
PHYSICAL REVIEW C 82, 055805 (2010)

Leptonic contribution to the bulk viscosity of nuclear matter
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For β-equilibrated nuclear matter we estimate the contribution to the bulk viscosity from purely leptonic
processes, namely the conversion of electrons to and from muons. For oscillation frequencies in the kilohertz
range, we find that this process provides the dominant contribution to the bulk viscosity when the temperature is
well below the critical temperature for superconductivity or superfluidity of the nuclear matter.
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I. INTRODUCTION

The bulk viscosity of nuclear matter plays an important role
in the damping of oscillations in neutron stars. One well-known
example is r modes, which, if the interior of the star is a
perfect (dissipationless) fluid, become unstable with respect
to the emission of gravitational waves [1–3]. This emission
acts as a brake on the rotation of the star. However, r-mode
spindown will not occur if the r mode is sufficiently strongly
damped, for example, by shear or bulk viscosity of the matter in
the interior of the star. It is therefore important to calculate the
bulk viscosity of the various candidate phases in a neutron star.
Several calculations exist in the literature, for nuclear [4–9] and
hyperonic matter [10–12] as well as for unpaired quark matter
[13–15] and various color-superconducting phases [16–21].

In this paper we will study β-equilibrated nuclear matter.
We define the chemical potential for charged leptons to be
µl = −φ/e, where φ is the electrostatic potential and e is
the positron charge. We will assume that the density is high
enough that µl is greater than the mass of the muon, so the
matter consists of neutrons, protons, electrons, and muons.
Such matter is expected to exist in the core of the star. In
previous calculations of bulk viscosity of npeµ nuclear matter,
the focus has been on the contribution from interconversion
of neutrons and protons via weak interactions. But nuclear
matter at neutron-star densities is expected to show Cooper
pairing of protons (superconductivity) or neutrons (superflu-
idity) [22–24], either of which will suppress interconversion
by a factor of order exp(−�/T ), where � is the energy
gap at the Fermi surface and T is the temperature. This
opens up the possibility that, in superfluid or superconducting
phases, the dominant contribution to the bulk viscosity might
come from purely leptonic processes. The relevant process is
conversion of electrons to muons (and vice versa) via either the
direct Urca process or the modified Urca process. The direct
Urca leptonic conversion process is forbidden by energy and
momentum conservation: In converting an electron near its
Fermi surface to a muon near its Fermi surface, the change
in free energy is very small (of order T ), so the emitted
neutrinos carry momentum and energy of this order; but the
change of momentum of the charged lepton is large, at least
qmin = µl − √

µ2
l − m2

µ, and the low-energy neutrino cannot
carry this much momentum. However, the modified Urca
process can occur; for example, two electrons with energy
slightly above the Fermi energy can scatter to an electron and
a muon with energies near the Fermi energy, or an electron

and muon can scatter to two muons. The strongest interaction
between leptons is electromagnetism, so this process proceeds
via exchange of a photon, whose propagator should include
the effects of screening by the nuclear medium. As the
temperature decreases, the process will become suppressed
as the Fermi distributions assume their zero-temperature step
function profiles, but at finite temperature the modified Urca
process will result in a nonzero contribution to the bulk
viscosity. We calculate the leptonic bulk viscosity arising
from the processes e + � ⇀↽ µ + � + ν + ν̄, where � = e or
µ. All our calculations are in the “subthermal” regime, where
the density oscillation has a small amplitude, and the bulk
viscosity is independent of that amplitude. We conclude that,
if the protons and neutrons are both ungapped, i.e., if there
is neither superfluidity nor superconductivity, then the bulk
viscosity from these purely leptonic processes is several orders
of magnitude smaller than that from the nucleonic processes.
However, once the temperature drops below the critical value
for Cooper pairing of the protons or neutrons, the nucleonic
bulk viscosity at frequencies >∼10 Hz is strongly suppressed,
and leptonic processes become the dominant source of bulk
viscosity at those frequencies.

In Sec. II, we lay out the process for calculating the
bulk viscosity of a two-component leptonic system under
application of a periodic volume and pressure perturbation.
A crucial component of this calculation is the conversion rate
between electrons and muons, which is discussed in Sec. III.
In Sec. IV, we show the numerical results of our calculations
and how they compare to the bulk viscosity resulting from
modified Urca equilibration of the nucleon population.

II. BULK VISCOSITY OF LEPTONS

First we write down a general expression for bulk viscosity
in a two-species system, arising from interconversion of the
two species. Then we specialize to the case of electrons and
muons in nuclear matter.

A. Bulk viscosity of a two-species system

We assume that the system experiences a small-amplitude
driving oscillation

V (t) = V̄ + Re(δV eiωt ),
(1)

p(t) = p̄ + Re(δpeiωt ),

0556-2813/2010/82(5)/055805(10) 055805-1 ©2010 The American Physical Society

http://dx.doi.org/10.1103/PhysRevC.82.055805


MARK G. ALFORD AND GERALD GOOD PHYSICAL REVIEW C 82, 055805 (2010)

where the volume amplitude δV � V̄ is real by convention,
and the resultant pressure oscillation p(t) is complex. The
average power dissipated per unit volume is

dE

dt
= − 1

τ V̄

∫ τ

0
p(t)

dV

dt
dt = −1

2
ω Im(δp)

δV

V̄
, (2)

where τ = 2π/ω, so the bulk viscosity is [14]

ζ = 2V̄ 2

ω2(δV )2

dE

dt
= − Im(δp)

δV

V̄

ω
. (3)

We will determine Im(δp), which will be negative. We will
assume that heat arising from dissipation is conducted away
quickly, so the whole calculation is performed at constant
temperature T . We assume that our system contains two
particle species e and µ, and the state of the system is
determined by the corresponding chemical potentials µe and
µµ. The total number of electrons and muons is conserved, and
equilibrium is established via the conversion process e ↔ µ.
For simplicity of presentation and of the final expressions, it
is better to work in terms of charged lepton number l and
electron-muon asymmetry a, so pressure is a function of µl

and µa , where

µl = 1

2
(µe + µµ), nl = ne + nµ = ∂p

∂µl

∣∣∣∣
µa

,

(4)

µa = 1

2
(µe − µµ), na = ne − nµ = ∂p

∂µa

∣∣∣∣
µl

.

