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The relativistic mean field approach including isovector-scalar channel (i.e., exchanging δ mesons) interaction
is taken to study the properties of neutron star matter including hyperons and antikaon condensation. For hyperonic
neutron stars, it shows that the δ-meson channel interaction stiffens the equation of state at lower densities but it
softens the equation of state after hyperons appear. This leads to the neutron star having a lower central density
and a larger radius than the one with the same mass but without the δ-meson channel interaction. For neutron star
matter including both hyperons and antikaon condensation, the δ-meson channel interaction increases the onset
density of the antikaon condensation. At the same time, the stability of the kaonic neutron star and its dependence
on the kaon optical potential are discussed. For stable kaonic neutron stars with larger radii, those with the
inclusion of the δ-meson channel interaction have larger masses than those without the δ-meson interaction,
but the result is reversed for those with smaller radii. Calculated results are also compared with neutron star
observations. Constraints on the model parameters are then provided.
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I. INTRODUCTION

Because the density in the core range of a neutron star
may be several times the nuclear saturation density (ρ0), the
conventional view of neutron star matter composed of protons,
neutrons, and electrons is insufficient and more realistic
compositions are needed (for recent reviews, see, e.g., Refs. [1]
and [2]). At high densities, some new degrees of freedom such
as hyperons [3–9], condensed (anti)kaons [10–25], � isobars
[26–29], and quarks [30–40] can possibly appear. Moreover,
particles with strangeness, such as (anti)kaons and hyperons,
are created through strong and weak reactions until chemical
equilibrium is reached. All populations are distributed among
different species so as to account for the lowest energy state of
neutron star matter under the constraint of β equilibrium and
charge neutrality.

The possibility of the appearance of (anti)kaon condensa-
tion in hyperonic neutron star matter and its effect have been
discussed for a long time (see, e.g., Refs. [3] and [41]). In the
interior of neutron stars, the chemical potential of electrons in-
creases, and the effective mass of K− mesons decreases with an
increase in baryon density. As the effective mass of the mesons
is reduced to the critical mass equating to the chemical poten-
tial of electrons, negatively charged kaons, being bosons, are
able to condense in the lowest momentum (k = 0) state [11]. At
densities higher than the threshold, negative kaons will replace
electrons as the neutralizing agent, and the electron population
may be quenched by the quick increase in negative kaons. This
scenario was first demonstrated clearly by Kaplan and Nelson
with a chiral Lagrangian model; they showed that K− mesons
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may undergo Bose-Einstein condensation in dense hadronic
matter [41]. Later, such a composition of the core of neutron
stars was studied more systematically in the chiral model
[42–44]. In Refs. [45] and [46], kaon condensation was
investigated further in the traditional meson-exchange picture
in the framework of the relativistic mean field (RMF) model.
Glendenning and Schaffner studied in detail first-order kaon
condensation in the interior of neutron stars in the absence of
hyperons with the Gibbs criteria for more than one conserved
charge [11]. There are also relevant investigations of kaon
condensation using other models, such as the (modified) quark-
meson coupling model [15,22,47] and the density-dependent
RMF model from microscopic Dirac-Brueckner calculations
with the Groningen and Bonn potential of nucleon-nucleon
interaction [48,49]. All these calculations indicate that the
inclusion of negatively charged kaons softens the equation
of state (EOS) of the matter and, in turn, reduces the
maximum mass of neutron stars determined by the Tolman-
Oppenheimer-Volkoff (TOV) equation [50,51].

Furthermore, Brown and collaborators [17,52–54] claimed
that kaon condensation is the most likely phase transition
in the interior of neutron stars and the onset of antikaon
condensation will send neutron stars into low-mass black
holes. This was also applied to explain the disappearance
of the neutron star created in SN1987A after it had emitted
neutrinos for about 12 s [54]. With such a phase transi-
tion, Brown’s scenario also predicted that there are about
5 times more low-mass black hole/neutron star binaries
than neutron star/neutron star binaries (details are given in
Ref. [54]). Some simulations of the evolution of a pro-
toneutron star with kaon-condensed matter have also been
presented [55]. It is thus a very interesting issue to investigate
the stability of neutron stars with the inclusion of kaon
condensation.
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Concerning the theoretical approaches, we have known that
the RMF approximation of quantum hadron dynamics is a
simple and successful method for describing the properties
of nuclei and nuclear matter [56,57]. In the commonly used
RMF approach, the baryon-baryon interaction is realized
by exchanging the isoscalar-scalar σ meson, isoscalar-vector
ω meson, and isovector-vector ρ meson. In addition, self-
couplings between the respective mesons have been taken
into account [58–60]. In recent years, meson-meson cross-
interactions between different meson species have also been
included to describe finite nuclei, nuclear matter, and neutron
stars better [60–65].

In general point of view, there exists isovector-scalar chan-
nel (exchanging δ mesons) interaction between baryons. Some
studies have then been carried out to investigate its effect using
the RMF approach (see, e.,g., Refs. [24], [48], and [66]–[72]).
It has been shown that such an interaction plays an important
role in neutron skins, pygmy resonances, nuclear structure at
the drip line, neutron distillation in fragmentation, the EOS
of isospin asymmetric nuclear matter at low densities, and so
forth [70–72]. The effect of the δ-meson channel interaction on
some properties of neutron stars with (anti)kaon condensation
has also been discussed [24,48]. It is shown that the inclusion
of δ-meson channel interaction shifts the onset density of K−
condensation to a higher one, which, in turn, affects the EOS
of neutron star matter [24]. However, hyperons were not taken
into account in Ref. [24], for simplicity. Theoretically, if one
considers antikaon mesons composed of strange quark flavors,
it is necessary to include hyperons in consideration of β equi-
librium. This case was studied in Ref. [48], where two different
parameter sets, Groningen and Bonn A, are used. However,
the δ-meson channel interaction is only included in the former
parameter set, and the parameters are taken with completely
different values in the two cases. So the role of the δ-meson
channel interaction has not yet been demonstrated clearly.
Moreover, the model parameters taken in Ref. [48] should be
investigated as suggested by Cescato and Ring [73] because
they give rise to a negative effective nucleon mass at high
densities.

The main purpose of this paper is thus to study the
effect of the δ-meson channel interaction on the properties
of neutron stars with both hyperons and (anti)kaon conden-
sation, using different parameter sets. Some relevant works
[23,24] have not considered hyperon degrees of freedom. In
Ref. [24] we focused particularly on comparison of the role
of the δ-meson channel interaction in different models, such
as the Glendenning-Moszkowski (GM) [74], the Zimanyi-
Moszkowski [75], and the hybrid derivative coupling models
[76], which handle the scalar meson field dependence of the
effective mass of nucleons in different ways, and found that the
differences among the three models are very small. Therefore,
here we consider the matter including both hyperons and
kaon condensation only in the GM model. In this paper, as
a continuation and extension of Ref. [24], we also analyze
the stability of neutron stars and compare the theoretical
result with some astronomical observations and, thus, provide
constraints on the theoretical model.

