
PHYSICAL REVIEW C 82, 064001 (2010)
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I. INTRODUCTION

Relativistic invariance in a quantum theory means that
experiments cannot make an absolute determination of inertial
reference frames. In a quantum theory experiments measure
probabilities, expectation values, and ensemble averages. In
a relativistic theory inertial reference frames are related
by Lorentz transformations and space-time translations. The
group generated by these transformations is the Poincaré
group. Wigner [1] proved that a necessary and sufficient con-
dition for relativistic invariance in a quantum theory is that the
correspondence between equivalent states in different inertial
reference frames be given by a unitary ray representation of
the Poincaré group. This ensures that probabilities, expectation
values, and ensemble averages for equivalent experiments in
different inertial frames are identical.

Since Lorentz transformations mix position and time
coordinates and translations change position coordinates,
time evolution can be expressed directly using only Lorentz
transformations and translations. This leads to a problem in
how to add interactions to obtain an internally consistent initial
value problem. The nature of the problem can be appreciated
by considering the commutation relations:

[P i,Kj ] = iδijH, (1.1)

where H is the generator of time translations (the Hamil-
tonian), P are the generators of spatial translations, and K
are the generators of rotationless Lorentz transformations.
These commutation relations are satisfied for systems of free
particles. If an interaction is added to H on the right side
of these equations, then consistency requires that interactions
also be added to some operators on the left. The full Poincaré
commutation relations imply additional nonlinear constraints
on these interactions.

In quantum field theory the resolution of this problem
follows as a consequence of the local commutation relations
of the fields. Dirac [2] studied the problem of satisfying
the Poincaré commutation for interacting systems from an
algebraic point of view (using Poisson brackets in classical
mechanics). His analysis showed that there are maximal
subgroups of the Poincaré group, called kinematic subgroups,
that can be made free of interaction. Dirac identified the three
largest kinematic subgroups: (1) the subgroup generated by
translations and rotations (the three-dimensional Euclidean
group), (2) the Lorentz group, and (3) the subgroup of

the Poincaré group that leaves a hyperplane tangent to the
light-cone invariant. Dirac called the dynamical models with
these different kinematic symmetries instant-form dynamics,
point-form dynamics, and light-front dynamics, respectively.
While each of these choices reduces the complexity of the
final solution, none of them provides an explicit realization of
a dynamical representation of the Poincaré group.

Bakamjian and Thomas [3] gave the first explicit repre-
sentation of the Poincaré Lie algebra with interactions for a
two-particle system in Dirac’s instant form of the dynamics.
Their construction was generalized to the three-body system
by Coester [4]. The Bakamjian-Thomas construction can also
be applied to systems of four or more particles, but the resulting
unitary representation of the Poincaré group violates spacelike
cluster properties. This deficiency was resolved by Sokolov
[5], who with Shatnyi also established the equivalence [6]
of the models in each of Dirac’s forms of dynamics. While
Sokolov provided a systematic construction for restoring
cluster properties, the construction is sufficiently complicated
that it has not been implemented in any application.

For systems of two or three particles Sokolov’s systematic
construction is not necessary. Many applications where a
relativistic treatment is needed utilize the Bakamjian-Thomas
construction. Applications based on each of Dirac’s forms
of dynamics have been applied to model realistic sys-
tems. Calculations based on models using different forms
of dynamics are sometimes compared, and the advantages
of one form over another are sometimes inferred. In light of
Sokolov and Shatnyi’s proof of the equivalence of different
kinematic subgroups, it is apparent that models with different
kinematic subgroups that give different results are due to the
inequivalence of the models. Nevertheless, differences seem to
arise naturally because certain model assumptions may appear
more natural in the theory with one kinematic subgroup over
another kinematic subgroup.

In addition, the unitary transformations that relate models
based on different forms of dynamics must be dynamical
because they necessarily generate interactions in some kine-
matic generators. For example, any unitary transformation that
maps an instant-form representation of the Poincaré group
to a point-from representation transforms linear momentum
operators with no interaction to momentum operators with
interactions. In three- or more-body models one would expect
that if one of these interacting unitary transformations is
applied to a Hamiltonian with only two-body interactions,
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then it will generate a transformed Hamiltonian that has
three-body interactions. This would suggest some forms of
dynamics may be preferable because some may not need
strong many-body interactions. If one considers the mass
Casimir operator rather than the Hamiltonian, it is possible to
find classes of unitary transformations that relate the different
forms of dynamics where this does not happen. Specifically,
with these transformations the dynamical equations in any of
Dirac’s from of dynamics are essentially identical for systems
with any number of particles, including models that do not
conserve particle number.

The important consequence of this result is that there are
no real advantages to any one form of the dynamics; in fact,
the different forms of dynamics are simply different repre-
sentations of a more-universal Poincaré invariant quantum
mechanics. The second consequence of this result is that
it provides a framework where models based on different
kinematic subgroups can be compared.

In Sec. II we discuss the Bakamjian-Thomas construction
of dynamical unitary representations of the Poincaré group.
In Sec. III we introduce Ekstein’s [7] notion of scattering
equivalence and establish the scattering equivalence of specific
Bakamjian-Thomas constructions in each of Dirac’s forms of
dynamics. Since the equivalence is best understood using an
abstract treatment, in Sec. IV we discuss an application to the
three-body system in more detail. The results are summarized
in Sec. V.