From now on all partial derivatives with respect to µl will be
assumed to be at constant µa , and vice versa. In β equilibrium,
µa is zero. The variations in the chemical potentials are
expressed in terms of complex amplitudes δµl and δµa ,

µl(t) = µ̄l + Re(δµl e
iωt ),

(5)
µa(t) = Re(δµae

iωt ).

The pressure amplitude is then

δp = ∂p

∂µl

∣∣∣∣
µa

δµl + ∂p

∂µa

∣∣∣∣
µl

δµa = nlδµl + naδµa. (6)

From Eqs. (6) and (3) we find

ζ = − 1

ω

V̄

δV
[n̄l Im(δµl) + n̄a Im(δµa)]. (7)

To obtain the imaginary parts of the chemical potential ampli-
tudes, we write down the rate of change of the corresponding
conserved quantities,

dnl

dt
= ∂nl

∂µl

dµl

dt
+ ∂nl

∂µa

dµa

dt
= −nl

V̄

dV

dt
,

(8)
dna

dt
= ∂na

∂µl

∂µl

dt
+ ∂na

∂µa

dµa

dt
= −na

V̄

dV

dt
− �total

e→µ.

All the partial derivatives are evaluated at equilibrium, µl = µ̄l

and µa = 0. The right-hand term on the first line of Eq. (8)
expresses the fact that charge is conserved, so when a volume
is compressed, the density of charged leptons rises. On
the second line of Eq. (8), there is such a term from the
compression of the existing population of particles, but there
is also a rate of conversion �total

e→µ of electrons to muons, which

reflects the fact that weak interactions will push the lepton
densities toward their equilibrium value. For small deviations
from equilibrium we expect �total

e→µ to be linear in µa , so it is
convenient to write the rate in terms of an average width γa ,
which is defined in terms of the total rate by writing

�total
e→µ = γa

∂na

∂µa

µa. (9)

We now substitute the assumed oscillations (1) and (5) into
Eq. (8), and solve to obtain the amplitudes δµl and δµa in
terms of the amplitude δV and frequency ω of the driving
oscillation. Inserting their imaginary parts in Eq. (7) we obtain
the bulk viscosity, which is conveniently expressed in terms of
the susceptibilities

χll = ∂nl

∂µl

,

χla = ∂nl

∂µa

= ∂na

∂µl

,

χaa = ∂na

∂µa

,

(10)

all evaluated at equilibrium, µl = µ̄l , µa = 0. Note that χal is
the same as χla from Eq. (4). Defining

γeff = χllχaa

χllχaa − χ2
la

γa = χll

χllχaa − χ2
la

∂�total
e→µ

∂µa

∣∣∣∣∣
µa=0

,

(11)

C = (χllna − χlanl)2

χll

(
χllχaa − χ2

la

) ,

we obtain the final result for the bulk viscosity in a two-species
system,

ζ = C
γeff

ω2 + γ 2
eff

. (12)

From Eq. (12) we can already see how the bulk viscosity
of a two-species system depends on the frequency ω of the
oscillation and the effective equilibration rate γeff .

At fixed equilibration rate, the bulk viscosity decreases
monotonically as the oscillation frequency rises; it is roughly
constant for ω <∼ γeff , and then drops off quickly as 1/ω2 for
ω � γeff .

At fixed oscillation frequency ω, the bulk viscosity is a
nonmonotonic function of the rate γeff . It is peaked at γeff = ω,
with a value of

ζmax = 1
2C/ω. (13)

For γeff � ω or γeff � ω, the bulk viscosity tends to zero.
Thus, very fast and very slow processes are not an important
source of bulk viscosity. As we will see below, for leptons in
nuclear matter, the equilibration rate is sensitive to temperature
but the coefficient C is not, so we expect ζ (T ) to be peaked at
γeff(T ) = ω, where the oscillation frequency ω is of the order
of kilohertz for typical oscillation modes of neutron stars.
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B. Leptons in nuclear matter

In nuclear matter the leptonic chemical potential µl = µe =
µµ is much greater than the temperature and the electron
mass, so we can evaluate the susceptibilities (10) at me =
T = 0. Temperature dependence will come in only via the
equilibration rate γa . Treating the electrons and muons as free
fermions, we find

γeff = γa

(µl + kF )2

4µlkF

,

C = 1

9π2
m2

µkF (µl − kF ),

(14)

where the muon Fermi momentum is given by k2
F = µ2

l − m2
µ.

Note that the bulk viscosity goes to zero as mµ → 0 (mµ →
me, really). This is because, if the muons and electrons have
equal mass, then under compression their relative densities do
not change, and there is no need for any equilibrating process,
so the pressure is always in phase with the volume and no
dissipation occurs.

Even without calculating the rate of lepton number equi-
libration, we can now estimate the amount of bulk viscosity
that could possibly arise from leptons. If the equilibrating
weak interaction at some temperature happened to have a
rate that matched the typical oscillation frequency of the star,
ω ≈ 2π × 1000 Hz, and the lepton chemical potential had a
relatively moderate value of ∼120 MeV, we would obtain from
Eq. (13), ζmax = 5.5 × 1022 MeV3 = 7.5 × 1027g s−1 cm−1.
This is at the upper end of typical nuclear bulk viscosities,
which range up to 1028g s−1 cm−1 [4]. This motivates us to
proceed with the calculation of the rate of conversion of muons
to and from electrons via the weak interaction.