The paper is organized as follows. In Sec. II, we briefly de-
scribe the effective Lagrangian and give the relevant formulas

in the RMF theory. In Sec. III, we demonstrate the calculated
properties of neutron stars including hyperons and kaon con-
densation with and without the δ-meson channel interaction.
In addition, we present some observation constraints on the
model parameters. Finally, a summary is given in Sec. IV.

II. THE MODEL

The RMF approach has been widely implemented to
describe the properties of hadronic matter and finite nuclei,
in which baryons interact via the exchange of mesons. We
consider here the whole baryon octet including both nucleons
(p and n) and hyperons (�, �, and 	) that was first investigated
by Glendenning [77]. The mesons exchanged include not only
the isoscalar-scalar meson (σ ), isoscalar-vector meson (ω),
and isovector-vector meson (ρ) but also the isovector-scalar
meson (δ). For neutron star matter with the entire baryon octet
and negatively charged leptons, the effective Lagrangian can
be written as

L=
∑
B


̄B

[
iγµ∂µ − mB + gσBσ + 1

2
gδBτB · δ − gωBγµωµ

− 1

2
gρBγµτB · ρµ

]

B + 1

2

(
∂µσ∂µσ − m2

σ σ 2
)

− 1

3
b m(gσσ )3 − 1

4
c (gσσ )4 + 1

2

(
∂µδ∂µδ − m2

δδ
2
)

+ 1

2
m2

ωωµωµ − 1

4
ωµνω

µν + 1

2
m2

ρρµ · ρµ

− 1

4
ρµν · ρµν +

∑
�


̄�(iγµ∂µ − m�)
�, (1)

where the subscript B stands for the entire baryon octet
(p, n, �, �+, �0, �−, 	0, 	−) and � represents charged
leptons e− and µ−. mB , mσ , mδ , mω, and mρ are masses
assigned to the corresponding baryons and mesons. gσB , gωB ,
gδB , gρB , b, and c refer to the meson-baryon or meson-meson
(self-)coupling constants. The antisymmetric tensors of vector
mesons are given by

ωµν = ∂µων − ∂νωµ, ρµν ≡ ∂µρν − ∂νρµ.

With the mean field approximation, by which the operators
of meson fields are replaced by their expectation values, we
can obtain the meson field equations as

gσNσ = fσ

[∑
B

xσBρS
B − bm(gσNσ )2 − c(gσNσ )3

]
, (2)

gδNδ = fδ

∑
B

xδBI3BρS
B, (3)

gωNω = fω

∑
B

xωBρB, (4)

gρNρ = fρ

∑
B

xρBI3BρB, (5)

where new forms of coupling constants are adopted with the
definitions

fi =
(

giN

mi

)2

, xiB = giB

giN

(i = σ, δ, ω, ρ),
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and ρB and ρS
B are the baryon density and the scalar density,

respectively, with

ρB = 1

π2

∫ kB
F

0
k2dk, (6)

ρS
B = 1

π2

∫ kB
F

0
k2dk

m∗
B√

k2 + m∗2
B

. (7)

In the last two equations, kB
F is the Fermi momentum of baryon

B, and m∗
B is the corresponding effective mass in the nuclear

medium with

m∗
B = mB − gσBσ − 1

2gδBτ3Bδ. (8)

With the requirement of translational invariance and rotational
symmetry of static, homogeneous, infinite nuclear matter,
besides the scalars σ and δ, only zero components—ω0 and
ρ0—of the vector fields survive, which are denoted ω and ρ in
the preceding meson equations.

For neutron star matter with baryons and charged leptons,
the β-equilibrium condition is guaranteed with the following
relations of chemical potentials for different particles:

µp = µ�+ = µn − µe− , (9)

µ� = µ�0 = µ	0 = µn, (10)

µ�− = µ	− = µn + µe− , (11)

µµ = µe− . (12)

And the charge-neutrality condition is fulfilled by

np + n�+ = ne− + nµ− + n�− + n	− , (13)

where ni is the number density of species i. The chemical
potentials of baryons and leptons are expressed by

µB =
√

kB2

F + m∗2

B + gωBω + gρBI3Bρ, (14)

µ� =
√

k2
F,� + m2

�, (15)

where kF,� and m� are the Fermi momentum and the mass
of the lepton �, respectively. The total energy density and the
pressure of the neutron star matter are then written as

εN =
∑
i=B,�

2

(2π )3

∫
d3k

√
k2 + m∗

i
2 + 1

2
m2

σ σ 2

+ b

3
m(gσNσ )3 + c

4
(gσNσ )4 + 1

2
m2

δδ
2

+ 1

2
m2

ωω2 + 1

2
m2

ρρ
2, (16)

pN =
∑
i=B,�

1

3

2

(2π )3

∫
d3k

k2√
k2 + m∗

i
2

− 1

2
m2

σ σ 2

− b

3
m(gσNσ )3 − c

4
(gσNσ )4 − 1

2
m2

δδ
2

+ 1

2
m2

ωω2 + 1

2
m2

ρρ
2. (17)

In the following, we denote this phase the normal phase.
With the onset of kaon condensation at higher densities,

kaon-meson interactions should be taken into account, which
are also mediated by σ , δ, ω, and ρ mesons in this model.

With the minimal coupling scheme, Dµ = ∂µ + igωKωµ +
igρKτKρµ/2, the following Lagrangian density describing the
kaon-kaon interaction should be added to Eq. (1):

LK = D∗
µK̄DµK − m∗

KK̄K, (18)

where m∗
K is the effective mass of kaon meson in the medium

and can be given explicitly as

m∗
K = mK − gσKσ − 1

2gδKτ3K̄ δ. (19)

The isospin doublet for antikaons is K̄ ≡ (K̄0, K−), with
the isospin projector τ3K̄ = (+1, −1) for K̄0 and K−,
respectively. In the interior of neutron stars, the medium-
modified kaon energy is reduced from its vacuum value to
a lower, density-dependent one with the dispersion relation

ωK̄ = m∗
K − gωKω + 1

2gρKτ3K̄ρ. (20)

At the same time, the electron chemical potential µe− increases
with increasing baryon density. As ωK− decreases to a certain
threshold µK− = µe− , K− mesons begin to show up in neutron
star matter. In the following we denote this phase the kaon
condensation phase.

