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Warm “pasta” phase in the Thomas-Fermi approximation
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2Centro de Fı́sica Computacional, Department of Physics, University of Coimbra, P3004-516 Coimbra, Portugal

(Received 11 October 2010; revised manuscript received 5 November 2010; published 30 November 2010)

In the present article, the “pasta” phase is studied at finite temperatures within a Thomas-Fermi (TF) approach.
Relativistic mean-field models, both with constant and density-dependent couplings, are used to describe this
frustrated system. We compare the present results with previous ones obtained within a phase-coexistence
description and conclude that the TF approximation gives rise to a richer inner “pasta” phase structure and the
homogeneous matter appears at higher densities. Finally, the transition density calculated within TF is compared
with the results for this quantity obtained with other methods.
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I. INTRODUCTION

A complete theoretical description of the processes in-
volved in supernova explosion and stellar evolution depends
on the construction of an adequate equation of state, able to
describe matter ranging from very low densities to a few times
the saturation density and from zero temperature to around
100 MeV. Protoneutron stars are believed to be the initial
phase of the remnants of a supernova explosion. They cool
down to become a cold neutrino-free neutron star by emitting
neutrinos, which means that the neutrino mean free path inside
the star is an important quantity in the understanding of the
stellar evolution. The neutrino mean free path depends on
the reactions that may take place inside the star. Hence, the
composition of the star plays a definite role in its fate.

Protoneutron stars are believed to have a crust where a
special matter known as “pasta” phase is expected to be
present. The “pasta” phase is a frustrated system that arises
in the competition between the strong and the electromagnetic
interactions [1–5]. The “pasta” phase appears at densities of
the order of 0.001–0.1 fm−3 [5,6] in neutral nuclear matter
and in a smaller density range [7,8] in β-equilibrium stellar
matter. The basic shapes of these structures were named [1] as
droplets (bubbles), rods (tubes), and slabs for three, two, and
one dimensions, respectively. The ground-state configuration
is the one that minimizes the free energy, i.e., the “pasta”
phase is the ground-state configuration if its free energy
per particle is lower than the one corresponding to the
homogeneous phase at the same density.

In previous works [6,8] we have studied the existence of the
“pasta” phase at zero and finite temperature within different
parametrizations of the relativistic nonlinear Walecka model
(NLWM) and of the density-dependent hadronic model. In
the present work we will consider the NLWM parametrization
NL3 [9] and the density-dependent hadronic model TW [10].
These two models do not satisfy some of the constraints on the
high-density behavior of the equation of state (EOS) discussed
in Ref. [11]. However, both models describe reasonably well
the ground-state properties of stable and unstable nuclei and,
therefore, are adequate to study the EOS at subsaturation
densities. Moreover, we are interested in studying the effect
of the density dependence of the symmetry energy on the
“pasta” phase. Therefore, we have chosen a model (NL3) with

a very large symmetry energy slope at saturation, above the
limit imposed by isospin diffusion [12], and another one with a
slope close to the lower limit defined by the same experiments.
In both works [6,8] two different methods were used: the
coexisting phases (CP), both at zero and finite temperature,
and the Thomas-Fermi (TF) approximation at zero temperature
only. It was found that if β equilibrium is imposed the “pasta”
phase does not appear in a CP calculation for the same surface
energy parametrization used for fixed proton fractions. This
indicates the necessity of using a good parametrization for
the surface energy which is temperature, proton fraction, and
geometry dependent, as also stressed in Refs. [13,14]. The
specific problem of an appropriate parametrization for the
surface energy was tackled in Ref. [15].

In Ref. [16] it is found that the diffusion coefficients, related
to neutrino opacities in dense matter, are significantly altered
by the presence of the nuclear “pasta” in stellar matter. These
differences in neutrino opacities certainly influence the Kelvin-
Helmholtz phase of protoneutron stars as well as supernova
explosion simulations.

In the present article we use the Thomas-Fermi approxi-
mation to obtain the “pasta” phase for two parametrizations,
namely NL3 and TW, and compare the results with the ones
obtained with the more naive coexisting-phases method at
finite temperature. The CP method used here is improved with
respect to Refs. [6,8] because it takes into account a better
description of the surface energy, as in Ref. [15]. We check the
differences in phase transition from “pasta” to homogeneous
matter and see how the internal structures of the “pasta” differ.
Some preliminary results for the “pasta” phase obtained at
finite temperature within the Thomas Fermi approximation
have been published in Refs. [17,18].

It was shown in Ref. [19] that the pressure and density at the
inner boundary of the crust (transition pressure and transition
density) define the mass and moment of inertia of the crust.
This establishes a relation between the equation of state (EOS)
and compact-stars observables. Several methods have been
used to calculate this density for β-equilibrium cold matter: a
local equilibrium approximation [20,21], the thermodynamical
spinodal method [6,8,21,22], and the dynamical spinodal
method used in Refs. [6,8,23] which predicts a transition
density very close to the Thomas-Fermi result. It is expected
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that the transition density lies in the metastable region between
the binodal surface and the dynamical spinodal surface. We
will compare the different predictions for the transition density
at several temperatures and isospin asymmetries obtained from
the thermodynamical spinodal, the dynamical spinodal, the
binodal surface, and the TF and CP calculations. This will
allow us to make an estimation of the error done within each
method.