III. MUON-ELECTRON CONVERSION RATE

The muon-electron conversion rate �total
e→µ consists of two

partial rates,

�total
e→µ = �total

ee→eµ + �total
eµ→µµ. (15)

The partial rates are

�total
ab→cd =

∫
d3p1 d3p2 d3p3 d3p4 d3k1 d3k2

64(2π )14ω1ω2ω3ω4�1�2

× δ4(p1 + p2 − p3 − p4 − k1 − k2)

×Wab→cd (p1p2 → p3p4k1k2)

×{fa(ω1)fb(ω2)[1 − fc(ω3)][1 − fd (ω4)]

− fc(ω1)fd (ω2)[1 − fa(ω3)][1 − fb(ω4)]}, (16)

where a,b,c,d are either e or µ, and Wab→cd is the spin-summed
and -averaged matrix element. The charged lepton of flavor j

has energy ωj = √
p2

j + m2
j , the neutrino of flavor j has energy

�j = |kj |, and fb(ωj ) is the Fermi distribution function

fb(ωj ) =
[

1 + exp

(
ωj − µb

T

)]−1

. (17)

Using the previous definitions for µl and µa , we have

µe = µl + µa, µµ = µl − µa, (18)

and because µa is small, to first order in µa we have

fe(ω1)fe(ω2)[1 − fe(ω3)][1 − fµ(ω4)] − fe(ω1)fµ(ω2)

× [1 − fe(ω3)][1 − fe(ω4)] = F (ω1, ω2, ω3, ω4)
µa

T
(19)

and

fµ(ω1)fe(ω2)[1 − fµ(ω3)][1 − fµ(ω4)] − fµ(ω1)fµ(ω2)[1 − fµ(ω3)][1 − fe(ω4)] = F (ω1, ω2, ω3, ω4)
µa

T
, (20)

F (ω1, ω2, ω3, ω4) ≡ 2 exp[(ω3 + ω4 − 2µl)/T ]{1 + 2 exp[(ω2 − µl)/T ] + exp[(ω2 + ω4 − 2µl)/T ]}
{1 + exp[(ω1 − µl)/T ]}{1 + exp[(ω2 − µl)/T ]}2{1 + exp[(ω3 − µl)/T ]}{1 + exp[(ω4 − µl)/T ]}2

.

(21)

To determine the content of the matrix elements, we draw
the Feynman diagrams for each possible way the reaction
can occur. We can draw two different diagrams for each
process, depending on the whether the weak conversion
of the electron to muon occurs before the electromagnetic
scattering, or in the reverse order (Figs. 1 and 2). However,
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4

e
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FIG. 1. Feynman diagrams for the process e + e → e + µ +
ν̄µ + νe. There are an additional two diagrams that are obtained from
these by exchanging p1 ↔ p2.

because there are identical particles involved, and we are
integrating over all initial and final momenta, we need to
add two additional diagrams for each process. For the process
e + e ⇀↽ µ + e + ν + ν̄, we must add two diagrams where the
labels on the initial state electron momenta are reversed; and
for the process e + µ ⇀↽ µ + µ + ν + ν̄, we must add two

e
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3 e
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FIG. 2. Feynman diagrams for the process e + µ → µ + µ +
ν̄µ + νe. There are an additional two diagrams that are obtained from
these by exchanging p3 ↔ p4.
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diagrams where the labels on the final state muon momenta
are reversed. These diagrams get an additional negative sign
for the interchange of fermions [25]. For similar calculations,
see Refs. [26] and [27].

Since we have four diagrams for each process, the spin-
summed and -averaged matrix elements are

Wee→eµ = 1

8

∑
spins

|E1 + E2 − E3 − E4|2,
(22)

Weµ→µµ = 1

8

∑
spins

|M1 + M2 − M3 − M4|2.

Here E1, E2, E3, E4 are the amplitudes corresponding to the
diagrams of Fig. 1, and M1,M2,M3,M4 are the amplitudes
corresponding to the diagrams of Fig. 2 [28]:

E1 = e2GF√
2
(
q2 − q2

s

) ē(p3)γ µe(p1)ν̄e(k1)γ λ(1 − γ 5)

× 	p2+ 	q + me

(p2 + q)2 − m2
e

γµe(p2)µ̄(p4)γλ(1 − γ 5)νµ(k2),

E2 = e2GF√
2
(
q2 − q2

s

) ē(p3)γ µe(p1)ν̄e(k1)γ λ(1 − γ 5)

× e(p2)µ̄(p4)γµ

	p4− 	q + mµ

(p4 − q)2 − m2
µ

γλ(1 − γ 5)νµ(k2),

E3 = e2GF√
2
(
w2 − q2

s

) ē(p3)γ µe(p2)ν̄e(k1)γ λ(1 − γ 5)

× 	p1+ 	w + me

(p1 + w)2 − m2
e

γµe(p1)µ̄(p4)γλ(1 − γ 5)νµ(k2),

E4 = e2GF√
2
(
w2 − q2

s

) ē(p3)γ µe(p2)ν̄e(k1)γ λ(1 − γ 5)e(p1)

× µ̄(p4)γµ

	p4− 	w + mµ

(p4 − w)2 − m2
µ

γλ(1 − γ 5)νµ(k2), (23)

M1 = e2GF√
2
(
q2 − q2

s

) µ̄(p3)γ µµ(p1)ν̄e(k1)γ λ(1 − γ 5)

× 	p2+ 	q + me

(p2 + q)2 − m2
e

γµe(p2)µ̄(p4)γλ(1 − γ 5)νµ(k2),

M2 = e2GF√
2
(
q2 − q2

s

) µ̄(p3)γ µµ(p1)ν̄e(k1)γ λ(1 − γ 5)

× e(p2)µ̄(p4)γµ

	p4− 	q + mµ

(p4 − q)2 − m2
µ

γλ(1 − γ 5)νµ(k2),

M3 = e2GF√
2
(
s2 − q2

s

) µ̄(p4)γ µµ(p1)ν̄e(k1)γ λ(1 − γ 5)

× 	p2+ 	s + me

(p2 + s)2 − m2
e

γµe(p2)µ̄(p3)γλ(1 − γ 5)νµ(k2),

M4 = e2GF√
2
(
s2 − q2

s

) µ̄(p4)γ µµ(p1)ν̄e(k1)γ λ(1 − γ 5)e(p2)

× µ̄(p3)γµ

	p3− 	s + mµ

(p3 − s)2 − m2
µ

γλ(1 − γ 5)νµ(k2), (24)

where w = p2 − p3, and s = p1 − p4.