For the kaon condensation phase, the meson field equations
are modified as

(gσNσ )K̄ = fσ

[∑
B

xσBρS
B − bm(gσNσ )2

K̄

− c(gσNσ )3
K̄

+ xσK

∑
K̄

nK̄

]
, (21)

(gδNδ)K̄ = fδ

[∑
B

xδBI3BρS
B + xδK

∑
K̄

I3K̄nK̄

]
, (22)

(gωNω)K̄ = fω

[∑
B

xωBρB − xωK

∑
K̄

nK̄

]
, (23)

(gρNρ)K̄ = fρ

[∑
B

xρBI3BρB + xρK

∑
K̄

I3K̄nK̄

]
, (24)

where xiK = giK

giN
(i = σ, δ, ω, ρ). Because (anti)kaons are

bosons, their condensation does not contribute to the pressure,
the pressure of kaon phase has then the same form as that of
the normal phase, i.e. Eq. (17), and

PK (µn, µe) = PN (µn, µe) (25)

is required for the phase in which both the normal phase and
the kaon condensation phase are in equilibrium (this phase
is usually referred to as the mixed phase). However, the
condensed kaon mesons contribute to the energy density of
the kaon phase as

εK =
∑
i=B,�

2

(2π )3

∫ ki
F

0
d3k

√
k2 + m∗

i
2 + 1

2
m2

σ σ 2
K̄

+ b

3
m(gσNσ )3

K̄
+ c

4
(gσNσ )4

K̄
+ 1

2
m2

δδ
2
K̄

+ 1

2
m2

ωω2
K̄

+1

2
m2

ρρ
2
K̄

+ m∗
K

∑
K̄

nK̄ . (26)
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Because there are two conserved charges in the mixed
phase, the baryon charge and the electric charge, the Maxwell
construction, which produces the discontinuity of the energy
and electron chemical potential in the interior of neutron star, is
not feasible. The Gibbs conditions are usually implemented to
describe the mixed phase, requiring all the chemical potentials,
temperature, and pressure to be common to both phases in
equilibrium [11]. This means that the kaon condensation
phase occupies just a small fraction of the total volume of
the system at the beginning of kaon condensation, and the
proportion increases with increasing baryon density. The pure
kaon condensation phase (including, of course, baryons, owing
to chemical equilibrium) may be reached finally. In the mixed
phase, the conservation of electric charge is satisfied globally
by the combination of the two phases, not locally by one single
phase, which can be explicitly written as

qtotal = χqK (µn, µe) + (1 − χ ) qN (µn, µe) = 0, (27)

where χ is the volume fraction of the kaon condensation phase,
and qK and qN denote the electric charge density of the kaon
condensation phase and the normal phase, respectively.

With the obtained EOS of the neutron star matter, the mass-
radius relation and other relevant quantities of the neutron star
can be derived by solving the TOV equation [50,51],

dp

dr
= [p(r) + ε(r)][M(r) + 4πr3p(r)]

r[r − 2M(r)]
, (28)

with

M(r) = 4π

∫ R

0
ε(r)r2dr. (29)

The equations of motion of the hadrons involve six
parameters, fσ , fδ , fω, fρ , b, and c, which can be determined
by the Bonn potential and the bulk properties of the nuclear
matter at saturation density. The value of fδ in this paper is 4
times that used in some studies (e.g., Refs. [66], [67], and [78]),
owing to the different expressions of the isospin operator, so
for consistency we choose fδ = 2.5 and fδ = 10.0, which
correspond to Bonn potentials A and C, respectively [78].
Of the properties of nuclear matter at saturation density,
the best known are the binding energy and the symmetry
energy coefficient, while the effective nucleon mass and the
compression modulus are not well fixed. Therefore, here
several sets of the bulk properties of nuclear matter are
adopted from Refs. [57] and [74]: (a) GM1, with ρ0 =
0.153 fm−3, E/A = −16.3 MeV, aasym = 32.5 MeV, K =
300 MeV, and m∗ = 0.7 m; (b) GM2, with ρ0 = 0.153 fm−3,
E/A = −16.3 MeV, aasym = 32.5 MeV, K = 300 MeV, and
m∗ = 0.78 m; and (c) GM3, with ρ0 = 0.153 fm−3, E/A =
−16.3 MeV, aasym = 32.5 MeV, K = 240 MeV, and m∗ =
0.78 m. The fitted results of the model parameters are listed
in Table I. The different choices of model parameters will
demonstrate different neutron star structures, which may
inversely put constraints on the nuclear matter properties at
saturation density by accurate neutron star observation.

Meson-hyperon and meson-kaon coupling constants rele-
vant to ω, ρ, and δ mesons are taken from the SU(6) quark

TABLE I. Parameters used in our calculations by fitting the
saturation properties of nuclear matter. fδ = 2.5 and fδ = 10.0
correspond approximately to Bonn potential A and potential C,
respectively [78].

fσ fω fρ b c

GM1
No δ 11.7935 7.158 73 4.413 61 0.002 94 −0.001 07
fδ =2.5 11.7935 7.158 73 6.572 29 0.002 94 −0.001 07
fδ =10.0 11.7935 7.158 73 12.989 52 0.002 94 −0.001 07

GM2
No δ 9.153 87 4.828 03 4.793 87 0.003 48 0.013 19
fδ =2.5 9.153 87 4.828 03 7.011 89 0.003 48 0.013 19
fδ =10.0 9.153 87 4.828 03 13.620 89 0.003 48 0.013 19

GM3
No δ 9.932 30 4.828 03 4.793 87 0.008 63 −0.002 43
fδ =2.5 9.932 30 4.828 03 7.011 89 0.008 63 −0.002 43
fδ =10.0 9.932 30 4.828 03 13.620 89 0.008 63 −0.002 43

model, with

gω� = gω� = 2gω	 = 2gωN/3,

gρ� = 0, gρ� = 2gρ	 = 2gρN,
(30)

gδ� = 0, gδ� = 2gδ	 = 2gδN ,

gρK = gρN, gωK = gωN/3.

As for the couplings of σ mesons, they can be obtained by
fitting hyperon potentials with UN

Y = xωY V − xσY S, where
S = gσσ and V = gωω are the values of the scalar and
vector field strengths at saturation density [74,79]. The
�-N interaction has been well studied and UN

� = −28 MeV
was obtained with bound � hypernuclear states (see, e.g.,
Ref. [80]). However, at present the �-N interaction in nuclear
matter is not known clearly. If � were bounded in nuclear
matter [7,81], the attractive potential should be used, but
detailed scans for � hypernuclear states turned out to give
negative results [82,83]. The study of �− atoms also showed
strong evidence for a sizable repulsive potential in the nuclear
core at ρ = ρ0 [84,85] and this was confirmed by a new
geometric analysis of the �− atom data [86]. Therefore, here
we take UN

� = 30 MeV as used in Refs. [80] and [87] to
fix the parameter χσ� . In addition, the 	-N interaction is
attractive, with the potential UN

	 = −18 MeV [80,87]. Scalar
meson coupling to K− mesons is obtained by fitting the kaon
optical potential with UK = −gσKσ − gωKω at the saturation
density of nuclear matter. Fits to kaonic atom data have yielded
values of UK in the range of −50 to −200 MeV [86,88–93].

III. NUMERICAL RESULT AND DISCUSSION

A. Effect of the δ-meson channel interaction
on neutron stars with hyperons

Before taking into account neutron star matter with kaon
condensation, we first simply investigate the properties of
neutron stars with the presence of only nucleons and hyperons
for convenience of comparison. In Ref. [65], the neutron star
with hyperons was studied with and without the δ-meson
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FIG. 1. (Color online) Calculated variation behaviors of the
relative populations in the composition of a neutron star with respect
to the total baryon density using parameter set GM2. The upper panel
is the result without the δ-meson channel interaction. The middle and
lower panels are those including the δ-meson channel interaction. ρc

denotes the density at the center of the neutron star.

channel interaction, but only the mass-radius relation was
reported there. How the δ-meson channel interaction affects
the inner structure of the star remains to be explored. We thus
focus mainly on this subject here.

