k < 1.0 fm−1 than that of the
other three form factors, and (ii) for k > 3 fm−1 the case III
scattered function has the longest range followed by case I,
case II, and finally case IV. This is clear from the choice of
form factors as given in Table V.

0 1 2 3 4
0

1

2

k (fm−1)

Case IV

Case III

Case II

Case I

χ α
 (

k)

3.2 3.6 4.0
0.02

0.04

0.06

0.08

FIG. 2. (Color online) Comparison of the 3P1 scattered function
χα(k) defined in Eq. (25) for the rank 1 separable potentials that fit
the latest Nijmegen [21] np phase shifts.

To establish how this momentum dependence of the 3P1

scattered function affects the multiple-scattering contribution
dMS to the deuteron EDM, we recall from Eq. (14) that dMS

can be written as

dMS = −2[Osp + Odp]τ (−εD)[Vps + Vpd ], (26)

where

ODα = 〈�D|Od |�α〉 and VαD = 〈�α|V |ψD〉, (27)

with D = 3S1 or 3D1 and α =3P1. For rank 1 separable
potentials, we can absorb a factor of

√
τ (−εD) into the

matrix elements, that is, Oαp ≡ Oαβ

√
τ (−εD) and Vpα ≡√

τ (−εD)Vpα , and therefore for rank 1 potentials we have

dMS = −2[Osp + Odp][Vps + Vpd ]. (28)

The values of Oαp and Vpα for the four different form factors
and with a deuteron wave function given by either the 4%
YY or the Reid93 potentials are presented in Table IX. It is
clear from these results that the matrix elements of the dipole
operator Od , which is long range in coordinate space, are
to a good approximation independent of the deuteron wave
function and to within 20% independent of the 3P1 potential.
On the other hand, the matrix elements of the PT-violating
one-pion-exchange potential, which probes the short-range
behavior of both the 3P1 and the deuteron wave function, are
clearly model dependent. In particular, for the Reid93 deuteron

TABLE IX. The matrix elements of the dipole operator Od and
the PT-violating one-pion-exchange potential V for the four different
form factors and two different deuteron wave functions.

Deuteron Case Osp Odp Vps Vpd

4% YY I −0.419 7 −0.055 99 0.553 3 0.042 11
II −0.403 9 −0.054 22 0.379 4 0.036 18
III −0.481 9 −0.063 00 0.657 8 0.044 44
IV −0.418 5 −0.056 22 0.312 4 0.032 76

Reid93 I −0.422 1 −0.060 69 0.216 9 0.090 31
II −0.406 8 −0.059 06 0.192 8 0.046 41
III −0.485 2 −0.067 12 0.226 9 0.051 54
IV −0.422 4 −0.061 05 0.179 3 0.043 38
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with short-range repulsion, the variation in Vpα is small with
the case III form factor giving the largest contribution and
case IV yielding the smallest contribution, followed by cases II
and I. This is consistent with the observation made in the Fig. 2
insert regarding the asymptotic behavior of the function χα(k).
This is also consistent with the observation in Table VIII for
rank 1 potentials. On the other hand, for the 4% YY deuteron,
with no short-range repulsion, the matrix elements are almost
a factor of two larger with the case III form factor giving
the largest contribution and case IV the smallest. From the
results in Table IX, we may conclude that it is the matrix
element of the PT-violating one-pion-exchange potential that
probes the short-range behavior of the 3P1 and deuteron wave
functions and, as a result, determines the magnitude of dMS.
To that extent, it is essential that one generate those two
wave functions in a consistent frame work. On the other hand,
when the deuteron includes the short-range behavior dictated
by modern nucleon-nucleon interactions, the contribution of
the multiple-scattering term dMS is suppressed (≈20%) in
comparison to the plane-wave contribution dPW. This suggests
that one may be able to evaluate the EDM for the three-nucleon
system in the plane-wave approximation in such a model with
an error of the order of 20%.

Finally, the results in Table IX for Oαp and Vpα indicate
that the contributions from the D-wave component of the
deuteron wave function are an order of magnitude smaller than
those of the S-wave component. This may suggest that one
could neglect the D-wave component in calculating dMS and
a simplification of the calculation of the multiple-scattering
term in heavier nuclei. This observation is consistent with the
results in Table VI where the multiple-scattering contribution
has a variation of about 10% with D-state probability.

V. CONCLUSIONS

From our analysis, we offer the following conclusions:
(i) In the absence of multiple scattering (dMS = 0), the varia-
tion in d

(2)
D due to differences in the deuteron wave functions is

less than 5%, and the value of dPW is consistent with the zero-
range (chiral limit) results of Khriplovich and Korkin [13].
(ii) The contribution from multiple scattering dMS is sensitive
to the short-range behavior of the deuteron wave function, and
the dMS contribution is about 20% for realistic parametrizations
of the deuteron such as those represented by the Reid93
potential model. This suggests that we can extend the analysis
to heavier nuclei in the plane-wave approximation with an
estimated error of ≈20%. (iii) As suggested by Liu and
Timmermans, one pion exchange dominates the deuteron
EDM calculation. (iv) The contribution from the 3P1 interac-
tion via dMS depends on the phase shifts in this channel as well
as the off-shell behavior of the amplitude. (v) A comparison
of our Reid93 results with those of Liu and Timmermans [15]
indicates that one can use a separable potential approximation
in heavier nuclei, for example, 3He and 3H, with minimal
loss in accuracy. Moreover, until deuteron EDM experiments
attain an uncertainty of less than 10%, simple separable
potential model calculations should provide an adequate
description.
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