The only parameter in our calculation that depends on
details of the baryonic matter in the neutron star is the plasma
screening momentum qs . In a full treatment one would have
to use the appropriate in-medium propagator, which is a
complicated function of the photon momentum.

In this paper we simplify greatly the calculation by
assuming that the longitudinal and transverse photons have
a common screening mass

q2
s = 5αµ2

l . (25)

We argue in Appendix A that this leads to an estimate of the
bulk viscosity that is correct to within an order of magnitude
at reasonable densities for nuclear matter. As a further test, we
also performed calculations with no screening at all (q2

s = 0),
and found that the bulk viscosity shifted by no more than one
order of magnitude.

To obtain the equilibration rates, we first multiply out the
right-hand sides of Eq. (22) and define partial matrix elements
by

Wee→eµ =
∑
i,j�i

W ij
ee→eµ,Weµ→µµ =

∑
i,j�i

W ij
eµ→µµ,

W 11
ee→eµ = 1

8

∑
spins

|E1|2,W 12
ee→eµ = 1

8

∑
spins

(E†
1E2 + E

†
2E1),

W 13
ee→eµ = −1

8

∑
spins

(E†
1E3 + E

†
3E1), etc. (26)

The traces resulting from the spin sums are easily evaluated
with a computer algebra package; we used the FEYNCALC

package for MATHEMATICA [29]. In the next few paragraphs,
we will describe the steps used to analytically integrate 10 of
the 18 integrals, and list the expressions that we subsequently
integrated numerically in Appendix B.

We make use of the fact that the neutrino energies are
∼ T � µe, µµ by approximating the momentum- and energy-
conserving δ functions as

δ4(p1 + p2 − p3 − p4 − k1 − k2)

≈ δ(ω1 + ω2 − ω3 − ω4 − �1 − �2)

× δ3(p1 + p2 − p3 − p4). (27)

We then note that k1 and k2 occur exactly once in each term,
dotted into one of the other four-momenta pi . Writing

kj = �j (1, sin ξj cos ηj , sin ξj sin ηj , cos ξj ), (28)

we can see that any dot product with another four-momentum
pi is

pi · kj = �j [ωi − (pi)x sin ξj cos ηj

− (pi)y sin ξj sin ηj − (pi)z cos ξj ]. (29)

The integrals over the k1 and k2 angular variables then become
trivial: ∫

d3kj

�j

pi · kj =
∫

k2
j dkj d(cos ξj )dηj pi · k̂j

= 4πωi

∫ ∞

0
�2

j d�j , (30)
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because all of the integrations over one of the angles ξj or ηj

are zero.
The energy-momentum-conserving δ function allows us to

use relations such as p1 − p3 = p4 − p2 to rewrite some of the
denominators of the matrix elements. For example, in Wee→eµ

we can substitute variables so that p3 does not appear in the
denominators of any of the terms; then we can integrate out
the p3 three-momentum variables easily. Similarly, in Weµ→µµ

we can substitute variables so that p2 does not appear in
the denominators and integrate out the p2 three-momentum
variables. However, our matrix elements have many terms
containing the four-momentum p3 (p2), so it would be easier
if we could integrate over d4p3 (d4p2). This is accomplished
by replacing∫

d3p3

ω3
=

∫
d4p3

(p3)0
δ
[
(p3)0 −

√
p2

3 + m2
µ

]
≈

∫
d4p3

(p3)0
δ[(p3)0 − µl] (31)

in Wee→eµ and similarly for p2 in Weµ→µµ. In the last
approximation we are using the fact that the Fermi distribution
function is sharply peaked at low temperatures. Then we
integrate over d4p3 (d4p2) using four of the δ functions.

We can further approximate that the medium is isotropic,
by taking one of the remaining momentum variables to be in a
fixed direction (the z axis for convenience). The electrons are
relativistic, so ωi = |pi | and d3pi = ω2

i dωi d cos θi dφi when
particle i is an electron. The muons may not be relativistic,
so ωi = √

p2
i + m2

µ and d3pi = ωi

√
ω2

i − m2
µ dωi d cos θi dφi

when particle i is a muon. We then use the remaining δ function
to integrate over the magnitude of this isotropic momentum
variable.

The remainder of the integrations are performed numeri-
cally. The only further approximation made was to, again, take
advantage of the sharply peaked Fermi distribution function,
and set ωi = µl everywhere inside the integral, except for
inside the Fermi function itself. This allows a separation
of the eight-dimensional integral into a four-dimensional
energy integral and a four-dimensional integral over the
angular variables. The integration variables are also changed
to dimensionless variables by scaling them with respect to µl .

The final expression for each term in the rate has the form

�
ij

e�→µ� = e4G2
F µ12

l

128π11m4
µ

(
µa

T

)
× I �

ω × I
�ij

d� , (32)

where � is the species of the spectator lepton, and I �
ω and I

�ij

d�

are dimensionless energy and angular integrals, respectively.
These integrals are listed in Appendix B.

IV. NUMERICAL RESULTS AND CONCLUSIONS

The remaining part of the rate calculation is performed
numerically. The dimensionless energy integrals are nearly
the same; a power-law fit of the results yields

I e
ω ≈ 78.86

(
T

µl

)8

, Iµ
ω ≈ 78.62

(
T

µl

)8

. (33)

100 150 200 250 300
-32

-31

-30

-29

100 150 200 250 300
-25

-24

-23

-22

lo
g 10

γ ef
f [

s-1
]

100 150 200 250 300
µ

l
 [MeV]

-18

-17

-16

-15

mµ

T = 1 keV

T = 10 keV

T = 100 keV

FIG. 3. Dependence of the effective rate of electron-muon con-
version γeff [see Eq. (11)] on the charged-lepton chemical potential
µl at three different temperatures. As µl drops toward mµ, the muon
population decreases and the conversion rate drops to zero. The
temperature dependence is T 7, hence γeff is much larger at higher
temperatures.