In Sec. II the basic expressions for the nonlinear Walecka
model are outlined. In Sec III A we briefly describe the TF
approximation at finite temperature and in Sec. III B the CP
method is reproduced. In Sec. IV the results are shown and
discussed and in Sec. V the final conclusions are drawn.

II. THE FORMALISM

We consider a system of protons and neutrons with mass M

interacting with and through an isoscalar-scalar field φ with
mass ms , an isoscalar-vector field V µ with mass mv , and an
isovector-vector field bµ with mass mρ . We also include a
system of electrons with mass me. The Lagrangian density
reads

L =
∑
i=p,n

Li + Le + Lσ + Lω + Lρ + Lγ , (1)

where the nucleon Lagrangian reads

Li = ψ̄i[γµiDµ − M∗]ψi, (2)

with

iDµ = i∂µ − 	vV
µ − 	ρ

2
τ · bµ − e

1 + τ3

2
Aµ, (3)

M∗ = M − 	sφ. (4)

The electron Lagrangian density is given by

Le = ψ̄e[γµ(i∂µ + eAµ) − me]ψe, (5)

and the meson Lagrangian densities are

Lσ = + 1
2

(
∂µφ∂µφ − m2

s φ
2 − 1

3κφ3 − 1
12λφ4

)
Lω = 1

2

( − 1
2µν

µν + m2
vVµV µ

)
Lρ = 1

2

( − 1
2 Bµν · Bµν + m2

ρbµ · bµ
)

Lγ = − 1
4FµνF

µν,

where µν = ∂µVν − ∂νVµ, Bµν = ∂µbν − ∂νbµ − 	ρ(bµ ×
bν), and Fµν = ∂µAν − ∂νAµ. The parameters of the models
are the following: the nucleon mass M = 939 MeV; the
coupling parameters 	s , 	v , 	ρ of the mesons to the nucleons;
the electron mass me; and the electromagnetic coupling
constant e = √

4π/137. In the above Lagrangian density τ is
the isospin operator. When the TW density-dependent model
[10] is used, the nonlinear terms are not present and hence
κ = λ = 0 and the density-dependent parameters are chosen
as in Refs. [10,24,25]. When the NL3 parametrization is used,
	i is replaced by gi , where i = s, v, ρ as in Ref. [9]. The
bulk nuclear matter properties of the models we use in the
present article are given in Table I. We also include in the table
some properties at the thermodynamical spinodal surface: ρs is
the upper border density at the spinodal surface for symmetric

TABLE I. Symmetric nuclear matter properties at the saturation
density and at the spinodal surface. The surface tension σ , the
saturation density ρ0, and the corresponding binding energy B/A

are also given for the proton fraction Yp = 0.3.

NL3 [9] TW [10]

ρ0 (fm−3) 0.148 0.153
B/A (MeV) 16.3 16.3
ρ0 (Yp = 0.3) (fm−3) 0.118 0.135
B/A(Yp = 0.3) (MeV) 10.9 11.2
K (MeV) 272 240
Esym (MeV) 37.4 32.8
M∗/M 0.60 0.55
L (MeV) 118.3 55.3
Ksym (MeV) 100.5 −124.7
Q0 (MeV) 203 −540
Kτ (MeV) −698 −332
ρs (fm−3) 0.096 0.096
ρt (fm−3) 0.065 0.085
Pt (MeV/fm3) 0.396 0.455
σ (Yp = 0.5) (MeV/fm2) 1.123 1.217
σ (Yp = 0.3) (MeV/fm2) 0.254 0.613

matter (it defines the density for which the incompressibility is
zero), ρt and Pt are, respectively, the density and the pressure
at the crossing between the cold β-equilibrium equation of
state and the spinodal surface. They give a rough estimate of
the density and pressure at the crust-core transition [6,8]. The
surface-tension coefficient σ (see Sec. III B) is also given for
T = 0 and two proton fractions, Yp = 0.5 and Yp = 0.3.

We next give the basic expressions for the construction
of the “pasta” phase within the Thomas-Fermi calculation at
finite temperature and of the coexisting-phases method.

III. THE “PASTA” PHASE

A. Thomas-Fermi approximation

In the present work we repeat the same numerical pre-
scription given in Ref. [6] where, within the Thomas-Fermi
approximation of the nonuniform npe matter, the fields are
assumed to vary slowly so that the baryons can be treated as
moving in locally constant fields at each point.