With the parameters listed in Table I, we obtain the relative
populations of all species including both baryons and leptons.
The results are presented in Fig. 1 for the parameter set GM2
and in Fig. 2 for GM3. In these figures, the upper panels
display the results without the δ-meson channel interaction,
and the middle and lower panels show the results including
the δ-meson channel interaction. Figures 1 and 2 apparently
show that � hyperons do not appear in the interior of neutron
stars, as the potential UN

� is repulsive. If the parameter fδ

takes a small value, fδ = 2.5, its influence on the population
distribution is almost negligible. However, if fδ takes a larger
value, for instance, fδ =10, it affects the onset densities of
hyperons obviously, especially those of the isospin doublet 	0

and 	−, with the onset of 	− being shifted to a lower density
and that of 	0 to a higher one. The shifted densities are about
0.3ρ0.

With the solutions of the field equations of baryons and
mesons, we can directly obtain the EOS of the system. The
results obtained with several sets of parameters are illustrated
in Fig. 3. First, by comparing the results with the parameter
sets GM1, GM2, and GM3, we find that a larger compression
modulus and a smaller effective nucleon mass at saturation

FIG. 2. (Color online) The same as Fig. 1 but using parameter set
GM3.

density give a stiffer EOS. Furthermore, for each parameter
set, inclusion of the δ-meson channel interaction causes the
EOS of the matter at low densities to be harder but the
EOS at high densities to be softer, and hyperons lower
the density at which the EOS becomes softer. Specifically,
such a change in the EOS from stiffness to softness takes place

FIG. 3. (Color online) Calculated equations of state of hyperonic
neutron star matter for parameter sets GM1, GM2, and GM3. Solid
curves are the results without the δ-meson channel interaction, and
dotted curves are those including that channel interaction.
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FIG. 4. (Color online) Calculated mass-radius relations of hyper-
onic neutron stars for parameter sets GM1, GM2, and GM3. Solid
curves are the results without the δ-meson channel interaction, and
dashed and dot-dashed curves are those with the δ-meson channel
interaction.

when the energy density is in the region of 400–500 MeV fm−3

for different parameter sets. However, for a simple neutron
star whose baryon composition includes only neutrons and
protons, the change begins at a relatively higher energy density,
with ε > 950 MeV fm−3. Comparing these features, one can
confirm that the δ-meson channel interaction makes the EOS of
the matter harder and hyperons soften the EOS. Because of this
competition, the EOS of the matter at low densities at which
hyperons do not appear becomes stiffer. This characteristic of
the EOS influences the central density of neutron stars. For
example, with the parameter set GM3, a star with a maximum
mass without hyperons and without the δ-meson channel
interaction has a central density of 7.1 ρ0, but this decreases to
6.8 ρ0 when the δ-meson channel interaction with fδ = 10.0
is included. For the same parameter set, GM3, the central
density of stars including hyperons are correspondingly 5.7 ρ0

and 4.9 ρ0 for the two cases without and with the δ-meson
channel interaction. Combining the results in Figs. 1 and 2, we
conclude that the central density of neutron stars is reduced
with the inclusion of the δ-meson channel interaction.

We also illustrate the calculated results for the mass-radius
relation of hyperonic neutron stars in Fig. 4. The specific values
of the maximum masses and the radii of hyperonic neutron
stars with the three sets of parameters are listed in Table II.
Combining the results shown in Figs. 3 and 4 for parameter
sets GM1, GM2, and GM3, we find that a stiffer EOS produces

TABLE II. Calculated results of the maximum masses and radii
of hyperonic neutron stars for the three sets of parameters. (The ones
marked with “with δ” are those obtained with fδ = 10.0).

GM1 GM2 GM3

No δ With δ No δ With δ No δ With δ

Mmax (M�) 1.81 1.82 1.69 1.71 1.58 1.60
R (km) 12.82 13.58 12.55 13.13 12.22 12.95

a larger maximum mass of neutron stars. Moreover, for each
parameter set, the difference between the maximum mass of a
neutron star with the inclusion of the δ-meson channel interac-
tion and that without the δ-meson channel interaction is very
small, but the radius of a neutron star with the δ-meson channel
interaction is much larger than that without the δ mesons.

To understand the effect of the δ-meson channel interaction
on the properties of neutron stars including hyperons, we
use the EOS of hyperonic neutron star matter. As already
mentioned, the δ-meson channel interaction only stiffens the
EOS of the matter at low densities, and softens the EOS at
high densities at which hyperons emerge, and the density and
pressure at the center of neutron stars are smaller than the
respective values in the case without the δ-meson channel
interaction. The lower density and pressure at the center of a
neutron star show that the gravity in the center region of the
star is weak, owing to the requirement for mechanical stability.
At first glance it seems that a neutron star with the δ-meson
channel interaction should thus have a small radius. However,
as a matter of fact, because the EOS at lower densities of the
matter is harder as the δ-meson channel interaction is taken into
account, it can thus resist stronger gravity from the outer layer
of the star. Therefore, as the profile of the matter displayed in
Fig. 5 shows, the outer layer of a neutron star with the inclusion
of the δ-meson channel interaction is thicker than that of a
neutron star without δ mesons. In contrast, the softness of the
EOS at higher densities with the inclusion of δ mesons reduces
the central density of the star. As a consequence, a neutron star
composing matter with the δ-meson channel interaction can
have a relatively larger radius than the one with the same
mass but without the δ-meson channel interaction. In fact,
Ref. [69] reported a similar result, except that the smallest

FIG. 5. (Color online) Calculated matter profiles of hyperonic
neutron stars for parameter set GM3. The upper panel shows profiles
without the δ-meson channel interaction; the lower panel displays
those including the interaction with parameter fδ = 10.

055801-6



INFLUENCE OF THE ISOVECTOR-SCALAR CHANNEL . . . PHYSICAL REVIEW C 82, 055801 (2010)

radius of a neutron star obtained there was smaller than ours,
owing to the different choice of model parameters, especially
meson-hyperon interaction constants. The relevant parameters
in the present work are taken from the SU(6) quark model, but
those in Ref. [69] are taken by assumption.

To sum up, inclusion of the δ-meson channel interaction
may exert a great influence on the properties of hyperonic
neutron stars such as the population distribution of baryons
and the mass-radius relation. However, the result depends
on the coupling strength between δ meson and nucleon.
Unfortunately, to date, experiments have not provided enough
information about this. We hope that heavy-ion reactions will
provide us a chance to investigate the isospin effect directly
[71] in the near-future.

B. Effect of the δ-meson channel interaction
on kaonic neutron stars

In this subsection we study the properties of neutron star
matter with both kaon condensation and hyperons. Consider-
ing the fact that the K− meson begins condensing at a lower
density than other kaon species because its effective mass
is smaller in nuclear medium [94], and it is favored as the
neutralizing agent of positive electric charge, we take only
K− mesons into account here. Because � hyperons do not
appear in neutron star matter in the case of a repulsive potential
(see the preceding result and that given in Ref. [9]), and 	0

hyperons emerge at a density higher than the central density of
hyperonic neutron stars as the δ-meson channel interaction is
included, we do not consider these hyperons in our calculation.