In our approximation, the angular integrals only have
dependence on µl . We determined an analytical fit for the
µl dependence of I

eij

d� and I
µij

d� (accurate within 5%) over
the range 120 MeV < µl < 300 MeV by curve fitting the
numerical data with sixth-order polynomials:

∑
ij

I
eij

d� ≈
(

1 − m2
µ

µ2
l

)1/2 6∑
i=0

ci

(
µl

mµ

)i

,

c0 = −1.7363 × 104, c1 = 5.0189 × 104,

c2 = −4.7644 × 104, c3 = 1.3224 × 104, (34)

c4 = 4.4203 × 103, c5 = −2.7199 × 103,

c6 = 3.5119 × 102,

∑
ij

I
µij

d� ≈
(

1 − m2
µ

µ2
l

)3/2 6∑
i=0

ci

(
µl

mµ

)i

,

c0 = 1.2433 × 106, c1 = −3.6329 × 106,

c2 = 4.4365 × 106, c3 = −2.8702 × 106, (35)

c4 = 1.0354 × 106, c5 = −1.9728 × 105,

c6 = 1.5507 × 104.

Figure 3 shows the µl dependence of the effective rate γeff

defined in Eq. (11). As µl approaches mµ, the rate quickly
drops to zero as the muon population disappears. The overall
T 7 dependence is also illustrated in the sizable difference
in order of magnitude of the rate for the three different
temperatures.

Figure 4 shows the temperature dependence of the leptonic
bulk viscosity ζ as defined in Eq. (12) for an oscillation
frequency ω = 2π × 1kHz. The three approximately straight
lines on the log-log plot illustrate the power-law dependence
on T for three different values of µl . Also plotted are dotted
curves showing the nucleonic bulk viscosity for two different
values of the critical temperature Tc. These are obtained from
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FIG. 4. (Color online) Dependence of the leptonic bulk viscosity
ζ on temperature for three different values of the lepton chemical
potential, and an oscillation frequency of 1 kHz; for frequency
dependence, see the discussion after Eq. (36). We also show the
nucleonic bulk viscosity [5] due to modified Urca processes, for two
values of the critical temperature.

Ref. [5] in a model where the neutrons are superfluid, pairing
in the spin triplet state, the protons are superconducting,
pairing in the spin singlet state, and they have a common
critical temperature Tc = Tcp = Tcn. Also, it is assumed that
only modified Urca processes are available for damping of
pulsations (although direct Urca processes would become
possible at higher densities). Above the critical temperature
for superfluidity-superfluidity, the bulk viscosity for 1 kHz
oscillations owing to leptons is several orders of magnitude less
than the bulk viscosity owing to nucleons. Below the critical
temperature, the nucleonic bulk viscosity quickly decreases,
and at a low enough temperature, the leptonic contribution
becomes dominant. Based on our calculations, this crossover
temperature appears to be of order 0.01–0.1 MeV (108–109 K)
for an oscillation frequency in the kilohertz range. Such a
suppression of the nucleonic contribution can arise either from
superfluidity of neutrons or from superconductivity of protons.
Therefore, it is quite possible that, for many cold neutron stars,
the bulk viscosity of the superconducting or superfluid region
comes mainly from leptonic processes. In regions that are
neither superconducting nor superfluid (more strictly, where
T >∼ Tcp and T >∼ Tcn) the nucleonic bulk viscosity will likely
dominate.

The viscosity curves in Fig. 4 all slope upward because
the equilibration rate γeff(T ) is well below the oscillation
frequency ω, so we are in the slow-equilibration (high-
frequency) regime of Eq. (12), where

ζ ≈ C
γeff(T )

ω2
. (36)

This is true for both leptonic and nuclear viscosities. In this
regime one can simply add the two bulk viscosities to get
the total bulk viscosity (see, for example, Appendix A of
Ref. [17]). As the temperature rises, the equilibration rate
and hence the bulk viscosity rise. When γeff(T ) comes close
to ω, Eq. (36) becomes a poor approximation to Eq. (12):

ζ reaches a maximum when γeff(T ) = ω. Those maxima, for
both leptonic and nuclear bulk viscosities, are beyond the right-
hand limit of Fig. 4; for µl = 200 MeV, the peak occurs at
T ≈ 40 MeV.

We can now see how our results depend on the frequency
of the oscillations. Decreasing ω moves each ζ (T ) curve to the
left, shifting the viscosity curves in Fig. 4 upward. The largest
value we find for the leptonic effective rate (at T = 10 MeV,
for µl = 300 MeV) is γeff ∼ 2 rad/s, so for the leptonic bulk
viscosity Eq. (36) is valid for oscillation frequencies well above
this value. For example, if we reduced the oscillation frequency
from 1000 to 100 Hz, then all the viscosity curves in Fig. 4
would be shifted upward by a factor of 100. Decreasing the
frequency still further would bring us to the regime where,
in the temperature range of interest, either the nuclear or
leptonic rate was comparable to the oscillation frequency (so
one or both bulk viscosity curves would show a resonant peak
in our plot). Then one may not be able to simply add the
bulk viscosities. At extremely low oscillation frequencies, both
peaks would shift to very low temperatures, the bulk viscosity
curves in our plot would all slope downward, the nucleonic
contribution would dominate, and the bulk viscosities could
again be added.