From a formal point of view the Thomas-Fermi approxima-
tion can be considered as the zeroth-order term of a semiclas-
sical expansion in the relativistic mean-field theory derived
within the framework of the relativistic Wigner transform of
operators [26,27]. Here, we take a more straightforward way to
obtain the finite temperature semiclassical TF approximation
based on the density functional formalism. We begin with the
grand canonical potential density:

ω = ω({fi+}, {fi−}, φ0, V0, b0) = Et − T St −
∑

i=p,n,e

µiρi,

(6)

above {fi+}({fi−}), i = p, n, e stands for the protons, neutrons,
and electrons positive (negative) energy distribution functions
andSt = S + Se, Et = E + Ee are the total energy and entropy
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densities, respectively. The total energy has been defined in
Ref. [6] and for the entropy we take the one-body entropy:

St = −
∑

i=n,p,e

∫
d3r

∫
d3p

4π3
{fi+(r,p) ln fi+(r,p)

+ [1 − fi+(r,p)] ln[1 − fi+(r,p)] + (fi+ ↔ fi−)},
(7)

where the ground-state (equilibrium) distribution functions are

fi±(r,p) = 1

1 + exp[(ε�(r,p) ∓ νi(r))/T ]
, i = p, n

(8)

fe±(r,p) = 1

1 + exp[(εe ∓ νe(r))/T ]
, (9)

with ε�(r,p) =
√

p2 + M�(r)2, M�(r) = M − 	sφ0(r), and
εe = √

p2 + m2
e . νe(r) = µe + eA0(r) is the electron effective

chemical potential and the nucleon effective chemical poten-
tial, νi, i = p, n, is given by:

νi = µi − 	vV0 − 	ρ

2
τ3ib0 − e

2
(1 + τ3i)A0 − �R

0 , (10)

where the rearrangement term is given by [24]:

�R
0 (r) = ∂	v

∂ρ
ρ(r)V0(r) + ∂	ρ

∂ρ
ρ3(r)

b0(r)

2
− ∂	s

∂ρ
ρs(r)φ0(r).

(11)

The equations of motion for the meson fields (see Ref. [6])
follow from the variational conditions:

δ

δφ0(r)
 = δ

δV0(r)
 = δ

δb0(r)
 = 0,

where

 =
∫

d3rω({fi+}, {fi−}, φ0, V0, b0). (12)

The numerical algorithm for the description of the neutral
npe matter at finite temperature is a generalization of the zero
temperature case which was discussed in detail in Ref. [6]. The
Poisson equation is always solved by using the appropriate
Green function according to the spatial dimension of interest
and the Klein-Gordon equations are solved by expanding the
meson fields in a harmonic oscillator basis with one, two, or
three dimensions based on the method proposed in Ref. [28].
The most important source of numerical problems are the
Fermi integrals, hence, we have used an accurate and fast
algorithm given in Ref. [29] for their calculations.

B. Coexisting phases

In Ref. [6] a complete description of the coexisting-phases
method applied to different parametrizations of the NLWM is
given. In the description of the equations of state of a system,
the required quantities are the baryonic density ρ, the energy
density E , the pressure P , and the free energy density F ,
explicitly written in Refs. [6,8].

Two possibilities are discussed in the following: nuclear
matter with fixed proton fraction and β-equilibrium stellar

matter. In the first case, electrons are related to the nuclear
matter by the imposition of charge neutrality in such a way
that the electron density is equal to the proton density. The
equations

Yp = ρp

ρ
, ρe = ρp (13)

hold. In the second case, the fractions of nucleons and electrons
are defined by the conditions of chemical equilibrium and
charge neutrality. In this case, the enforced conditions are:

µp = µn − µe, ρe = ρp, (14)

for neutrino-free matter and

µp = µn − µe + µν, Yl = ρe + ρν

ρ
, ρe = ρp, (15)

if trapped neutrinos are considered.
As in Refs. [3,6], for a given total density ρ, the “pasta”

structures are built with different geometrical forms in a
background nucleon gas. This is achieved by calculating from
the Gibbs conditions the density and the proton fraction of the
“pasta” and of the background gas.

In building the “pasta” phase, the density of electrons is
uniform. The total pressure is given by P = P I + Pe + Pν

and the total energy density of the system is given by

E = f E I + (1 − f )E II + Ee + Eν + Esurf + ECoul, (16)

where I and II label the high- and low-density phases
respectively and f is the volume fraction of phase I. Note
that matter with fixed proton fraction is neutrino free and
hence the neutrino pressure and energy density are zero. By
minimizing the sum Esurf + ECoul with respect to the size of the
droplet/bubble, rod/tube, or slab we get [3] Esurf = 2ECoul, and

ECoul = 2F

42/3
(e2π�)1/3

[
σD

(
ρI

p − ρII
p

)]2/3
, (17)

where F = f for droplets and F = 1 − f for bubbles, σ is
the surface energy coefficient, D is the dimension of the sys-
tem and the geometric factor � = ( 2−DF 1−2/D

D−2 + F ) 1
D+2 ,D =

1, 2, 3. The surface coefficient σ , necessary in the above
expressions, is given by [30–32]:

σ =
∫ ∞

−∞
dz

[(
dφ0

dz

)2

−
(

dV0

dz

)2

−
(

db0

dz

)2
]

, (18)

which is adequate for the parametrization of the dependence of
σ on the temperature. In the appendix we show how to obtain
this expression and the equivalence between this expression
and Eq. (3.14) of Ref. [33].