As for the parameter fδ , it has been shown that fδ = 2.5 and
fδ = 10 correspond to Bonn potentials A and C, respectively
[78]. In Ref. [24], fδ = 10 was used to study antikaon
condensation in the case without hyperons. In this paper, we
intended to take both fδ = 10 and fδ = 2.5 to discuss the
effect of the δ-meson channel interaction strength on neutron
stars (matter) with both antikaon condensation and hyperons.
In the calculation, 11 coupled equations are being solved
simultaneously. If fδ = 10 is used, solutions for the coupled
equations when both hyperons and antikaon condensation are
considered at the same time do not exist. As we lower the
value of fδ , we note that, even at fδ = 8, solutions exist only
for some parameter sets. So, to make sure we can always
find solutions with the different parameter sets, we take the
intermediate value fδ = 4, between Bonn potential A and
Bonn potential C. It is also difficult to fix the value of xδK

from nuclear experiments at present. In the calculation, we
find that its value cannot be too large to ensure the existence
of solutions. For example, solutions can only be found with
xδK < 0.3 for parameter set GM1 with UK = −160 MeV. Here
we thus take only the value xδK = 0.2 for all parameter sets.
In addition, by comparing the parameter sets and the results
given in Sec. III A, we can note that parameter set GM1 is
different from GM3 for both the effective nucleon mass and
the compression modulus of the matter, and they provide a
bigger difference in the EOS and the mass-radius relation; we
thus use these two parameter sets to study the properties of
kaonic neutron stars in the following.

FIG. 6. (Color online) Calculated variation behaviors of the
relative populations of all compositions of neutron stars with respect
to the baryon density using parameter set GM3 and UK = −130 MeV.

By solving the field equations with the Gibbs criteria for
equilibrium of phases, we get the relative populations of the
composition of neutron stars. Our calculation indicates that,
when the kaon optical potential is deep enough, for instance,
−UK > 127 and 115 MeV for parameter sets GM1 and GM3,
respectively, the 	− hyperon does not appear in the matter. The
result obtained for parameter set GM3 in this case is illustrated
in Fig. 6, and that for parameter set GM1 in Fig. 7. The main
feature shown in these figures is that the onset density of K−
condensation is shifted to a higher value with the inclusion of
the δ-meson channel interaction compared to that lacking it. To
understand why inclusion of the δ-meson channel interaction
shifts the onset density of kaon condensation to a higher one,
we implement the characteristics of kaon-kaon interactions

FIG. 7. (Color online) The same as Fig. 6 but using parameter set
GM1 and UK = −130 MeV.
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provided by exchanging the isovector mesons ρ and δ. It is
known that the δ-meson channel interaction is attractive but
the ρ-meson channel is repulsive. When the δ-meson channel
interaction plays the main role, this favors the onset of kaons
at a lower density. In contrast, when the ρ-meson channel
interaction plays the main role, this favors the onset of kaons
at a higher density. In the parameter fitting, we maintain the
bulk properties of nuclear matter, the effective nucleon mass,
and the compression modulus the same in the two cases with
and without the δ-meson channel interaction. With the fitted
parameters reported in Table I, we can see that the coupling
parameter fρ is greatly enhanced with consideration of the
δ-meson channel interaction. The coupling parameter gρK is
thus also enhanced owing to the relation gρK = gρN from the
SU(6) quark model. So the repulsive channel interaction is
strengthened. As a consequence, the onset density for kaon
condensation to appear is shifted to a higher one as the
δ-meson channel interaction is taken into account. Moreover,
to examine the effect of xδK , we perform a series of calculations
with various values of xδK in parameter set GM1 and UK =
−160 MeV. We find that the onset density becomes higher
when the value of xδK increases. However, no solution was
found in the calculation, as xδK is larger than 0.3. Because the
presence of K− condensation will exert an important influence
on the properties of neutron stars by softening the EOS, the
delayed onset of K− condensation will give rise to some results
differing from those without the δ-meson channel interaction,
which is shown later in detail. In addition, the disappearances
of charged leptons e− and µ− are also shifted to higher
densities to maintain the charge neutrality of the system.

With the Gibbs criteria, when kaons first appear in the
interior of a neutron star, the kaon condensation phase, which
is composed of kaons, baryons, and leptons, occupies only part
of the whole volume of the system, and the other part is still
in the normal (baryon) phase, which is composed of baryons
and leptons. The two phases coexist with the same pressure.
Because of the difference in the compositions, baryons are
allowed to have different effective masses in the two phases.

To show the properties of kaonic neutron star matter and the
structure of the stars clearly, we illustrate the calculated results
of the effective masses of baryons in the matter with parameter
set GM3 in Fig. 8 and those with parameter set GM1 in Fig. 9.
These figures show that with an increase in baryon density, the
configurations in the interior of the neutron star can be divided
into three parts: (I) the pure normal phase; (II) the mixed phase
(with both normal phase and kaon condensation phase); and
(III) the pure kaon condensation phase. The pure normal phase
exists in a relatively lower density range. Then the mixed phase
emerges. With an increase in density, the mixed phase will
disappear. Then only the pure kaon condensation phase is left
behind at a very high density. In the case without the δ-meson
channel interaction, the neutron and proton are isospin degen-
erate with the same effective mass, as shown in the upper panels
in Figs. 8 and 9. However, in the case with the δ-meson channel
interaction, the effective masses of the neutron and proton split,
and the difference between them at a higher density decreases
after reaching a maximum value (which can be as large as about
100 MeV). This implies the restoration of isospin symmetry of
the nuclear force at high densities. Comparing Figs. 8 and 9,

FIG. 8. (Color online) Calculated variation behaviors of the
effective masses of the baryons and the kaon with respect to baryon
density in the case of parameter set GM3 with kaon potential
UK = −130 MeV. The upper panel is the result without the δ-meson
channel interaction, and the lower panel is that with the δ-meson
channel interaction.

one notices that the density range for the existence of the
mixed phase obviously depends on the parameter set, and the
coexisting range for parameter set GM1 is much narrower than
that for GM3. The δ-meson channel interaction also reduces
the density range of the mixed phase. Moreover, a distinct
characteristic of the mixed phase is that a new solution of the
effective baryon mass that coincides with that in the pure kaon
condensation phase appears, in addition to the one connecting
with that in the normal phase. More specifically, in the mixed
phase, the effective mass of each species of baryon in the nor-
mal phase is much larger than that in the kaon phase. And the
effective baryon masses connecting with those in the pure kaon
phase increase with increasing baryon density. These features
may be referred to a direct manifestation of different dynamics
between the normal phase and the kaon phase. The effective
mass of the kaon is also included in Figs. 8 and 9. With in-
clusion of the δ-meson channel interaction, the effective mass
of kaons is relatively smaller than that without the δ mesons
in the normal phase and the pure kaon phase, however, it is
slightly larger than that in the case without the δ mesons in the
mixed phase. In addition, by comparing the critical density at
which the mixed phase disappears and the central density of the
neutron star obtained by solving the TOV equation, we find that
the pure kaon phase can be realized in the core of a neutron star
with parameter set GM1, but it does not appear with parameter
set GM3 when the δ-meson channel interaction is included.
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FIG. 9. (Color online) The same as Fig. 8 but using parameter set
GM1 and UK = −130 MeV.