It will be interesting to see whether the leptonic contribution
that we have calculated here has any impact on oscillations of
neutron stars. In the case of r modes, shear viscosity becomes
the dominant source of damping in the low-temperature
regime, so the leptonic contributions to the bulk viscosity
at low temperature are not likely to be an important source
of r-mode damping. Also the shear viscosity η of superfluid
nuclear matter is much larger than the leptonic bulk viscosity
we have calculated: η ∼ 1016g cm−1 s−1 at T ∼ 0.1 MeV,
rising to η ∼ 1022g cm−1 s−1 at T ∼ 0.001 MeV (see Fig. 5 of
Ref. [30]), so bulk viscosity would only dominate the damping
of modes with very little shear flow. Radial pulsations [31,32]
would be an interesting example to investigate. We used a
rough approximation (25) to treat the photon screening; we
argued (Appendix A) that this is valid to within approximately
an order of magnitude, but if a more precise estimate of the bulk
viscosity was required, one could improve on our treatment by
replacing the approximation (25) with separate propagators
for the transverse and longitudinal photons, incorporating
their separate screening mechanisms [33]. It should be noted
that our calculation is limited to the small-amplitude regime
(µa � T ). If the leptonic bulk viscosity is insufficient to damp
an unstable oscillation such as an r mode, then the amplitude
will rise and it will be necessary to repeat our calculation in the
large-amplitude (“suprathermal”) regime [34] to see whether
leptonic bulk viscosity can stop the growth of the mode once
it reaches a large enough amplitude.
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APPENDIX A: PHOTON SCREENING

In this Appendix we discuss the adequacy of our ap-
proximation (25) for the internal photon propagator in the
modified Urca process for leptons. The energy ω of the photon
is ∼T because all the initial and final state particles have
energies within T of their Fermi energies; however, the photon
three-momentum q must be large enough to move a lepton
between the muon and electron Fermi surfaces, so q � qmin,
where qmin = pF,e − pF,µ. Thus ω � q, and we can write the
photon self-energy in the static limit where it only depends on
q. There are contributions to the longitudinal and transverse
self-energies from protons, electrons, and muons. If the protons
are superconducting, as they are at the temperatures of interest
in this paper, then they provide an additional contribution to
the transverse photon self-energy. The complete expressions
are

�L(q) = M2
D,p ξL

(
q

kF,p

)
+ M2

D,e ξL

(
q

kF,e

)

+M2
D,µ ξL

(
q

kF,µ

)
,

(A1)

�T (q) = M2
D,p ξT

(
q

kF,p

)
+ M2

D,e ξT

(
q

kF,e

)

+M2
D,µ ξT

(
q

kF,µ

)
+ �(sc)

p (q).

The Debye mass for a given species is (see, for example,
Ref. [35])

M2
D = 4παµkF , (A2)

where µ is the Fermi energy (defined relativistically, so
µ2 = k2

F + m2) and kF is the Fermi momentum. The screening
functions ξL and ξT in the static limit are real, and are given
by

ξL(q̄) = 1

2
+ 1

2q̄

(
1 − q̄2

4

)
log

∣∣∣∣ q̄ + 2

q̄ − 2

∣∣∣∣,
(A3)

ξT (q̄) = 1

8

[
1 + q̄2

4
− 1

q̄

(
1 − q̄2

4

)2

log

∣∣∣∣ q̄ + 2

q̄ − 2

∣∣∣∣
]
.

The full expressions for photon screening by a degenerate
gas of charged fermions were first obtained by Lindhard [36].
Equation (A3) was obtained from the version of Lindhard’s
expressions for the dielectric permittivities εL and εT given in
Ref. [37], using the fact that �L(ω, q) = (ω2 − q2)(1 − εL)
and �T (ω, q) = ω2(1 − εT ) [see Sec. (6.4) of Ref. [38]].
Note that ξL and ξT above are defined in the static limit,
where ω/q → 0 at fixed q. Therefore, they are different from
the quantities χl(x) and χt (x), which are commonly given in
the literature [33,39], and are calculated at ω = xq in the limit
q → 0.

In our calculations of the leptonic flavor equilibration rate,
we use the rough approximation �L = �T = q2

s [Eq. (25)]
instead of the correct screening expressions given above. We
now explain why this is a reasonable approximation.

First we discuss the longitudinal photons. Their momentum
varies from qmin up to kF,e + kF,µ, but the momentum
dependence of �T is very moderate: from Eq. (A3) we see
that as q̄ varies from 0 to 2, ξL varies from 1 to 1

2 . In order to
judge whether, for the denominator of the longitudinal photon
propagator, q2 + q2

s is a good approximation to q2 + �L(q),
we use a naive free-particle model for nuclear matter. We
show the results in Table I. At each value of the baryon
chemical potential µB , the negative-charge chemical potential
µl is determined by requiring overall electrical neutrality. This
then fixes the Fermi momenta of the protons, electrons, and
muons. In Table I we see that when q = qmin (which is where
there is greatest sensitivity to the exact form of the screening),
the difference between q2 + q2

s and q2 + �L(qmin) is a few
percent at low density, and still less than a factor of 2 at very
high densities.

For the transverse photons, ξT varies from 0 at q = 0 to 1
3 at

q = ∞, so the normal-fermion contribution to the transverse
screening is more important at higher momenta. The other
contribution to �T comes from the superconducting protons,
and it is more important at low momentum. At zero momentum
we have Meissner screening, but as the momentum rises, the
effective screening mass drops slowly: this is seen in the
calculation of Ref. [33], which finds that, for q � ξ−1 (where
the correlation length ξ = pF,p/[mpTc,p)]), and assuming
the static limit,

�
(sc)
T (q) ≈ παp2

F,pTcp

q
. (A4)

TABLE I. Screening parameters in MeV or MeV2 for a free-nucleon model of npeµ nuclear matter; µB is the baryon number chemical
potential, and n/nsat is the baryon density relative to nuclear saturation density; µl is the Fermi energy of the electrons and muons; qmin is
the lowest photon momentum that contributes to the modified Urca process; �L and �T are defined in Eq. (A1). The last three columns
compare our approximate photon propagator at q = qmin (final column) with the photon propagator using the full screening expressions given
in Appendix A.