According to the calculations performed in Ref. [15]
the surface energy in terms of the proton fraction varies
considerably from the NL3 to the TW parametrization. In the
first case it is always smaller. This quantity plays an important
role on the size and structures of the “pasta” phase discussed
in the present article.

At this point it is worth pointing out that the dependence
of the energy density on the electromagnetic and surface
contributions is commonly known as finite size effects. In
[34–37] it was shown that for a weak surface tension the EOS
obtained in a mixed phase resembles the one obtained with

055807-3



SIDNEY S. AVANCINI et al. PHYSICAL REVIEW C 82, 055807 (2010)

a Gibbs construction while, for a strong surface tension, the
Maxwell construction is reproduced.

IV. RESULTS AND DISCUSSIONS

In the present section we discuss the properties of the
“pasta” phase obtained within the two methods described
above. We consider several temperatures, T = 0, 5, 7, 8 MeV,
and two proton fractions, Yp = 0.5 and 0.3. We show results
only up to 8 MeV because it is not clear whether our
framework model is realistic above this temperature, since
thermal fluctuations are not taken into account. The problem
of the effect of thermal fluctuations on the “pasta” structures
has been studied by Refs. [38,39] and it was shown that
thermally induced displacements of the rodlike and slablike
nuclei can melt the lattice structure when these displacements
are larger than the space available between the cluster and
the boundary of the Wigner-Seitz cell. While for the rod like
clusters T = 8 MeV would still be acceptable, for the slabs
T = 8 MeV could already be too large.

We perform most of our calculations for a fixed proton
fraction, although matter in β equilibrium with trapped neutri-
nos is known to be important. In fact during the first seconds
of the protoneutron star, neutrinos are trapped. They start to
diffuse out 10–15 s after the supernova explosion [40,41],
when the fraction of leptons decreases from a maximum
value, ∼0.4, constant throughout the star, to smaller values.
Neutrino emission is essential to understand neutron star
cooling [42,43]. However, neutrinos couple weakly to nuclear
matter, therefore for the “pasta” calculation their presence
mainly defines the proton fraction of the warm stellar matter. In
Ref. [23], we have shown for a wide set of models, including
NL3 and TW, that for the density range of interest for the
“pasta” phase, the proton fraction for the largest trapped
fraction of neutrinos, which corresponds to a lepton fraction
Yl ∼ 0.4, is approximately 0.3. Moreover, in a recent article
[15] we have studied the “pasta” phase in β-equilibrium stellar
matter with trapped neutrinos (Yl = 0.4) within the more
schematic coexisting phases approach and we have seen that
the “pasta” phase structure and its extension is very similar to
the one obtained for a fixed proton fraction of about 0.3.

Since the inclusion of trapped neutrinos in the calculation
does not bring much more information about the “pasta” phase
itself (the main point of the present work), we have only
included neutrinos in the present calculation for two cases
(NL3 and TW, T = 5 MeV and Yl = 0.4) in order to show the
similarity with the Yp = 0.3 results.

In Tables II and III we display the onset densities for each
of the “pasta” structures and the homogeneous phase for the
parametrizations NL3 and TW respectively. The pressures
identifying the starting (P 1) and ending (P 2) points of the
“pasta” phase are also given. We investigate all possible
structures for T = 0, 5, 7, and 8 MeV and proton fraction
equal to 0.5 (symmetric matter) and Yp = 0.3. Both CP and
TF approximations were used.

From Table II one can observe that TF always presents a
richer inner “pasta” phase structure as compared with the CP
method. For T = 8 MeV and symmetric matter, the “pasta”
phase no longer exists if the CP method is used, but almost

all internal structures are present within the TF calculation.
Generally, the homogeneous phase becomes the ground-state
matter for densities much higher within the TF approach than
within the CP method. Just some exceptions were found for
a complete structure (3D, 2D, 1D, 2D, 3D) with the TF
calculation: T = 7 MeV for Yp = 0.3 and T = 8 MeV for
Yp = 0.3 and Yp = 0.5, which lack the slab configuration. In
all other cases, all possible configurations were found. This
is not true within a CP method, where many structures were
missing, giving rise to a much simpler “pasta” phase.

From Table III one sees that most of the conclusions drawn
for the NL3 parametrization hold true also for TW, as a richer
inner “pasta” phase structure obtained within the TF approach
than within the CP method. Once more the homogeneous
phase becomes the ground-state matter for densities higher
within the TF approach than within the CP method. When
the TW density-dependent model is used, one can see that
all possible internal “pasta” configurations are always found
with the TF approximation. This is not the case with the NL3
parametrization. Different “pasta” phase internal structures
lead to different diffusion coefficients causing different neu-
trino mean free paths, as seen in Ref. [16]. These differences
in neutrino opacities may have consequences in calculations
of protoneutron star evolution. However, although the internal
structures differ as compared with the NL3 parametrization,
the densities at which the “pasta” structure appears and ends
are quite similar.