To demonstrate the effect of the kaon optical potential, we
demonstrate the EOSs of kaonic neutron star matter calculated
with parameter set GM3 and several kaon optical potentials
in Fig. 10 and those obtained with parameter set GM1 in
Fig. 11. Clearly, the onset of kaon condensation is highly
dependent on the kaon optical potential, which has not yet
been well determined by experiment. Specifically, the smaller
the absolute value of UK , the higher the onset baryon (energy)
density of kaon condensation. However, the effect of the
δ-meson channel interaction shrinking the range of the mixed
phase is general; it does not depend on the strength of the

FIG. 10. (Color online) Calculated equations of state of neutron
star matter with kaon condensation using parameter set GM3 with
different kaon optical potentials. Solid curves are the results without
the δ-meson channel interaction, and the dash-dotted curves are those
with the δ-meson channel interaction.

FIG. 11. (Color online) The same as Fig. 10 but for parameter set
GM1.

kaon optical potential UK . For the same UK , the appearance of
K− condensation with the inclusion of the δ-meson channel
interaction is shifted to a higher energy density, corresponding
to a higher baryon density, as illustrated in Figs. 6 and 7.
Comparing Fig. 3 with Figs. 10 and 11, one can see that, for a
neutron star with kaon condensation, the EOS of neutron star
matter with the δ-meson channel interaction remains stiffer
than that without the δ-meson channel interaction over a
larger energy density range than that in the case when only
hyperons are considered. The reason for this phenomenon is
that inclusion of the δ-meson channel interaction delays the
onset of kaon condensation to a higher density. Nevertheless,
for parameter set GM3, the EOS with antikaons and without
the δ mesons becomes stiffer than that with the δ-mesons in
the high-density region.

With the EOSs of neutron star matter with kaon conden-
sation, we obtain the mass-radius relations of the stars by
solving the TOV equation. The results for parameter set GM3
are illustrated in Fig. 12, and those for GM1 in Fig. 13.
The results obtained for the properties of neutron stars with

FIG. 12. (Color online) Observation constraints on mass-radius
relations of neutron stars calculated with parameter set GM3 and
several kaon optical potentials (the ones marked with either “No
kaon” or “UK = −100 MeV” are for those composed of the matter
preassigned not including 	− hyperons). Solid curves are the results
without the δ-meson channel interaction, and dash-dotted curves are
those with the δ-meson channel interaction.
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FIG. 13. (Color online) The same as Fig. 12 but for parameter set
GM1.

maximum masses, the corresponding onset density of the
mixed phase, and that of the pure kaon phase for different
parameter sets are listed in Table III. In this table, one can note
that, for parameter set GM3, the pure kaonic phase cannot
appear in the maximum-mass kaonic neutron stars if the kaon
optical potential is not very strong, for example, in the case of
UK = −100 MeV, or even UK = −130 MeV, with inclusion
of the δ-meson channel interaction.

Comparing the data listed in Tables II and III and looking
over the mass-radius relations shown in Fig. 12, we find that
the appearance of kaon condensation reduces the maximum
mass and accelerates the instability of the neutron star if the
kaon optical potential is neither very weak nor very strong. For
instance, in the case of UK = −100 MeV, kaon condensation
enhances the instability of the star obviously. According to
this phenomenon, it was once claimed that the appearance
of kaon condensation will lead to the formation of black
holes [53]. However, such a result depends on the model
parameters, especially on the kaon optical potential UK . The
critical values of UK are −126 MeV in the case without the
δ-meson channel interaction and −143 MeV with the δ-meson
channel interaction for parameter set GM3, and they are −144
and −152 MeV, respectively, for the cases without and with
the δ-meson channel interaction for GM1. The critical values
of UK will be much larger for the case without hyperons. If
the kaon optical potential UK is stronger than the critical one
for each parameter set, a neutron star can be stable even with
the appearance of kaon condensation. For instance, a stable

neutron star series can be realized with kaon optical potential
UK = −140 MeV as displayed in Fig. 12. For this case, it is
remarkable that, in the radius range of about R = 11–13.5 km,
the mass of a kaonic neutron star with the δ-meson channel
interaction is larger than that without the interaction, but the
result reverses for the stars with smaller radii. The reason is that
the EOS with the δ-meson channel interaction is stiffer (softer)
at low (high) densities than that without the δ-meson channel
interaction. This is similar to the discussion of hyperonic
neutron stars in Sec. III A. A similar result was also obtained
for hybrid neutron stars with hyperons and a quark core [69].

In Fig. 12, one can also note that, in the case of parameter
set GM3, the maximum mass of stable neutron stars with
kaon condensation is less than the canonical Hulse-Taylor
pulsar B1931 + 16, with a mass of 1.44M� [95]. Thus,
this set of parameters may be ruled out. In another case,
looking at Fig. 13, one can recognize that, with parameter
set GM1, the maximum mass for a stable neutron star can be
enhanced to 1.66M� with UK = −160 MeV, compatible with
the observation at a reasonable confidence level. Furthermore,
our calculation shows that, for neutron stars whose hadron
composition does not include kaon condensation, the radius
cannot be smaller than 12 km, but for neutron stars with
both hyperons and antikaon condensation, the radius can
be even less than 10 km. If the radius of a neutron star is
identified as being smaller than 12 km, one can conclude that
a kaonic neutron star with hyperons is favored. Identification
of the existence of exotic matter in a compact star requires
at least several precise observations of the neutron star’s
radius and mass simultaneously. Unfortunately, the present
single-neutron star observation cannot give such a precise
result. However, other observations from gravitational red shift
and X-ray burst in X-ray binaries can provide some useful
information, which is discussed in Sec. III C.

From the mass-radius relations, it seems that for some
parameter sets, for example, GM1 with UK = −130 MeV,
a star will become unstable as soon as K− mesons appear,
but from Fig. 9 one can see that the pure kaon phase can be
realized. In fact, in this case the onset of K− does not result
in instability of the star immediately. Instability of the star
occurs when the richness of K− has increased greatly. This
scenario is not easily identified from the mass-radius relation.
However, it can be clearly seen from the relation between a
neutron star’s mass and its central density. We thus display the
calculated corresponding functions of a neutron star family

TABLE III. Calculated results of the properties of neutron stars with maximum masses for several sets of parameters (the ones in GM3
with UK = −100 MeV are for those composed of the matter preassigned not including 	− hyperons). Here ρmix and ρpk represent the onset
density of the mixed phase and the pure kaonic phase, respectively. ρc represents the central density.