II. THE GENERALIZED BAKAMJIAN-THOMAS
CONSTRUCTION

One of the most straightforward constructions of exactly
Poincaré invariant quantum mechanical models of systems of
a finite number of degrees of freedom is based on a method
introduced by Bakamjian and Thomas [3]. The construction
can be summarized as follows. The Hilbert space for a particle
of mass m and spin j is the mass m, spin j irreducible
representation space of the Poincaré group. The model Hilbert
space for a system is determined by the particle content of the
system. It is the direct sum of tensor products of irreducible
representation spaces for the Poincaré group. The kinematic
(noninteracting) unitary representation of the Poincaré group
U0(�, a) on this space is the direct sum of tensor products
of single-particle unitary irreducible representations of the
Poincaré group.

The kinematic representation of the Poincaré group is
decomposed into a direct integral of irreducible representations
of the Poincaré group using Poincaré group Clebsch-Gordan
coefficients [4,8,9]. Wave functions in this direct integral rep-
resentation are square integrable functions of the eigenvalues
of (1) the Casimir operators (m, j ) of the Poincaré group
(2) commuting observables v that label different vectors in
an irreducible subspace (3) invariant degeneracy operators
d that distinguish multiple copies of the same irreducible
representation. Wave functions in this representation are
square integrable functions ψ(m, j, v, d) = 〈(m, j ), v, d|ψ〉
of the eigenvalues of these operators.

Typical choices for v for a two-body system are the three
components of the linear momentum (continuous variables)

and one component of the canonical spin (discrete variable),
the four velocity components (continuous variables) and
one component of the canonical spin (discrete variable), or
the generators of space-time translations on a light front
(continuous spectrum) and one component of the light-front
spin (discrete variable). A common choice of the degeneracy
parameters d for a two-particle system is l2 and s2, which are
kinematically invariant angular momenta.

The Poincaré transformation properties of wave functions
in one of these bases is given by

〈(m, j )v, d|U0(�, a)|ψ〉 =
∑∫ ′

dv′Dm,j

v;v′ [�, a]ψ(m, j, v′, d),

(2.1)

where

Dm,j

v;v′ [�, a] = 〈(m, j )v|U (�, a)|(m, j )v′〉 (2.2)

is the known mass m, spin j irreducible representation of
the Poincaré group in the basis v. Note that the Poincaré
group Wigner function Dm,j

v;v′ [�, a] does not depend on the
degeneracy quantum numbers d and is the same for either a
system or a free particle with the same m and j as the system.

The goal of the Bakamjian-Thomas construction is to
add interactions to the Poincaré generators in a manner that
preserves the Poincaré Lie algebra. This is nontrivial because
the commutation relation (1.1) cannot be satisfied for an
interacting H unless some combination of P and K also include
interactions.

Bakamjian and Thomas solve this problem by adding inter-
actions to the mass Casimir operator m of the noninteracting
system. The allowed interactions in the Bakamjian-Thomas
construction are represented by kernels that have the form

〈(m, j ), v, d|V |(m′, j ′), v′, d′〉
= δ(v : v′)δjj ′ 〈m, d‖V j‖m′, d′〉 (2.3)

in the kinematic irreducible representation, where δ(v : v′)
denotes a product of Dirac delta functions in the continu-
ous variables and Kronecker delta functions in the discrete
variables. For these interactions, {m, j, v,�v} and {md =
m + V, j, v,�v}, where �v are four operators conjugate
to v, have the same commutation relations. Since all 10
Poincaré generators can be expressed as functions of these
operators, then if md = m

†
d := m + V > 0, md becomes the

mass Casimir operator for a dynamical representation of the
Poincaré group. The structure of the interaction and the re-
quirement md > 0 imply that simultaneous eigenstates of md ,
j 2, and v, denoted by |(λ, j ), v〉, are complete and transform
irreducibly with respect to a dynamical representation of the
Poincaré group.

Simultaneous eigenfunctions of {md, j, v} in the kinematic
irreducible basis have the form

〈(m, j ), v, d|(λ′, j ′), v′〉 = δ(v : v′)δjj ′ψλ′,j ′ (m, d), (2.4)

where the internal wave function ψλ,j (m, d) is the solution of
the mass eigenvalue equation:

(λ − m)ψλ,j (m, d)

=
∑∫ ′〈m, d‖V j‖m′, d′〉dm′dd′ψλ,j (m′, d′). (2.5)
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Note that the variables v, which define the choice of basis on
each irreducible subspace, do not appear in Eq. (2.5) for the
internal wave function ψλ,j (m, d). In addition, the variables
v play no role in formulating the asymptotic conditions for
scattering solutions of Eq. (2.5). On the other hand, the
operator V in Eq. (2.3) is different for each choice of v
because Eq. (2.3) implies that the operators v commute with
the interaction V .

The structure of the interaction means that the internal wave
function ψλ,j (m, d) is independent of the choice of basis for the
kinematic irreducible representation. The dynamical unitary
representation of the Poincaré group in this complete set of
eigenstates is

〈(m, j ), v, d|U (�, a)|(λ, j ), v′〉
=

∑∫ ′′〈(m, j ), v, d|(λ, j ), v′′〉dv′′Dλ,j

v′′,v′ [�, a], (2.6)

where

Dλ,j

v′′,v′ [�, a] := 〈(λ, j ), v′′|U (�, a)|(λ, j ), v′〉 (2.7)

is identical to Eq. (2.2) with m replaced by the mass eigenvalue
λ of the dynamical mass operator md . This representation is
dynamical because the Wigner function depends on the mass
eigenvalue λ, which requires solving Eq. (2.5).

This is a short summary of the Bakamjian-Thomas con-
struction. This construction gives an explicit representation,
Eq. (2.6), of finite Poincaré transformations. Dynamical
generators can be constructed by differentiating with respect
to the group parameters. Bakamjian and Thomas actually
construct the generators, but they are difficult to exponentiate,
while the finite transformations discussed here can be used
directly in applications.