In Tables II and III we have also included the results
for β-equilibrium matter with trapped neutrinos and a lepton
fraction Yl = 0.4 at T = 5 MeV. It is seen that these results
are very similar to the ones obtained for Yp = 0.3. This is
understandable because, for the “pasta” phase densities, the
proton fraction changes from ∼0.29 for the lowest densities to
∼0.32 for the largest ones. A proton fraction smaller than 0.3 at
the onset of the “pasta” phase explains the onset of the “pasta”
at slightly larger densities. On the other hand, a proton fraction
Yp > 0.3 at the upper limit of the “pasta” phase corresponds
in the TF calculation to a slightly larger transition density than
the Yp = 0.3 value and lies between the value obtained for
Yp = 0.5 and Yp = 0.3. In the CP calculation the result also
lies between Yp = 0.5 and Yp = 0.3 but is instead smaller
than the Yp = 0.3 value because CP does not allow for the
rearrangement of the proton distribution.

The comparison between Tables II and III is more easily
done by analyzing Fig. 1. In Fig. 1 we compare the density
range for which each “pasta” configuration exists within
NL3 and TW. The thick lines stand for the Thomas-Fermi
calculation and the thin ones for the CP method. Full lines
represent TW and dahsed ones NL3.

For symmetric matter the main difference is the the
appearance of the different phases at slightly smaller densities
within NL3. The largest differences occur for Yp = 0.3: NL3
has no slab phase at T = 7 and 8 MeV and quite large tube
and bubble phases.

It has been discussed in Refs. [5,22] that the characteristics
of the “pasta” phase are strongly related with the density
dependence of the symmetry energy. In particular, in Ref. [5]
the “pasta” phases have been calculated using quantum
molecular dynamics. The authors have considered two models
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TABLE II. “Pasta” phases within NL3 for several temperatures and isospin asymmetries. The onset densities of the various phases (droplets,
rods, slabs, tubes, and bubbles) are shown together with the pressure of the homogeneous phase at the lower (P 1) and upper (P 2) border of the
“pasta” phase. The results have been obtained within the coexisting phases method (CP) and the Thomas Fermi approximation (TF).

EOS Onset density (fm−3) P 1/P 2

Droplet Rod Slab Tube Bubble Hom (MeV fm−3)

T = 0 MeV
Yp = 0.5

TF 0.000 0.025 0.043 0.073 0.089 0.114 −/2.75
CP 0.000 0.032 0.053 – – 0.093 − /1.88

Yp = 0.3
TF 0.000 0.019 0.036 0.059 0.071 0.099 − /1.11
CP 0.000 0.030 0.048 0.084 – 0.093 − /0.96

β equilibrium
TF 0.000 – – – – 0.055 − /0.26
CP – – – – – – −/−

T = 5 MeV
Yp = 0.5

TF 0.0020 0.026 0.043 0.067 0.081 0.106 0.024/2.55
CP 0.0035 0.031 0.051 – – 0.078 0.046/1.53

Yp = 0.3
TF 0.0022 0.024 0.038 0.053 0.066 0.092 0.018/1.08
CP 0.0029 0.032 0.049 0.081 – 0.082 0.025/0.85

Yl = 0.4
TF 0.0024 0.023 0.036 0.054 0.065 0.093 0.023/5.24
CP 0.0033 0.031 0.049 – – 0.080 0.024/1.43

T = 7 MeV
Yp = 0.5

TF 0.0048 0.026 0.042 0.054 0.072 0.098 0.076/2.37
CP 0.013 0.030 0.049 – – 0.056 0.22/1.06

Yp = 0.3
TF 0.0052 0.025 – 0.036 0.059 0.084 0.056/1.02
CP 0.0107 0.032 0.048 – – 0.065 0.112/0.67

T = 8 MeV
Yp = 0.5

TF 0.0069 0.025 – 0.036 0.063 0.092 0.121/2.23
CP – – – – – – −/−

Yp = 0.3
TF 0.0076 0.026 – 0.033 0.055 0.078 0.090/0.96
CP 0.0239 0.032 – – – 0.043 0.253/0.44

and have obtained a quite different structure for the “pasta”
phase of both models. The slab phase is very small in one
of the models and although larger in the other, it is one
of the phases that first disappears when the temperature is
raised.

A large value of the slope of the symmetry energy L means a
smaller symmetry energy at subsaturation densities. Therefore,
since TW has a much smaller symmetry energy slope, L =
55 MeV for TW and L = 118 MeV for NL3, at subsaturation
densities its symmetry energy is larger and the neutron gas
equation of state has a larger energy. As a consequence,
neutrons do not drip so easily, the surface tension is larger,
and the surface is less diffuse. In Table I we have included

the value of the surface tension σ of TW and NL3 for the
proton fractions 0.5 and 0.3. It is seen that TW has a much
larger σ for Yp = 0.3 than NL3 which is in accordance with its
symmetry energy slope. We may now understand the different
properties of the TW pasta: The larger surface energy explains
the fact that all the pasta phases extend to larger densities.
For nonsymmetric matter as for Yp = 0.3 this effect is even
stronger. This explains some of the largest differences between
NL3 and TW as pointed out before, namely the fact that NL3
has no slab phase above T = 7 MeV. As already noted in
Refs. [6,36] the extension of the “pasta” phase decreases with
the increase of the temperature. This is expected because the
surface tension decreases with temperature.
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TABLE III. “Pasta” phases within TW for several temperatures and isospin asymmetries. The onset densities of the various phases (droplets,
rods, slabs, tubes, and bubbles) are shown together with the pressure of the homogeneous phase at the lower (P 1) and upper (P 2) border of the
“pasta” phase. The results have been obtained within the coexisting phases method (CP) and the Thomas Fermi approximation (TF).