µB n/nsat µl q2
min �L(qmin) �T (qmin) q2

s = 5αµ2
l q2

min + �L(qmin) q2
min + �T (qmin) q2

min + q2
s

1056 3.164 111.1 5908 1067 55.45 450.1 6974 5963 6358
1125 6.76 167.6 1406 2150 30.13 1025 3557 1436 2431
1200 12.03 224.4 698.3 3300 65.06 1838 3999 763.4 2537
1350 26.93 328.7 304.3 5783 215 3943 6087 519.3 4247
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[This result follows from Ref. [33], Eq. (49), taking ω → 0
and using Q = π2 as specified in the preceding paragraph.] In
Table I we show numerical results for the naive free-nucleon
model of nuclear matter. We assumed Tcp = 1 MeV (see
Ref. [23], Fig. 10, and Ref. [40], Fig. 2). At the lowest allowed
photon momentum q = qmin, which is where there is greatest
sensitivity to the exact form of the screening, the difference
between q2 + q2

s and q2 + �2
T is a few percent at low density,

but rises to a factor of 3 at density n/nsat = 12, and a factor of
10 at n/nsat = 27.

We conclude that our rough approximation of using a
photon self-energy q2

s = 5αµ2
l [Eq. (25)] gives a reasonable

estimate of the in-medium photon propagator. At low densities
it is accurate to within 10%. At higher densities, up to 10×
nuclear saturation density in the simple model of Table I, our

approximation underestimates the screening of longitudinal
photons by a factor of ∼2 and overestimates the screening of
transverse photons by a factor of ∼3. (At even higher densities,
where a description in terms of nucleons is probably no
longer appropriate, our approximation for transverse screening
deviates further from the free-nucleon model.) Because the rate
involves the square of the photon propagator, we conclude that
our approximate treatment of the photon propagator affects the
rate by less than an order of magnitude at reasonable densities
for nuclear matter.

APPENDIX B: PARTIAL RATE INTEGRALS

The following abbreviations are used throughout this
Appendix:

xm = mµ

µl

, xs = qs

µl

, t = T

µl

,

C12 = 1 − cos θ2, C14 = 1 −
√

1 − x2
m cos θ4,

C24 = 1 −
√

1 − x2
m[sin θ2 sin θ4(sin φ2 sin φ4 + cos φ2 cos φ4) + cos θ2 cos θ4], (B1)

C̄13 = 1 − (
1 − x2

m

)
[sin θ1 sin θ3(sin φ1 sin φ3 + cos φ1 cos φ3) + cos θ1 cos θ3],

C̄14 = 1 − (
1 − x2

m

)
cos θ1, C̄34 = 1 − (

1 − x2
m

)
cos θ3,

F (xa, xb, xc, xd ) = 2 exp[(xc + xd − 2)/t]{1 + 2 exp[(xb − 1)/t] + exp[(xb + xd − 2)/t]}
{1 + exp[(xa − 1)/t]}{1 + exp[(xb − 1)/t]}2{1 + exp[(xc − 1)/t]}{1 + exp[(xd − 1)/t]}2

,

I e
ω =

∫
dx2 dx4 dy1 dy2 y2

1y2
2F (x4 + y1 + y2 − x2 + 1, x2, 1, x4), (B2)

Iµ
ω =

∫
dx1 dx3 dy1 dy2 y2

1y2
2F (x1, 1, x3, x1 − x3 − y1 − y2 + 1),

I e11
d� =

√
1 − x2

m

∫
d�2 d�4

4C12C14 + 2C12C24 − 2C14C24 − 4x2
mC12 + x2

mC24(
x2

m − 2C24 − x2
s

)2 , (B3)

I e12
d� = −

√
1 − x2

m

∫
d�2 d�4

[−2C12C
2
24 + 2C14C

2
24 + 8C12C14 + 4C12C24 − 4C12C14C24 − 4C14C24(

x2
m − 2C24 − x2

s

)2

+ x2
m

(
4C2

12 − 8C12 + 4C14 + C12C24 − C14C24
) − x4

m(
x2

m − 2C24 − x2
s

)2

]
, (B4)

I e13
d� = −

√
1 − x2

m

∫
d�2 d�4

−4C12C14 − 4C12C24 + 6x2
mC12(

x2
m − 2C24 − x2

s

)(
x2

m − 2C14 − x2
s

) , (B5)

I e14
d� =

√
1 − x2

m

∫
d�2 d�4

[
2C12C

2
14 − 4C12C14 − 4C12C24 + 2C12C14C24(
x2

m − 2C24 − x2
s

)(
x2

m − 2C14 − x2
s

)
+ x2

m

( − C2
12 + 6C12 − 2C12C14 + 2C14 − 2C24

) + x4
m/2(

x2
m − 2C24 − x2

s

)(
x2

m − 2C14 − x2
s

) ]
, (B6)

I e22
d� =

√
1 − x2

m

∫
d�2 d�4

4C12C14 + 2C12C24 − 2C14C24 − 4x2
mC12 + 4x2

mC14 + x2
mC24 − x4

m(
x2

m − 2C24 − x2
s

)2 , (B7)

I e23
d� =

√
1 − x2

m

∫
d�2 d�4

[
2C12C

2
24 − 4C12C14 − 4C12C24 + 2C12C14C24(
x2

m − 2C24 − x2
s

)(
x2

m − 2C14 − x2
s

)
+ x2

m

(−C2
12 + 6C12 − 2C12C24 − 2C14 + 2C24

) + x4
mC12/2(

x2
m − 2C24 − x2

s

)(
x2

m − 2C14 − x2
s

) ]
, (B8)
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I e24
d� = −

√
1 − x2

m

∫
d�2 d�4

[
2C2

12C14 − 4C12C14 + 2C2
12C24 − 4C12C24(

x2
m − 2C24 − x2

s

)(
x2

m − 2C14 − x2
s

)
+x2

m

(−4C2
12 + 5C12 + C12C14 + C12C24 + C14 + C24

)
(
x2

m − 2C24 − x2
s

)(
x2

m − 2C14 − x2
s

) ]
, (B9)

I e33
d� =

√
1 − x2

m

∫
d�2 d�4

2C12C14 + 4C12C24 − 2C14C24 + x2
m

( − 4C12 + C14
)

(
x2

m − 2C14 − x2
s

)2 , (B10)