GM3 GM3(δ) GM3 GM3(δ) GM3 GM3(δ) GM1 GM1(δ) GM1 GM1(δ)

UK (MeV) −100 −100 −130 −130 −140 −140 −130 −130 −160 −160
Mmax (M�) 1.64 1.67 1.35 1.41 1.35 1.30 1.78 1.81 1.66 1.63
R (km) 12.35 12.43 8.41 13.21 8.25 8.55 13.11 13.49 9.58 9.89
ρc/ρ0 5.5 5.7 12.9 4.2 11.8 11.5 4.8 4.5 9.4 8.9
ρmix/ρ0 4.1 4.6 2.2 2.5 1.7 2.0 2.8 3.1 1.9 2.1
ρpk/ρ0 – – 8.5 – 9.3 7.8 4.7 4.4 5.6 5.0
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FIG. 14. (Color online) Calculated results of the mass of a neutron
star as a function of the central density using parameter set GM3 and
several kaon optical potentials. Solid curves are results without the
δ-meson channel interaction, and dash-dotted curves are those with
the δ-meson channel interaction.

with parameter set GM3 in Fig. 14 and that with parameter set
GM1 in Fig. 15. These figures show that for UK = −130 MeV,
neutron stars are still stable after the appearance of K−. They
become unstable until their masses begin to decrease with
increasing central density.

Recalling both the results of prior studies and our discussion
in Sec. III A, one knows that, when only the baryon octet
is considered, 	− hyperons can appear at a certain density
denoted ρa here. And if the onset density of 	− is lower than
that of K−, the appearance of 	− hyperons shifts the onset
density of kaon condensation to a higher one [48]. Thus 	−
hyperons may influence the properties of a kaonic neutron
star greatly. However, in the preceding discussion, we did not
pay attention to the effect of 	− hyperons. The reasons for
this are as follows. First, as already mentioned, if the kaon
optical potential is deep enough (the corresponding critical
values are |UK | = 127 and 115 MeV for parameter sets GM1
and GM3, respectively), the onset density of K− is lower than
the ρa defined here; in fact, 	− hyperons do not appear in
the matter preassigned to include both hyperons and kaons.
To demonstrate this feature better, we take the underlying
characteristic into account. Our calculation shows that, in

FIG. 15. (Color online) The same as Fig. 14 but for parameter set
GM1.

this case, the chemical potential of 	− hyperons, µ	− , is
less than the mass m	− in the medium with the appearance
of K−. Therefore 	− hyperons do not appear in the case
where the kaon optical potential is strong enough. Second,
if the kaon optical potential is very shallow, K− mesons
emerge at a relatively higher density, and 	− hyperons may
appear before the onset of K−. In our practical calculation,
we only encounter this case with UK > −115 MeV (e.g.,
UK = −100 MeV) in parameter set GM3. In this case, the
appearance of 	− hyperons delays the onset of K− to a higher
density, and the δ-meson channel interaction reinforces this
scenario, as it lowers the onset density of 	−. However, for
this case, just as Ref. [48] has shown, 	− hyperons as fermions
are restricted by the Pauli principle, and K− mesons as bosons
can form Boson-Einstein condensation. These characters lead
to the appearance of K− quenching all particles with a negative
electric charge. Moreover, the mass-radius relation curve given
by this parameter set is quite far away from the critical, stable
one, so the aforementioned result regarding the relation of the
critical optical potential to the stability of the kaonic neutron
star is not influenced by the appearance of 	− hyperons with
a shallow optical potential.

C. Observation constraints on neutron stars including
kaon condensation

To investigate the inner composition and structure of
neutron stars, we must compare the calculated results with
astronomical observations. In the following, we present some
possible constraints on the neutron stars with kaon condensa-
tion from neutron star observations.

According to Brown’s scenario, the K− meson plays a very
important role in the evolving process of neutron stars in the
neutron star binary. The accepted scenario of the evolution of
the neutron star binary is that, when a companion giant evolves,
the giant and the first-born neutron star go into a common
envelope, so that accretion onto the first-born neutron star is
limited by the Eddington rate and is negligible. However, after
Chevalier’s suggestion [96], Ref. [52] showed that the rate of
accretion required may go over to hypercritical accretion and
could be sufficient to send the first-born neutron star into a
black hole. Furthermore, Brown et al. [52,54] proposed an al-
ternative scenario of binary neutron star evolution. According
to Brown’s scenario, the two giant progenitors of neutron stars
in a binary must burn helium at the same time and the generated
neutron stars in the binary have to be within 4% of each other in
mass; otherwise, the first-born neutron star will accrete matter
from its companion in the red giant phase and then go into
a black hole with the onset of antikaon condensation. This
scenario for binary neutron stars also predicts that there are
about 5 times more low-mass black hole/neutron star binaries
than neutron star/neutron star binaries. It is easy to rule out
this prediction if one can find an accurately measured neutron
star/nuclear star binary in which the neutron stars are more
than 4% different from each other in mass. However, to date,
with well-observed neutron star binaries, this scenario works
quite well (details are given in Refs. [2] and [54]).

One of the conclusions in Brown’s scenario is that the
onset of antikaon condensation will lead to the neutron
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star collapsing into a black hole. We compare the preceding
calculated results and Brown’s scenario with some neutron star
observations. The first thing we emphasize is the reduction
in the mass of pulsar J0751 + 1807 with the reported
(2.1 ± 0.2)M� [97] to (1.26 ± 0.14)M� [98]. This reduction
alleviates considerably the dispute that the appearances of
hyperons, kaon condensation, and quarks soften, in principle,
the EOS and thus produce a relatively smaller maximum
neutron-star mass, but the observation gives a highly massive
star.

The gravitational red shift z is a very useful quantity for
observations [2]; it has a simple relation with the mass and
radius of a neutron star:

z =
(

1 − 2GM

Rc2

)−1/2

− 1. (31)

The best measurement of z was once claimed to be that of
EXO 0748-676 with X-ray bursts [2]. The spectrum analysis
showed that there exist two resonance scattering lines that are
consistent with Fe XXV and XXVI spectra for z = 0.35 [99]. If
the spectral identification is correct, it can be used to constrain
the mass-radius relations given by different model parameters.
Therefore, we illustrate the contour with the red shift z = 0.35
in Figs. 12 and 13. Obviously, for parameter set GM3, only
the case with UK = −100 MeV does not cross the curve given
by z = 0.35, and other cases with kaon condensation lead to
a maximum mass of neutron stars less than that of the Hulse-
Taylor pulsar [95]. For parameter set GM1, all three cases cross
the observation curve, but the case with UK = −130 MeV
cannot in fact be realized because the neutron star obtained is
unstable in this case. This indicates that only the neutron stars
composed of the matter not including antikaon condensation
and the stable ones with antikaon condensation may exist with
parameter set GM1. What is more, it should be noted that
z = 0.24 has been identified with different simulation codes
for the same observation data by the Fe XXIV absorption
feature [100], and the mass of neutron star EXO 0748-676
is reduced to M � 1.48M� with such a red shift [100,101].
This result is more consistent with a detailed multiwavelength
analysis showing that the mass of a compact star is more
compatible with M � 1.35M� [102]. If the red shift z = 0.24
is well accepted, the constraint on the model parameters will
be weakened apparently, as shown in Figs. 12 and 13.