EOS Onset density (fm−3) P 1/P 2

Droplet Rod Slab Tube Bubble Hom (MeV fm−3)

T = 0 MeV
Yp = 0.5

TF 0.000 0.025 0.043 0.075 0.090 0.115 −/2.77
CP 0.000 0.033 0.054 – – 0.093 −/1.85

Yp = 0.3
TF 0.000 0.021 0.040 0.071 0.085 0.109 −/1.22
CP 0.000 0.031 0.051 0.89 – 0.099 −/0.96

β equilibrium
TF 0.000 – – – – 0.073 −/0.36
CP 0.003 – – – – 0.066 0.007/0.29

T = 5 MeV
Yp = 0.5

TF 0.0022 0.026 0.043 0.071 0.084 0.107 0.027/2.53
CP 0.0038 0.032 0.052 – – 0.079 0.050/1.55

Yp = 0.3
TF 0.0024 0.025 0.042 0.068 0.080 0.103 0.020/1.20
CP 0.0032 0.033 0.052 – – 0.087 0.028/0.86

Yl = 0.4
TF 0.0026 0.025 0.042 0.068 0.081 0.104 0.026/.164
CP 0.0035 0.033 0.051 – – 0.085 0.036/1.13

T = 7 MeV
Yp = 0.5

TF 0.0051 0.027 0.043 0.063 0.077 0.100 0.082/2.41
CP 0.0130 0.031 0.051 – – 0.060 0.225/1.16

Yp = 0.3
TF 0.0055 0.027 0.042 0.062 0.074 0.096 0.061/1.16
CP 0.0110 0.033 0.051 – – 0.071 0.120/0.72

T = 8 MeV
Yp = 0.5

TF 0.0073 0.027 0.043 0.056 0.072 0.095 0.130/2.32
CP – – – – – – −/−

Yp = 0.3
TF 0.0079 0.030 0.043 0.057 0.069 0.091 0.096/1.13
CP 0.0207 0.033 0.050 – – 0.055 0.234/0.57

Figure 1 also allows for a clear comparison between the
CP and TF methods: the phases droplets, rods, and slabs
are stable until larger densities with CP. On the other hand,
the phases tubes and bubbles do not appear as the ground-state
configuration since they have a higher free energy than the
homogeneous matter. Other important differences are the
smaller extension of the “pasta” phase within CP (it starts
at larger densities and finishes at smaller densities) and the
disappearance of the “pasta” phase at smaller temperatures. A
smaller extension of the “pasta” phase within the CP method is
partially due to non-self-consistent treatment of the Coulomb
interaction [3], which prevents the rearrangement of the proton
distributions (see also Ref. [15]). This is more strongly seen
for the Yp = 0.5 when Debye screening effects are stronger.

We have calculated the critical temperatures within the CP
calculation, above which the “pasta” phase does not exist. For
NL3 we have T CP

c = 7.73(8.09) MeV for Yp = 0.5(0.3), for
TW T CP

c = 7.95(8.42) MeV for Yp = 0.5(0.3). The CP critical
temperature occurs when the free energy of the homogeneous
phase is smaller than the free energy of the “pasta” phase and
is not defined by a zero surface tension, as in TF. At and above
the critical temperature, “pasta” clusters still exist within CP
calculation but with a larger free energy than homogeneous
matter.

Finally, it is interesting to compare the prediction of
different methods for the crust-core (nonhomogeneous-
homogeneous) transition density. The thermodynamical bin-
odal and spinodal of proton-neutron (pn) matter give a good
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FIG. 1. (Color online) “Pasta” phases: comparison between NL3 (dashed line) and TW (full line) and the methods CP and TF for
(a) β-equilibrium cold stellar matter; (b) Yp = 0.5; (c) Yp = 0.3. The thick lines refer to the Thomas-Fermi (TF) calculation and the thin red
lines to the coexisting-phases (CP) calculation.