The Bakamjian-Thomas construction summarized here is
not limited to systems with two particles or fixed numbers of
particles. In more complex systems the interaction is a sum of
interactions that may be more naturally expressed in bases with
the same v but different degeneracy parameters. For example,
in the three-body problem it is natural to construct three-
body kinematic irreducible representations using successive
pairwise coupling. Different orders of pairwise coupling lead
to irreducible representations with the same overall v but
different choices of degeneracy parameters d. For example,
interactions involving the i-j pair of particles are most
naturally described in a representation where the i-j pair is
coupled first.

Because the degeneracy parameters are kinematically
invariant, the coefficients of the transformation that relates
bases with degeneracy parameters db to bases with degeneracy
parameters da necessarily have the form

〈(m, j ), v, da|(m′, j ′), v′, d′
b〉

= δ(v : v′)δjj ′δ(m − m′)Rjm(da, d′
b). (2.8)

The coefficients Rjm(da, d′
b) of the unitary operator that trans-

forms invariant degeneracy parameters are Racah coefficients
for the Poincaré group. The important observation is that these
coefficients commute with and are independent of the variables
v that label different vectors in an irreducible subspace.

In the general case the interaction kernel, Eq. (2.1), has the
form

〈(m, j ), v, d|V |(m′, j ′), v′, d′〉
= δ(v : v′)δjj ′

∑∫ ′
Rjm(d, db)ddb

× 〈
m, db

∥∥V
j

b

∥∥m′, d′
b

〉
dd′

bR
jm′

(d′
b, d′). (2.9)

The relevant observation is that, in general, the interaction still
has the form (2.1) with

〈m, d‖V j‖m′, d′〉
:=

∑∫
Rjm(d, db)ddb

〈
m, db

∥∥V
j

b

∥∥m′, d′
b

〉
dd′

bR
jm′

(d′
b, d′).

(2.10)

To make the connection with Dirac’s forms of dynamics,
note that for some choice of bases |(m, j )v, d〉 the Poincaré
group Wigner function Dλ,j

v′′,v′ [�, a] is independent of the mass
λ when (�, a) is restricted to a subgroup of the Poincaré group.
The subgroup only depends on the choice of basis v. This is
because the Poincaré group Wigner function does not depend
on the degeneracy parameters d. This subgroup is called
the kinematic subgroup associated with the basis v. Dirac
identified the three largest kinematic subgroups, which are the
three-dimensional Euclidean group (instant-form dynamics),
the Lorentz group (point-form dynamics), and the subgroup
that leaves a plane tangent to the light-cone invariant (front-
form dynamics). In our presentation, each kinematic subgroup
is uniquely associated with a preferred basis for irreducible
subspaces. This characterization exists even in the absence
of interactions. The kinematic subgroup becomes a kinematic
subgroup of the dynamical model when the interaction (2.9)
also commutes with this subgroup.

The natural bases for the irreducible subspaces associated
with Dirac’s [2] forms of dynamics are simultaneous eigen-
states given in Table I. Where p are momentum operators, p0 is
the Hamiltonian, and jc and jf are the canonical and light-front
spin operators, which are related by a momentum-dependent
rotation [10].

The connection with Dirac’s notion of forms of dynamics
is that when (�, a) is an element of the kinematic subgroup,
then U (�, a) can either act to the right, on the parameters of
the state vector, or to the left, on the arguments of the wave
function:

〈(m, j )v, d|U [�, a]|(λ, j )v′〉
=

∑∫ ′′Dm,j

v,v′′ [�, a]dv′′〈(m, j )v′′, d|(λ, j )v′〉

=
∑∫ ′′

〈(m, j )v, d|(λ, j )v′′〉dv′′Dλ,j

v′′,v′ [�, a]. (2.11)

TABLE I. Simultaneous eigenstates.

Form Vector variables

Instant (v → p, jc · ẑ)
Point v → (u := p/m, jc · ẑ)
Front v → (p+ := p0 + p3, p1, p2, jf · ẑ)
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In this case Dλ,j

v′′,v′ [�, a] = Dm,j

v′′,v′ [�, a] because the Wigner
functions are independent of m and λ for kinematic (�, a).

Thus, while the computation of a general Poincaré trans-
formation,

〈(m, j )v, d|U [�, a]|�〉
=

∑∫ ′ψλ′,j ′ (m, d)Dλ′,j ′
v,v′ [�, a]ψ∗

λ′,j ′ (m′, d′)

× dλ′dm′dv′dd′〈(m′, j )v′, d′|�〉, (2.12)

requires solutions of the eigenvalue problem (2.5), for (�, a)
in the kinematic subgroup we get an equivalent but simpler
result that does not require the solution of Eq. (2.5):

〈(m, j )v, d|U [�, a]|�〉 =
∑∫

dv′Dm,j

v,v′ [�, a]〈(m, j )v′, d′|�〉.
(2.13)

III. THE EQUIVALENCE

We call two Poincaré invariant theories scattering equiva-
lent if (1) the unitary representations of the Poincaré group
are related by a unitary transformation and (2) both theories
have the same S-matrix elements. The nontrivial property of
a scattering equivalence is that the unitary transformation is
not used to transform the free-particle states that are used to
formulate the scattering asymptotic conditions.

