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Analysis of flux-integrated cross sections for quasi-elastic neutrino charged-current scattering
off 12C at energies available at the MiniBooNE experiment
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Flux-averaged and flux-integrated cross sections for quasi-elastic neutrino charged-current scattering on nuclei
are analyzed. It is shown that the flux-integrated differential cross sections are less dependent on nuclear models
than the flux-averaged ones. We calculate these cross sections using the relativistic distorted-wave impulse
approximation and relativistic Fermi gas model with the Booster Neutrino Beamline flux and compare the results
with the recent MiniBooNE experimental data. Within these models an axial mass MA is extracted from a fit of
the measured dσ/dQ2 cross section. The extracted value of MA = 1.37 ± 0.05 GeV/c2 is consistent with the
MiniBooNE result. While the measured and calculated double differential cross sections dσ/dT d cos θ generally
agree, the Fermi gas model predictions are typically lower than data at low muon energies and scattering angles.
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I. INTRODUCTION

The current [1–4] and planned [5] sets of accelerator-based
neutrino experiments use extremely intense neutrino
beamlines for precise measurements of the observed neutrino
mass splitting and mixing angles and a detailed experimental
study of the neutrino mixing matrix. The intense beamlines
used in these experiments will greatly improve their statistical
precision.

In this situation, the statistical uncertainties should be
negligible when compared to systematic errors. Poorly mea-
sured neutrino-nucleus cross sections are a leading source of
systematic errors. The neutrino beams of high intensity cover
the few-GeV energy range, where the dominant contribution to
the νA cross section comes from charged-current quasi-elastic
(CCQE) scattering and resonance production processes. In the
long-baseline neutrino oscillation experiments, near and far
detectors are used to normalize the neutrino flux at production
and to search for the neutrino oscillation effects. While many
unknown quantities are eliminated in these experiments by
considering ratios of far to near events, the cancellation is not
complete due to differences in neutrino flux and backgrounds
in the near and far detectors. Thus, to permit precision
oscillation measurements, it is important to have an accurate
characterization of the CCQE differential cross sections over
a wide span of neutrino energies.

The current data on CCQE scattering come from a variety of
experiments operating at differing energies and with different
nuclei. The existing data on (anti)neutrino CCQE scattering
come mostly from bubble chamber experiments, which suffer
from poor statistics. In general, the experimental execution and
data interpretation are nontrivial for several reasons. Neutrino
beams typically span a wide energy range. The neutrino flux
itself is often poorly known, and a background from resonance
processes is frequently significant and difficult to separate
from the CCQE signal. Therefore, the total QE cross sections
measured in different experiments have typical uncertainties
of 20–40%. Even within such large uncertainties some results
contradict each other. The difference between the total quasi-
elastic cross sections, calculated within the framework of
various models [6–19] is lower than the spread in the data.

More information about the neutrino-nuclear CCQE in-
teraction can be obtained from the analysis of CCQE event
distributions and dσ/dQ2 differential cross sections as func-
tions of Q2 (squared four-momentum transfer) [20]. The shape
of these distributions is sensitive to the Q2 dependence of
two vector F1,2(Q2), one axial-vector FA(Q2) form factors,
and nuclear effects. The vector form factors are well known
from electron scattering. For the axial-vector form factor,
the dipole parametrization with one free parameter MA

(axial mass) is mainly used. This parameter controls the Q2

dependence of FA(Q2) and, ultimately, the normalization of
the predicted cross sections. The dipole parametrization has no
strict theoretical basis and the choice of this parametrization
is borrowed from the traditional parametrizations of the
vector form factors. To describe the nuclear effects, neutrino
CCQE models typically employ a relativistic Fermi gas model
(RFGM) [6] in which the nucleons have a flat nucleon
momentum distribution up to the some Fermi momentum pF

and nuclear binding energy εb. The experimental values of
MA are extracted from (anti)neutrino CCQE scattering data
(i.e., from the analysis of the shape of the Q2 distributions and
from the direct measurements of the total cross sections). They
show a very wide spread from roughly 0.7 to 1.2 GeV and the
resulting world average is MA = 1.026 ± 0.021 GeV [21].

Several experiments recently reported new results on CCQE
scattering from high-statistics data samples with intense,
well-understood neutrino beams. The Neutrino Oscillation
Magnetic Detector (NOMAD) experiment [22] observed an
MA value and cross section (from data taken on carbon)
consistent with the prior world average. However, the data
of Refs. [1,23–26] (preliminary result), collected on carbon,
oxygen, and iron targets, indicated a somewhat larger value
for MA = 1.19–1.37 GeV/c2. In these experiments the shape
of the Q2 distribution was analyzed.