I e34
d� = −

√
1 − x2

m

∫
d�2 d�4

[−2C12C
2
14 + 4C12C14 + 2C2

14C24 + 8C12C24 − 4C12C14C24 − 4C14C24(
x2

m − 2C14 − x2
s

)2

+ x2
m

(
2C2

12 − 8C12 + C12C14 − C14C24 + 4C24
) − x4

m(
x2

m − 2C14 − x2
s

)2

]
, (B11)

I e44
d� =

√
1 − x2

m

∫
d�2 d�4

2C12C14 + 4C12C24 − 2C14C24 + x2
m(−4C12 + C14 + 4C24) − x4

m(
x2

m − 2C14 − x2
s

)2 , (B12)

I
µ11
d� = (

1 − x2
m

)3/2
∫

d�1 d�3
−2C̄13C̄14 + 2C̄13C̄34 + 4C̄14C̄34 + x2

m(3C̄14 − 5C̄34) − x4
m(

2x2
m − 2C̄13 − x2

s

)2 , (B13)

I
µ12
d� = − (

1 − x2
m

)3/2
∫

d�1 d�3

[−2C̄13C̄
2
14 + 4C̄2

14 − 2C̄13C̄
2
34 − 4C̄2

34 + 8C̄13C̄34 + 8C̄14C̄34(
2x2

m − 2C̄13 − x2
s

)2

+ x2
m(4C̄2

14 + 4C̄2
34 − 8C̄13 + 2C̄13C̄14 − 8C̄14 − 2C̄13C̄34 − 4C̄14C̄34 − 8C̄34)(

2x2
m − 2C̄13 − x2

s

)2

+ x4
m(3C̄13 − 2C̄14 + 2C̄34 + 10) − 3x6

m(
2x2

m − 2C̄13 − x2
s

)2

]
, (B14)

I
µ13
d� = − (

1 − x2
m

)3/2
∫

d�1 d�3

[
2C̄13C̄

2
34 + 2C̄14C̄

2
34 − 4C̄13C̄34 − 4C̄14C̄34(

2x2
m − 2C̄13 − x2

s

)(
2x2

m − 2C̄14 − x2
s

)
+ x2

m

(−4C̄2
34 + 5C̄13 + 5C̄14 + C̄13C̄34 + C̄14C̄34 + 5C̄34

)
(
2x2

m − 2C̄13 − x2
s

)(
2x2

m − 2C̄14 − x2
s

) + x4
m(−3C̄13/2 − 3C̄14/2 − C̄34 − 6) + 2x6

m(
2x2

m − 2C̄13 − x2
s

)(
2x2

m − 2C̄14 − x2
s

) ]
,

(B15)

I
µ14
d� = (

1 − x2
m

)3/2
∫

d�1 d�3

[
2C̄13C̄

2
34 + 4C̄2

34 − 8C̄13C̄34 − 8C̄14C̄34(
2x2

m − 2C̄13 − x2
s

)(
2x2

m − 2C̄14 − x2
s

)
+ x2

m

(−C̄2
14 − 3C̄2

34 + 6C̄13 + 8C̄14 + 2C̄13C̄34 + 2C̄14C̄34 + 8C̄34
)

(
2x2

m − 2C̄13 − x2
s

)(
2x2

m − 2C̄14 − x2
s

)
+ x4

m(−3C̄13/2 − 2C̄34 − 9) + 3x6
m/2(

2x2
m − 2C̄13 − x2

s

)(
2x2

m − 2C̄14 − x2
s

)]
, (B16)

I
µ22
d� = (

1 − x2
m

)3/2
∫

d�1 d�3
2C̄2

14 − 2C̄2
34 + 4C̄13C̄34 + 4C̄14C̄34 + x2

m(−4C̄13 − 4C̄34) + 4x4
m(

2x2
m − 2C̄13 − x2

s

)2 , (B17)

I
µ23
d� = (

1 − x2
m

)3/2
∫

d�1 d�3

[
2C̄14C̄

2
34 + 4C̄2

34 − 8C̄13C̄34 − 8C̄14C̄34(
2x2

m − 2C̄13 − x2
s

)(
2x2

m − 2C̄14 − x2
s

)
+ x2

m

( − C̄2
13 − 3C̄2

34 + 10C̄13 + C̄13C̄14 + 6C̄14 + 2C̄13C̄34 + 2C̄14C̄34 + 8C̄34
)

(
2x2

m − 2C̄13 − x2
s

)(
2x2

m − 2C̄14 − x2
s

)
+ x4

m(−C̄13 − 2C̄14 − 2C̄34 − 10) + 2x6
m(

2x2
m − 2C̄13 − x2

s

)(
2x2

m − 2C̄14 − x2
s

)]
, (B18)

I
µ24
d� = − (

1 − x2
m

)3/2
∫

d�1 d�3
4C̄2

34 − 8C̄13C̄34 − 8C̄14C̄34 + x2
m(8C̄13 + 8C̄14 + 8C̄34) − 8x4

m(
2x2

m − 2C̄13 − x2
s

)(
2x2

m − 2C̄14 − x2
s

) , (B19)

I
µ33
d� = (

1 − x2
m

)3/2
∫

d�1 d�3
−2C̄2

14 + 2C̄14C̄34 + x2
m(C̄13 + 6C̄14 − 3C̄34) − 3x4

m(
2x2

m − 2C̄14 − x2
s

)2 , (B20)
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I
µ34
d� = − (

1 − x2
m

)3/2
∫

d�1 d�3

[
2C̄2

13 − 2C̄13C̄
2
14 + 2C̄13C̄14 − 2C̄13C̄34 + 2C̄13C̄14C̄34(

2x2
m − 2C̄14 − x2

s

)2

+ x2
m

(−C̄2
13 − C̄2

34 + 2C̄13 + 4C̄13C̄14 + 2C̄14
)

(
2x2

m − 2C̄14 − x2
s

)2 + x4
m(−2C̄13 − 2C̄14 − 2) + 2x6
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