Note the that unitarity alone does not imply the equivalence
of the scattering matrices. Two-body models with different
repulsive potentials are unitarily equivalent, but they do
not necessarily have identical phase shifts. Ekstein [7,11]
showed that a necessary and sufficient condition for a unitary
transformation A to be a scattering equivalence is

lim
t→±∞ ‖(A − I )U0(t)|ψ〉‖ = 0 (3.1)

for both time limits.
Different bases for the irreducible representation spaces

|(m, j )va〉 and |(m, j )vb〉 are related by a matrix of the form

〈(m, j )va|(m′, j ′)v′
b〉 = δ(m : m′)δjj ′Cmj (va; v′

b). (3.2)

These transformations can be used to construct Poincaré group
Clebsch-Gordan coefficients in different bases with the same
sets of degeneracy quantum numbers.

Tensor products of irreducible representations of the
Poincaré group can be decomposed into a direct integral of
irreducible representations using the Poincaré group Clebsch-
Gordan coefficients. We use the following notation for the
Clebsch-Gordan coefficients in the a basis:

〈(m1, j1), va1, (m2, j2)va2|(m, j ), va, d〉. (3.3)

The Clebsch-Gordan coefficients have the intertwining
property∑∫ ′′

〈(m1, j1), va1, (m2, j2)va2|(m′, j ′), v′′
a, d′′〉dv′′Dm′,j ′

v′′,v′ [�, a]

=
∑∫ ′′ ∏

Dm1,j1

va1,v′′
a1

[�, a]Dm2,j2

va2,v′′
a2

[�, a]dv′′
a1dv′′

a2

×〈(m1, j1), v′′
a1, (m2, j1)v′′

a2|(m, j ), v′, d〉. (3.4)

Since the Poincaré group Wigner d functions have the same
variables (va) on both sides of Eq. (3.4), the mass-independent
subgroups of the Poincaré group are the same in both the
tensor product and the irreducible representation. This means
that the kinematic subgroups associated with vector variables
v are mass independent on both the tensor product and
irreducible representations. It turns out that the irreducible
representations are more useful for comparing Bakamjian-
Thomas constructions with different kinematic subgroups. The
mass-independent subgroups associated with the basis choices
are given in Table I, and when the interactions commute with
these subgroups, they become the kinematic subgroups in
Dirac’s forms of dynamics.

Depending on details of the construction of the Clebsch-
Gordan coefficients, there are different possible choices of
degeneracy quantum numbers d. For the purpose of comparing
two dynamical models it is useful to have a common choice of
degeneracy parameters.

For any fixed choice of d in the a basis we can construct
a Clebsch-Gordan coefficient in the b basis that has the same
degeneracy quantum numbers d using the transformation (3.2)
in the Clebsch-Gordan coefficient (3.3):

〈(m1, j1), vb1, (m2, j2)vb2|(m, j ), vb, d〉
=

∑∫ ′dv′
a1dv′

a2dv′
aC

m1j1 (vb1; v′
a1)Cm2j2 (vb2; v′

a2)

×〈(m1, j1), v′
a1, (m2, j2)v′

a2|(m, j ), v′
a, d〉Cmj (v′

a; vb).

(3.5)

This follows from the identity

∑∫ ′
dv′

aD
m,j

va ,v′
a
[�, a]Cmj (v′

a; vb)

=
∑∫ ′

Cmj (va; v′
b)Dm,j

v′
b,vb

[�, a]. (3.6)

Using either coefficient (3.3) or (3.5), we can successively
use pairwise coupling to construct irreducible bases for the
Hilbert space in the a or b basis with identical degeneracy
parameters d. We write these bases as

|(m, j )va, d〉, |(m, j )vb, d〉. (3.7)

What Sokolov and Shatnyi established [6] was that the
Bakamjian-Thomas constructions using the interactions

〈(m, j ), va, d|Va|(m′, j ′), v′
b, d′〉

= δ(va : v′
a)δjj ′ 〈m, d‖V j‖m′, d′〉 (3.8)

and

〈(m, j ), vb, d|Vb|(m′, j ′), v′
b, d′〉

= δ(vb : v′
b)δjj ′ 〈m, d‖V j‖m′, d′〉 (3.9)

in the mass operator are scattering equivalent. At first glance,
it looks like Va and Vb are related by a simple variable
change; however, this is not the case because Va and Vb

commute with different kinematic subgroups. This property
cannot be changed by a change of variables. Va and Vb are
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TABLE II. Functions for the three cases of
interest.

Form Function

Instant H = √
m2 + p2

Point H = √
1 + v2m

Front H = 1
2 (p+ + p2

⊥+m2

p+ )

different operators that have a common kernel in different
representations.

It follows from Eqs. (3.8) and (3.9) that both representations
have identical internal wave functions. They are related by the
unitary transformation:

A :=
∑∫

j

dλdvadvb|(λ, j )va〉Cλj (va; vb)〈(λ, j )vb|, (3.10)

which involves a sum over the eigenvalues λ of the internal
mass operator (2.5). This is a dynamical operator because
the transformation depends on the eigenvalues λ of Eq. (2.5).
In principle, A might depend on the scattering asymptotic
conditions used to define the complete set of eigenstates in the
expansions in Eq. (3.9); however, Ekstein’s theorem implies
that this cannot happen if both representations give the same
S matrix.

That both models give identical S matrices can be estab-
lished by showing that both Hamiltonians can be replaced
by the corresponding mass operators when computing the
S matrix. This is because in the Bakamjian-Thomas con-
struction interactions are added to the mass operator or some
function of the mass operator. This identification is plausible
because the mass is the relativistic generalization of the center
of momentum Hamiltonian, which can be used to construct
the S matrix in nonrelativistic quantum mechanics. To see how
this arises in the relativistic case, observe that in any of Dirac’s
forms of dynamics the Bakamjian-Thomas Hamiltonian is a
function of the mass operator and kinematic variables, j 2, v,

and �v. For the three cases of interest these functions are given
in Table II.