estimation of the extension of the pasta phase in nuclear matter.
The binodal surface is defined in the ρ, Yp, T space as the
surface where the gas and liquid phases coexist and it defines
an upper limit for the extension of the pasta phase since it
does not take into account neither Coulomb nor finite size
effects. The thermodynamical spinodal defines the surface in
the ρ, Yp, T space where the curvature of the free-energy of
pn matter becomes negative and gives a rough estimation
of the lower limit of the “pasta” phase extension. Also in
this case nor electron effects neither finite range effects are
taken into account. The transition density is obtained from the
intersection between the β-equilibrium EOS and the spinodal
or binodal surfaces. It is possible to get a better estimation
of the lower limit of the “pasta” phase extension if, instead
of the thermodynamical spinodal, the dynamical spinodal is
calculated. This surface is defined by the density, proton
fraction, and temperature for which matter becomes unstable to
small density fluctuations and is calculated including electrons,
the Coulomb interaction, and finite-range effects. It has been
shown in Refs. [6,8,21,22] that the thermodynamical method
gives a good estimation of the transition density for cold
β-equilibrium matter, although a bit too large. For a fixed
temperature, the binodal, thermodynamical, and dynamical
spinodals touch each other (or almost touch) at the critical
point [44]: This corresponds to a quite small proton fraction
and is close to the crust-core transition density. However, for

less asymmetric matter as the one that occurs in stellar matter
with trapped neutrinos, the binodal occurs at quite larger
densities than the spinodals. This is clearly seen in Fig. 2
comparing the β-equilibrium results for cold stellar matter
with the results for Yp = 0.5 or 0.3.

For densities above the binodal surface, matter is homo-
geneous. For densities below the dynamical spinodal matter
is nonhomogeneous. Between this two surfaces we may find
matter in a metastable configuration. The most probable
configuration is the one with the smallest free energy density.
The results given in Tables II and III refer to the energetically
favoured configurations. However, we may argue that at
finite temperature there may be a coexistence of several
configurations with larger or smaller probability according
to the corresponding free energy density. This partially justifies
the large differences between the TF and CP results: although
the ground-state configurations differ, there is not a large
energy difference between the configurations and taking into
account an average over all the possible configurations with a
correct probability factor would give similar predictions.

In Fig. 2 we compare the transition density from a
nonhomogeneous phase to a homogeneous phase obtained
from the binodal surface [44], the dynamical spinodal sur-
face [20,21,23,45–47], the thermodynamic spinodal surface
[21,48,49] and from the two methods we have used for the
calculation of the “pasta” phase. As expected the TF result lies
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FIG. 2. (Color online) Transition density, for several temperatures T = 0, 5, 7, and 8 MeV and proton fractions Yp = 0.5 (upper plots),
0.3 (lower plots), and β equilibrium (eq-β) at T = 0 (left part of upper plots), obtained using different methods within the models (a) NL3
and (b) TW. The methods used are as follows: estimation from binodal (Bin), estimation from dynamical spinodal (Sp-d) estimation from
thermodynamical spinodal (Sp-th), calculation using the coexisting-phases method (CP), and calculation using a Thomas-Fermi method (TF).

always between the results obtained from the dynamical spin-
odal and the binodal surfaces. This is a self-consistent method
that should satisfy these two constraints. This is no longer true
for the CP calculation, which, for larger temperatures, fails
with predictions that lie below the dynamical spinodal result.
It is impressive that the thermodynamical-spinodal result gives
so good results when it does not take into account neither the
surface nor the Coulomb effects. These are good news because
it allows a quite safe prediction from a simple calculation.
Finally, it should also be pointed out that for β-equilibrium
matter all methods except CP give similar results. This is due
to the occurrence of the transition density close the critical
point where the spinodal and binodal surfaces touch and the
pressure on these surfaces is maximum.

V. CONCLUSIONS

In the present work we have calculated the “pasta” phase at
zero and finite temperatures, applying two different methods
already used in previous works: the more naive coexisting-
phases method based on the Gibbs construction and the self-
consistent Thomas Fermi method. For the first method we need
to know the surface tension of the models as a function of tem-
perature and proton fraction. This quantity was parametrized
from a Thomas-Fermi calculation for semi-infinite nuclear
matter [15]. We had already compared the two models at
zero temperature [6,8] but for the CP calculation we had
used a parametrization for the surface tension obtained from
Skyrme forces. Since the appearance of the “pasta” phases has
a strong dependence on this quantity the comparison between
the models at zero temperature was not conclusive.

We have considered two different relativistic nuclear
models: NL3, a parametrization of the NLWM, and TW,
a parametrization of the density dependent hadronic model.
These two models have quite different behaviors, both in the

isoscalar and isovector channels. In particular, TW has a quite
small slope of the symmetry energy at saturation, L = 55 MeV,
while this value is 118 MeV for NL3. The properties of the
models are clearly reflected in the “pasta” phase structure as
discussed in Ref. [5].

We conclude that while the CP method allows the de-
termination of the overall trends of both models, it fails
at a more detailed and quantitative level. The main trends
observed are as follows: the model having a larger surface
tension predicts larger density ranges for the “pasta” phases;
the “pasta” phase extension decreases with temperature; some
of the less stable “pasta” structures may disappear for larger
temperatures and/or isospin asymmetries. We have also shown
that the overall conclusions obtained within the Thomas-Fermi
calculation at finite temperature agree with the conclusions
obtained from a quantum molecular dynamics calculation [5].
In fact, it was shown that the structure of the “pasta” is sensitive
to the model, namely the density dependence of the symmetry
energy. A model with a large symmetry energy slope, such
as NL3, has a quite small symmetry energy at subsaturation
densities and this favors neutron drip. As a consequence the
background neutron gas is larger for NL3 at a given density
and, therefore, the favored “pasta” structures change shape at
smaller densities.