Another useful quantity for observations is the thermal
radiation radius

R∞ = R/
√

1 − 2GM/Rc2, (32)

coming from thermal observations of a neutron star’s surface.
Most known neutron stars observed as pulsars emit photons
dominated by nonthermal emissions. Such emissions are
generated in a neutron star’s magnetosphere and are difficult
to apply to limit the macroscopic properties of neutron stars.
However, constraints on the neutron star radius can be obtained
by fitting the spectrum of the X-ray emission if the temperature,
the composition of the atmosphere, and the distance are
known and the surface magnetic field is very weak. These
conditions are fulfilled by quiescent low-mass X-ray binaries
(qLMXBs), especially those in globular clusters [103,104].
With the assumption that the total photon fluxes at the surface
of a neutron star are those of a blackbody, they should obey

the relation

F∞ = L∞/4πd2 = σT 4
∞(R∞/d)2, (33)

where d is the distance and F∞, L∞, and T∞ are the
flux, luminosity, and temperature, respectively. With the
relations T∞ = T/(1 + z) and F∞ = F/(1 + z)2, R∞ can be
determined if F∞ and T∞ are well measured. With the R∞
obtained, we can constrain the mass-radius relation of the
neutron star. We thus illustrate the contours relevant to several
values of R∞ in Figs. 12 and 13.

As for observations, two sources in cluster Omega Cen
show R∞ = 14.3 ± 2.1 km [104] and R∞ = 13.6 ± 0.3 km
[105], respectively. However, some fits were carried out by
implementing a fixed surface gravity log gs = 14.383. In fact,
a wide range of gs needs to be taken into account in self-
consistent spectral fitting for the possible neutron star mass and
radius. With such a consideration of the whole range of fitted
gs , Heinke et al. obtained R∞ � 16–20 km for qLMXB X7 in
the globular cluster 47 Tuc [106]. However, in these calcula-
tions, all the fits are performed with hydrogen atmosphere, a
possible drawback, as pointed out in Refs. [103,107] is that it is
not yet possible to exclude the case that the accretion is still go-
ing on at very low rate, and adding constantly to the atmosphere
heavy elements that will affect the spectral identification.

Considering the uncertainties in the simulation and obser-
vation, and combining other constraints, one can recognize
that the case for parameter set GM1 and with optical potential
UK = −160 MeV is the one most possible to exist practically.
For other cases, owing to the instability shown in Fig. 13,
the neutron star will spontaneously adjust its chemical com-
position through weak and/or strong interaction(s) to resist
the great pressure and may go into a black hole if it can
accrete enough matter from its surroundings, just as described
by Brown’s scenario. As we pointed out in Sec. III B, if the
kaon optical potential UK is less than −144 MeV (−152 MeV
with the δ meson) for parameter set GM1, neutron stars will be
stable with the onset of kaon condensation. From this we can
see that the kaon optical potential plays a highly significant
role in determining the stability of neutron stars and it is
related to their compositions. Meanwhile, concerning kaon
condensation, we find that parameter set GM1 is favored by
observations.

Finally, compared with neutron stars composed of matter
including kaon condensation but no hyperons, neutron stars
with both kaon condensation and hyperons have a relatively
lower critical density for the appearance of kaon condensation
and the corresponding maximum mass and central density of
the stars are also slightly lowered. However, it is still difficult
to distinguish the two cases from observations at present,
because there are several uncertain parameters, such as the
kaon optical potential, the effective nucleon mass, and the
compression modulus. If some of these parameters are fixed
exactly by nuclear experiments, it is possible to distinguish the
two cases. In contrast, if several masses and radii of neutron
stars can be determined precisely, this also provides the chance
to distinguish the two cases. However, from the theoretical
point of view, if we consider antikaons composed of strange
quarks in the interior of a neutron star, it is better to include
hyperons in the consideration of β equilibrium.
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IV. SUMMARY

In this paper, we have investigated in detail the influence
of the isovector-scalar (δ-meson) channel interaction on the
properties of neutron stars with the presence of both hyperons
and kaon condensation in the framework of the RMF approach.
Generally, for the simplest neutron star, whose baryon compo-
sition includes only protons and neutrons, without antikaon
condensation, the δ-meson channel interaction stiffens the
EOS when the energy density is lower than 950 MeV fm−3 and
then softens it with increasing energy density. However, once
hyperons are taken into account, the δ-meson channel interac-
tion only stiffens the EOS before the onset of hyperons, that is,
at lower energy densities, less than about 500 MeV fm−3, and
softens the EOS of matter that consists of not only nucleons
but also hyperons. A similar result is obtained for neutron stars
with kaon condensation. It is also remarkable that the δ-meson
channel interaction shifts the presence of K− condensation to
a higher baryon density, which may make a significant change
in the macroscopic properties of neutron stars because the EOS
is softened when K− mesons appear.

We have also discussed the mass-radius relations of
neutron stars in cases with and without the δ-meson channel
interaction. In the case of neutron stars with only hyperons,
for each parameter set of the RMF, the difference in maximum
masses obtained between those with and those without the
δ-meson channel interaction is very small, but for neutron
stars with the same mass, the radius of neutron stars with
the δ-meson channel interaction is much larger than that of
stars without the δ-meson channel interaction. As for neutron
stars including both hyperons and kaon condensation, neutron
star masses with the δ-meson interaction are larger than those
without the δ-meson interaction at larger radii, but the results
are reversed for those with smaller radii.

Furthermore, we have studied the stability of neutron stars
with hyperons and antikaons and found that the stability is
highly dependent on the kaon optical potential. The critical

values of the kaon potential UK are −144 MeV without the
δ-meson channel interaction and −152 MeV with the inclusion
of the δ mesons in the case of parameter set GM1, and they are
−126 MeV and −143 MeV, respectively, for the cases without
and with the δ-meson channel interaction for GM3. If UK is
smaller than the respective critical value for each parameter
set, stable neutron stars with antikaon condensation can be
obtained.

Finally, we have compared the calculated results with
astrophysical observations and given some possible con-
straints on the model parameters. The theoretical calculation
shows that for neutron stars with only the baryon octet, the
radius cannot be smaller than 12 km, but for those with both
hyperons and antikaon condensation, the minimum radius can
be even less than 10 km. If the radius of a neutron star can be
identified to be smaller than 12 km in observations, a kaonic
neutron star will be favored. Identification of the existence
of exotic matter in a compact star requires at least several
precise observations of the neutron star’s radius and mass
simultaneously. Although the present observation of a single
neutron star cannot give such a precise result, observations
from gravitational red shift and X-ray burst in X-ray binaries
provides some useful information, and the combination of
these observations shows that neutron stars with both hyperons
and antikaon condensation are more favored than neutron stars
with only hyperons, although some uncertainties in the obser-
vations still exist. The observations also show that the model
parameter set with a larger compression module and smaller
nucleon mass at saturation density (e.g., GM1) is favored.
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