In each case H has the form H = f (m, v), where v are
kinematic operators that commute with m. The scattering wave
operators have the form

�a± = s − lim
t→±∞ eiHat�ae

−iHf t

= s − lim
t→±∞ eif (ma,va )t�ae

−if (mf ,va )t , (3.11)

where

Sa = �
†
+a�−a (3.12)

and

�a = δ(va − v′
a)�̂, (3.13)

where �̂ is the projection that provides the scattering asymp-
totic conditions for the scattering solutions of Eq. (2.5).
Equation (2.5) and hence �̂ are independent of the choice
of basis va . mf is the invariant mass of the system of free
asymptotic particles.

The Kato-Birman invariance principle [12–14] allows the
replacement of f (m) by m in Eq. (3.11) provided f is in a
class of admissible functions [12–14], which holds for f in
Table II.

The invariance principle implies

�a± = s − lim
t→±∞ eiHat�ae

−iHf t

= s − lim
τ→±∞ eimaτ�ae

−imf τ . (3.14)

Using the interactions in Eq. (2.3) gives S matrices of the
forms

〈(m, j ), va, d|Sa|(m′, j ′), v′
a, d′〉

= δ(va, v′
a)δjj ′δ(m − m′)〈d‖Smj‖d′〉 (3.15)

and

〈(m, j ), vb, d|Sb|(m′, j ′), v′
b, d′〉

= δ(vb, v′
b)δjj ′δ(m − m′)〈d‖Smj‖d′〉, (3.16)

where the reduced S matrices 〈d‖Smj‖d′〉 are identical.
If we change irreducible basis variables in Eq. (3.15), we

get

〈(m, j ), vb, d|Sa|(m′, j ′), v′
b, d′〉

=
∑∫

Cmj (vb; va)dva〈(m, j ), va, d|Sa|

× (m′, j ′), v′
a, d′〉dv′

aC
m′j ′

(v′
a; v′

b)

=
∑∫

Cmj (vb; va)dvaδ(va, v′
a)δjj ′δ(m − m′)

× dv′
aC

m′j ′
(v′

a; v′
b)〈d‖Smj‖d′〉

= δ(vb; v′
b)δjj ′δ(m − m′)〈d‖Smj‖d′〉

= 〈(m, j ), vb, d|Sb|(m′, j ′), v′
a, d′〉, (3.17)

which proves the equivalence of the full S matrices. δ(m − m′)
is needed for the cancelation of Cmj (vy ; vx).

It then follows from Ekstein’s theorem that Ha and Hb are
related by a unitary scattering equivalence A. The operator A

necessarily has the form

A = �a±�
†
b±, (3.18)

where these wave operators include the one-body channels
(bound states) so they are unitary. The intertwining properties
of the wave operators imply

AMb = �a±�
†
b±Mb�a±Mf �

†
b±Ma�a±�

†
b± = MaA. (3.19)

If these relations are combined with the kinematic symmetries,
it follows that

A{Hb, Pb, Jb, Kb} = {Ha, Pa, Ja, Ka}A (3.20)

or, equivalently,

AUb(�, a) = Ua(�, a)A, (3.21)

as desired.
We are now in a position to summarize the main result.

Consider a Bakamjian-Thomas model dynamics with a spe-
cific choice of kinematic subgroup. The mass operator has a
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kernel in the free-particle irreducible basis |(m, j )va, d〉 of the
form

〈(m′, j ′)v′
a, d′|Ma|(m, j )va, d〉

= δ(v′
a : va)δj ′j 〈m′, d′‖Mj‖m, d〉. (3.22)

This is a Bakamjian-Thomas mass operator with the kinematic
subgroup associated with the irreducible vector variables va .
A new Bakamjian-Thomas mass operator in the free-particle
irreducible basis |(m, j )vb, d〉, related to |(m, j )vb, d〉 by
Eq. (3.2), is defined by the kernel:

〈(m′, j ′)v′
b, d′|Mb|(m, j )vb, d〉

= δ(v′
b : vb)δj ′j 〈m′, d′‖Mj‖m, d〉. (3.23)

This operator commutes with vb,�vb and is the mass oper-
ator for a scattering-equivalent Bakamjian-Thomas dynamics
with the kinematic subgroup associated with the choice of
irreducible variables vb.

Each of the two scattering-equivalent representations has a
different kinematic subgroup. Both models can be expressed
in terms of tensor products of single-particle irreducible
representations where the equivalence is not as obvious.
While the operator A is a complicated dynamical operator,
the internal mass eigenvalue problems in both representations
are identical and given by Eq. (2.5).

IV. EXAMPLE

In this section I illustrate the equivalence with a three-body
example. Specifically, I give explicit formulas for the abstract
operators needed to relate an instant-form Bakamjian-Thomas
three-body model to an equivalent front-form Bakamjian-
Thomas model.

The natural variables vi for an instant-form dynamics are p
and jc · ẑ, where jc is the canonical spin.