We have also compared the crust-core transition density,
from a nonhomogeneous phase to a homogeneous phase,
obtained from the above two methods as well as using other
methods often referred to in the literature. It was also shown
that the dynamical spinodal defines a lower limit while the
binodal a higher limit and the TF result lies between the two
limits. The CP methods fails these constraints both for large
temperatures, above T = 5 MeV, and very asymmetric matter.
We have obtained the interesting result that the estimates
obtained from a thermodynamical calculation are very close
to the prediction of the TF calculation.
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APPENDIX

In this appendix we calculate Eq. (18) for the surface tension
σ , following very closely Ref. [32]. The system is composed
of np matter and the density depends only on the z coordinate.
Note that no Coulomb field is included in the calculation of σ .
We start from the grand-canonical potential, Eq. (12), where

 =
∫

dV
{

1
2 [(∇φ0)2 − (∇V0)2 − (∇b0)2] − Vef

}
(A1)

with

Vef = −1

2

[
m2

sφ
2
0 + 2

3!
κφ3

0 + 2

4!
λφ4

0 − m2
vV

2
0

− m2
ρb

2
0 + 2�R

0 ρ

]
+ 2T

∑
i=p,n

∫
d3p

(2π )3

× [ln(1 + e−(ε∗−νi )/T ) + ln(1 + e−(ε∗+νi )/T )]. (A2)

The equations of motion for the the meson fields are obtained
by minimizing  with respect to each field,

∇2φ0 = d2φ0

dz2
= −∂Vef

∂φ0
, (A3)

∇2V0 = d2V0

dz2
= ∂Vef

∂V0
, (A4)

∇2b0 = d2b0

dz2
= ∂Vef

∂b0
. (A5)

Using the relation

d2W

dz2
= d

dz

(
dW

dz

)
= 1

2

d

dW

(
dW

dz

)2

,

where W = φ0, V0, b0, we obtain
∂

∂φ0

[
1

2

(
dφ0

dz

)2

+ Vef

]
= 0

∂

∂V0

[
1

2

(
dV0

dz

)2

− Vef

]
= 0 (A6)

∂

∂b0

[
1

2

(
db0

dz

)2

− Vef

]
= 0.

Summing adequately the three equations (the second and third
equations multiplied by −1), we get

δ

[
1

2

(
dφ0

dz

)2

−
(

dV0

dz

)2

−
(

db0

dz

)2

+ Vef

]
= 0. (A7)

This is equivalent to saying that

1

2

[ (
dφ0

dz

)2

−
(

dV0

dz

)2

−
(

db0

dz

)2 ]
+ Vef = C, (A8)

where C is a constant which corresponds to the bulk con-
tribution to the grand-canonical potential density and can be
identified with the pressure P . Replacing Eq. (A8) into (A1)
we obtain

 =
∫

dV

[ (
dφ0

dz

)2

−
(

dV0

dz

)2

−
(

db0

dz

)2 ]
− CV. (A9)

The surface energy is obtained from the free energy of
a system with a fixed number of particles N = Np + Nn, in
which a cluster of arbitrary size exists in the background of
the vapor phase. The free energy reads

F =  + µpNp + µnNn,

= S

∫ ∞

−∞
dz

[ (
dφ0

dz

)2

−
(

dV0

dz

)2

−
(

db0

dz

)2 ]

− CV + µpNp + µnNn. (A10)

For a cluster of volume V and surface S, we have

F = Sσ − CV + µpNp + µnNn. (A11)

The surface energy per unit area of this cluster is

σ =
∫ ∞

−∞
dz

[ (
dφ0

dz

)2

−
(

dV0

dz

)2

−
(

db0

dz

)2 ]
. (A12)

Equation (A11) can be rewritten in the form of Eq. (3.14) of
Ref. [33]

σ =
∫ ∞

−∞
dz[F(z) − Fg − µp(ρp(z) − ρp,g)

−µn(ρn(z) − ρn,g)]. (A13)

where Fg = −P + µpρp,g + µnρn,g , ρp,g , and ρn,g

are the free energy density, the proton density, and
the neutron density of the gas. We have checked
numerically the equivalence between Eqs. (A12)
and (A13).
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[27] M. Centelles, X. Viñas, and M. Barranco, Ann. Phys. 221, 165

(1993).

[28] Y. K. Gambhir, P. Ring, and A. Thimet, Ann. Phys. 198, 132
(1990).

[29] J. M. Aparicio, Astrophys. J. Suppl. Ser. 117, 627 (1998).
[30] M. Nielsen and J. da Providência, J. Phys. G: Nucl. Part. Phys.

16, 649 (1990).
[31] C. da Providência, L. Brito, J. da Providência, M. Nielsen, and
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