The single-particle basis (2.1) and Poincaré group Wigner
d function in this basis (2.2) are

|(m, j )p, µ〉 (4.1)

and

Dj,m

p′,µ′;p,µ[�, a] = δ(p′ − �p)

√
ωm(p′)
ωm(p′)

e−iωm(p′)a0+ip·aDj

µ′µ

× [
B−1

c (p′/m)�Bc(p/m)
]
, (4.2)

where ωm(p) is the energy and Bc(p/m) is the rotationless
Lorentz transformation that transforms (m, 0) to (ωm(p), p).
This Wigner function is independent of m for (�, a) cor-
responding to a spatial translation or rotation. Rotations are
kinematic in this basis because the rotationless boosts satisfy

R = B−1
c (Rp/m)RBc(p/m) (4.3)

independent of m.
The tensor product bases for two- and three-particle systems

in this basis are

|(m1, j1)p1, µ1(m2, j2)p2, µ2〉 (4.4)

and

|(m1, j1)p1, µ1(m2, j2)p2, µ2(m3, j3)p3, µ3〉. (4.5)

The noninteracting irreducible bases for the two- and three-
body systems are related to the single-particle bases by the
Poincaré group Clebsch-Gordan coefficients in this basis. Be-
cause the two-body invariant mass has a continuous spectrum,
it is convenient to replace m by the equivalent operator k,
which is defined implicitly by

m = m(k) =
√

m2
1 + k2 +

√
m2

2 + k2. (4.6)

With this modification the Poincaré group Clebsch-Gordan
coefficients in this basis are

c〈(m1, j1)p1, µ1|(m2, j2)p2, µ2|[k(m), j ]p, µ, l, s, j1, j2〉c
= δ(p1 + p2 − p)

δ[m(p1, p2) − m]

k2

×
√

ωm1 (k2)

ωm1 (p2
1)

ωm2 (k2)

ωm2 (p2
2)

ωm(p2)

m

×
∑

Dj1
µ1µ1

[B−1
c (p1/m1)Bc(p/m)Bc

×(k1/m1)]Dj2
µ2µ2

[
B−1

c (p2/m2)Bc(p/m)Bc(k2/m2)
]

×Y l
ml

[k̂(p1, p2)]〈j1, µ1, j2, µ2|s, µs〉〈l, ml, s, µs |j, µ〉,
(4.7)

where

( ωm(ki), ki ) = B−1
c (pi/mi)

(
ωm(pi)

pi

)
, (4.8)

Y l
ml

(k̂) is a spherical harmonic, and k2
i = k2. The quantities l

and s in this expression are the degeneracy parameters d:

|(m, j )p, µ, d〉 := |[k(m), j ]p, µ, l, s, j1, j2〉c. (4.9)

For the three-body system irreducible basis vectors are con-
structed using sequential pairwise coupling. The degeneracy
parameters depend on the order of coupling:

|(q, j )p, µ; L12,3, S12,3, k12, j12, l12, s12〉
=

∑ ∫
|(k12, j12)p12, µ12; (m3, j3)p3, µ3〉dp12dp3

×〈(k12, j12)p12, µ12; (m3, j3)p3, µ3|
× (m, j )p, µ; L12,3, S12,3〉. (4.10)

The degeneracy parameters

{d} = {L12,3, S12,3, k12, j12, l12, s12} (4.11)

are associated with the coupling order [(1 + 2) + (3)].
Racah coefficients that change the order of coupling are

constructed by taking the overlap of states of the form (4.10)
corresponding to different orders of coupling. Explicit expres-
sions for the Racah coefficients involve four Clebsch-Gordan
coefficients. The explicit expressions are not very illuminating,
but symmetry considerations imply that the Racah coefficients
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in this basis must have the structure

〈(q12;3, j )p, µ; L12,3, S12,3,m12, j12, l12, s12|(q23,1, j
′)

× p′, µ′; L23,1, S23,1,m23, j23, l23, s23〉
= δ[m(q12;3, k12) − m(q23;1, k23)]δjj ′δ(p − p′)δµµ′

×Rjm(q12;3, L12,3, S12,3, k12, j12, l12, s12; q23;1,

×L23,1, S23,1, k23, j23, l23, s23). (4.12)

A two-body Bakamjian-Thomas interaction between parti-
cles 1 and 2 in the irreducible three-body basis has the structure

〈(q12;3, j )p, µ; L12,3, S12,3, k12, j12, l12, s12|V12|(q ′
12;3, j

′)

× p′, µ′; L′
12,3, S

′
12,3, k

′
12, j

′
12, l

′
12, s

′
12〉

= δ(p − p′)δjj ′δµµ′
δ(q12;3 − q ′

12;3)

q2
12;3

δL12,3L
′
12,3

δS12,3S
′
12,3

δj12j
′
12

×〈k12, l12, s12‖vj12
12 ‖k′

12, l
′
12, s

′
12〉. (4.13)

Since this interaction appears in the two-body mass operator,
when it is used in the three-body mass operator, it is added as

V12,3 =
√

q2
12,3 + (m12 + V12)2 −

√
q2

12,3 + m2
12. (4.14)

The full three-body Bakamjian-Thomas mass operator is

M = M0 + V12,3 + V23,1 + V31,2. (4.15)

Each of the operators Vij,k is naturally computed using a
different order of coupling. By using the Racah coefficients
(4.12) we can write the full Bakamjian-Thomas mass operator
as a kernel in an irreducible basis associated with a fixed order
of coupling. For example, the kernel of the mass operator in
the basis

|(q12;3, j )p, µ; L12,3, S12,3, k12, j12, l12, s12〉 (4.16)

has the form

〈(q12;3, j )p, µ; L12,3, S12,3, k12, j12, l12, s12|M|
(q ′

12;3, j
′)p′, µ′; L′

12,3, S
′
12,3, k

′
12, j

′
12, l

′
12, s

′
12〉

= δ(p − p′)δjj ′δµµ′ 〈q12;3, L12,3, S12,3, k12, j12, l12, s12

‖M̂j‖q ′
12;3, L

′
12,3, S

′
12,3, k

′
12, j

′
12, l

′
12, s

′
12〉. (4.17)

This is the kernel of the operator that appears in mass
eigenvalue equation (2.5). Solving for the eigenstates of M

in this basis gives simultaneous eigenstates of M ,j 2,p, jz,

|(λ, j )p, µ〉 (4.18)

that are complete and transform like Eq. (2.6) with
Dj,λ

p′,µ′;p,µ[�, a] given by Eq. (4.2).
This defines the dynamical model with an instant-form

kinematic symmetry because the Poincaré group Wigner
d functions Dj,λ

p′,µ′;p,µ[�, a] are independent of the mass
eigenvalue λ for [�, a] corresponding to a pure rotation or
translation.

For the equivalent front-form model the irreducible basis
variables va := {p, jcz} are replaced by {vb := p+, p⊥, jf z}.

The light-front momenta are related to the instant-form
momenta by

p+ =
√

m2 + p2 + p3, p1 = p1, p2 = p2, (4.19)

while the light-front spins are related to the canonical (instant
form) spins by

jc = B−1
c (p/m)Bf (p/m)jf , (4.20)

where Bf (p/m) is a light-front-preserving boost that trans-
forms a particle of mass m at rest to momentum p. In
this expression the boosts are interpreted as 4 × 4 matrices
of operators. The combination B−1

c (p/m)Bf (p/m), which
leaves (m, 0, 0, 0) unchanged, is a momentum-dependent
three-rotation (called a Melosh [10] rotation). Since j2 is
rotationally invariant, it follows that j 2

f = j 2
c .

In the notation of Sec. III the kernel of the operator that
transforms the instant-form irreducible basis to the light-front
irreducible basis is

C
mj

p+,p⊥,µ;p′,µ′ = δ[p+ − p′
3 − ωm(p′)]δ(p⊥ − p′

⊥)

×
√

p+

ωm(p)
D

j

µµ′[B−1
f (p/m)Bc(p′/m)].

(4.21)

The Wigner function in the basis
|(m, j )p+, p⊥, µ〉 (4.22)

with p′ := �p is

Dj,m

p′+,p′
⊥,µ′;p+,p⊥,µ

[�, a]

= δ(p′+ − �+p)δ(p′
⊥ − �⊥p)

×
√

p+′′

p+ e−i 1
2 (p′+a−+p′−a+)+ip′

⊥·a⊥D
j

µ′µ

× [
B−1

f (p′/m)�Bf (p/m)
]
, (4.23)

where p= = p2
⊥+m2

p+ . This Wigner function has the property
that if (�, a) leaves the light-front invariant, then it does not
depend on m.

Clebsch-Gordan coefficients in the light-front basis (4.23)
with the same degeneracy parameters as Eq. (4.16) are obtained
by applying C

mj

p+,p⊥,µ;p′,µ′ to both sizes of the instant-form
Poincaré group Clebsch-Gordan coefficient:∑∫

C
m1j1

p+
1 ,p1⊥,µ1;p′

1,µ
′
1
C

m2j2

p+
2 ,p2⊥,µ2;p′

2,µ
′
2
c〈(m1, j1)p′

1, µ
′
1|(m2, j2)p′

2,

×µ′
2|[k(m), j ]p12, µ, l12, s12, j1, j2〉cCmj∗

µ;p′,µ′;p+,p⊥ .

(4.24)

This gives the Clebsch-Gordan coefficient in the light-front
basis:

f 〈(m1, j1)p+
1 , p1⊥, µ1|(m2, j2)p+

2 ,

× p2⊥, µ2|(k, j )p+, p⊥, µ, l, s, j1, j2〉f
= δ(p1⊥ + p2⊥ − p⊥)δ(p+

1 + p+
2 − p+)

δ[k(p1, p2) − k]

k2

×
∣∣∣∣∣
√

ωm1 (k2)ωm2 (k2)P +

p+
1 p+

2 m

∣∣∣∣∣
1/2

×
∑

Dj1
µ1µ1

[B−1
f (k1/m1)Bc(k1/m1)]Dj2

µ2µ2

× [
B−1

f (k2/m2)Bc(k2/m2)]Y l
ml

[k̂(p1, p2)
]

×〈j1, µ1, j2, µ2, |s, µs〉〈l, ml, s, µs |j, µ〉. (4.25)
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In arriving at expression (4.25) we have used the property
that light-front-preserving boosts form a group, so there are
no Wigner rotations associated with the light-front-preserving
boosts; however, the Wigner rotations in Eq. (4.7) get replaced
by Melosh rotations in Eq. (4.25). The irreducible kinematic
basis that replaces Eq. (4.10) is

|(q12,3, j )p+, p⊥, µ; L12,3, S12,3, k12, j12, l12, s12〉
=

∑ ∫
|(k12, j12)p+

12, p12⊥, µ12, l12, s12;

× (m3, j3)p+
3 , p3⊥, µ3〉dp+

12dp12⊥dp+
3 dp3⊥

× 〈(k12, j12)p+
12, p12⊥, µ12; (m3, j3)p+

3 ,

× p3⊥, µ3|(m, j )p+, p⊥, µ; L12,3, S12,3〉 (4.26)

with

|(k12, j12)p+
12, p12⊥, µ12, l12, s12〉

=
∑∫

|(m1, j1)p+
1 , p1⊥, µ′

1; (m2, j2)p+
2 , p2⊥, µ′

2〉
× 〈dp+

2 dp2⊥dp+
1 dp1⊥(m1, j1)p+

1 , p1⊥, µ′
1; (m2, j2)p+

2 ,

× p2⊥, µ′
2|(k12, j12)p+

12, p12⊥, µ12, l12, s12〉. (4.27)

Note that the degeneracy parameters

{d} = {L12,3, S12,3, k12, j12, l12, s12} (4.28)

in Eq. (4.26) are identical to the degeneracy parameters in
Eq. (4.10). The interaction that replaces Eq. (4.13) in the
scattering-equivalent light-front dynamics model is

〈(q, j )p+, p⊥, µ; L12,3, S12,3, k12, j12, l12, s12|V12|
× (q ′, j ′)p′+, p′

1⊥µ′; L′
12,3, S

′
12,3, k

′
12, j

′
12, l

′
12, s

′
12〉

= δ(p+ − p′+)δ(p⊥ − p′
⊥)δjj ′δµµ′

δ(q − q ′)
q2

× δL12,3L
′
12,3

δS12,3S
′
12,3

δj12j
′
12
〈k12, l12, s12‖vj12

12 ‖k′
12, l

′
12, s

′
12〉.

(4.29)

The Bakamjian-Thomas mass operator that replaces Eq. (4.17)
in the scattering-equivalent light-front dynamics model is

〈(q12;3, j )p+, p⊥, µ; L12,3, S12,3, k12, j12, l12, s12|M|
× (q ′

12;3, j
′)p′+, p′

⊥, µ′; L′
12,3, S

′
12,3, k

′
12, j

′
12, l

′
12, s

′
12〉

= δ(p+ − p′+)δ(p⊥ − p′
⊥)δjj ′δµµ′ 〈q12;3, L12,3, S12,3, k12,

× j12, l12, s12‖M̂j‖q ′
12;3, L

′
12,3, S

′
12,3, k

′
12, j

′
12, l

′
12, s

′
12〉.
(4.30)

Note that M̂ in Eq. (4.30) is identical to M̂ in Eq. (4.17)
provided both operators have the same internal interactions
〈k12, l12, s12‖vj12

12 ‖k′
12, l

′
12, s

′
12〉.

Equation (4.30) defines the mass operator for the scattering-
equivalent model with the light-front kinematic symmetry.
Any dynamical three-body calculation will give complete sets
of bound-state and scattering eigenstates of Eq. (2.5) with the
internal kernel

〈q12;3, L12,3, S12,3, k12, j12, l12, s12‖M̂j‖
× q ′

12;3, L
′
12,3, S

′
12,3, k

′
12, j

′
12, l

′
12, s

′
12〉, (4.31)

which appears in both Eqs. (4.30) and (4.17). Either solution
can be expressed in the kinematic tensor product represen-
tation using the appropriate Poincaré group Clebsch-Gordan
coefficients. Since the Clebsch-Gordan coefficients in a given
basis preserve the kinematic subgroup for that basis, the
tensor product representations also have the same kinematic
symmetries as the corresponding mass operators in either
Eq. (4.30) or Eq. (4.31). Both mass operators give the same
scattering matrix, even though the dynamical models have
different kinematic symmetries.

V. SUMMARY

To summarize, Bakamjian-Thomas constructions of dy-
namical representations of the Poincaré group have the general
form

Ub(�, a)|(λ, j ), vb〉 =
∑∫

dv′|(λ, j ), v′
b〉Dλ′,j

v′
b,vb

[�, a], (5.1)

where, in a kinematically irreducible basis |(m, j ), vb, d〉,
〈(m, j ), vb|(λ, j ′), v′

b〉 = δ(vb, v′
b)ψλ,j (m, d) (5.2)

and ψλ,j (m, d) is the solution of the mass eigenvalue equation:

(λ − m)ψλ′,j ′ (m, d) =
∑∫ ′〈m, d‖V j‖m′, d′〉
×dm′dd′ψλ′,j ′ (m′, d′), (5.3)

which is identical in all forms of dynamics. Equivalent models
with different kinematic symmetries differ only in the choice
of the variables vb in Eqs. (5.1) and (5.2). While different
choices of vb lead to different interactions (2.1) with different
kinematic symmetries, the resulting dynamical models are all
scattering equivalent.

Irreducible vectors in the different forms of dynamics are
related by

|(λ, j ), vb〉 =
∑∫ ′

|(λ, j ), v′
c〉dv′

cC
λj (v′

c; v′
b), (5.4)

and the Wigner functions in different representations are
related by

Dλ,j

v′
c,vc

[�, a] =
∑∫

dvbdv′
bC

λj

×(v′
c; v′

b)Dλ,j

v′
b,vb

[�, a]Cλj (vb′ ; vc). (5.5)

The transformation relating the different kinematic subgroups
is dynamical because the mass eigenvalues λ that appear in
both Cλj (vb; vc) and Dλ,j

v′
b,vb

[�, a] are determined by solving
the dynamical equation. The important observation is that the
physical observables (binding energies, S-matrix elements)
are obtained by solving Eq. (5.3), which is independent of the
choice of kinematic subgroup.

The conclusion of this work is that Poincaré invariant
quantum models should be considered as being defined without
reference to any specific kinematic subgroup and any Poincaré
invariant model can be transformed to a representation that
has the same S matrix and exhibits any chosen kinematic
symmetry. This conclusion is not limited to two-body models
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or models that conserve particle number, nor is it limited to
the maximal kinematic subgroups discussed by Dirac. The
nontrivial dynamical equation that must be solved is the
internal mass eigenvalue problem (5.3), which is the same
in all cases. The different choices of representation have no
effect on bound-state or scattering observables.

The one class of applications where using different forms of
dynamics has dynamical consequences is when they are used
to calculate electromagnetic observables in the one-photon-
exchange approximation. This is because the initial and final
hadronic states are in different frames and have different invari-

ant masses. The S-matrix equivalence proof requires m 
= m′.
This in not true when the photon transfers energy and/or
momentum to a dynamical system. While the equivalence can
be recovered by transforming the impulse current in one repre-
sentation to another representation, the equivalent transformed
current will generally have many-body contributions.
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