These data show a disagreement with the RFGM pre-
dictions. The data samples exhibit a deficit in the region
of low Q2 � 0.2 (GeV/c)2 (the so-called low-Q2 problem).
It is known from the comparison with the low-energy QE
electron-nucleus scattering data that the RFGM description
of this region is not accurate enough [27]. There is a data
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excess in the region of high-Q2 and the value of MA,
obtained from a fit to the measured data, is higher than the
results of previous experiments. The collection of existing
results remains puzzling. The next experiments, Main Injector
Experiment Neutrino-A (MINERvA) [28] and MicroBooNE
[29] as well as the T2K [3] and NOvA [5] near detectors will be
able to make more precise measurements of the CCQE cross
sections in a wide range of energies and for various nuclear
targets.

The uncertainties in the theoretical description of the
quasi-elastic neutrino-nucleus scattering can be considerably
reduced if new model-independent absolute differential cross
sections can be provided. The first measurement of the
flux-integrated double-differential cross section (in muon
energy and angle) for CCQE scattering on carbon has been
produced by the MiniBooNE experiment [30]. This cross
section contains the most complete and model-independent
information that is available for the CCQE process.

The aim of this work is to test the RFGM and relativistic
distorted-wave impulse approximation (RDWIA) predictions
against the MiniBooNE data [30]. In the framework of these
approaches we extract the values of axial mass from the
measured flux-integrated dσ/dQ2 cross section. Then, using
these extracted values of MA, we calculate the flux-integrated
differential and flux-unfolded total cross sections and compare
the results with data.

The outline of this article is as follows. In Sec. II we present
briefly the RDWIA model and discuss the flux-averaged
and flux-integrated differential cross sections. The results are
presented in Sec. III. Our conclusions are summarized in
Sec. IV.

II. MODEL, FLUX-AVERAGED, AND FLUX-INTEGRATED
DIFFERENTIAL CROSS SECTIONS

We consider neutrino CCQE exclusive

ν(ki) + A(pA) → µ(kf ) + N (px) + B(pB), (1)

and inclusive

ν(ki) + A(pA) → µ(kf ) + X, (2)

scattering off nuclei in the one-W -boson exchange approx-
imation. Here ki = (εi, ki) and kf = (εf , kf ) are the initial
and final lepton momenta, pA = (εA, pA) and pB = (εB, pB)
are the initial and final target momenta, px = (εx, px) is the
ejectile nucleon momentum, q = (ω, q) is the momentum
transfer carried by the virtual W boson, and Q2 = −q2 =
q2 − ω2 is the W -boson virtuality.

A. Model

The formalism of CCQE exclusive and inclusive reactions
is described in Ref. [17]. All the nuclear structure information
and final state interaction effects (FSI) are contained in the
weak CC nuclear tensors Wµν , which are given by the bilinear
product of the transition matrix elements of the nuclear CC
operator Jµ between the initial nucleus state |A〉 and the final

state |Bf 〉 as

Wµν =
∑
f

〈Bf , px |Jµ|A〉〈A|J †
ν |Bf , px〉, (3)

where the sum is taken over undetected states.
We describe CCQE neutrino-nuclear scattering in the im-

pulse approximation (IA), assuming that the incoming neutrino
interacts with only one nucleon, which is subsequently emitted,
while the remaining (A-1) nucleons in the target are spectators.
When the nuclear current is written as the sum of single-
nucleon currents, the nuclear matrix element in Eq. (3) takes
the form

〈p,B|Jµ|A〉 =
∫

d3r exp(i t · r)�
(−)

( p, r)�µ	(r), (4)

where �µ is the vertex function, t = εBq/W is the recoil-
corrected momentum transfer, W =

√
(mA + ω)2 − q2 is the

invariant mass, 	 and �(−) are the relativistic bound-state and
outgoing wave functions.

The single-nucleon charged current has V −A structure
Jµ = J

µ

V + J
µ

A . For a free-nucleon vertex function �µ =
�

µ

V + �
µ

A we use the vector current vertex function �
µ

V =
FV (Q2)γ µ + iσµνqνFM (Q2)/2m, where σµν = i[γ µ, γ ν]/2,
and FV and FM are the weak vector form factors. They are
related to the corresponding electromagnetic form factors for
protons and neutrons by the hypothesis of the conserved vector
current. We use the approximation of Ref. [31] for the nucleon
form factors. Because the bound nucleons are the off-shell we
employ the de Forest prescription [32] and Coulomb gauge
for the off-shell vector current vertex �

µ

V . The vector-axial and
pseudoscalar form factors are parametrized as a dipole with
the axial-vector mass, which controls the Q2 dependence of
FA, and ultimately, the normalization of the predicted cross
section.

According to the JLab data [33,34] the occupancy of the
independent particle shell-model (IPSM) orbitals of 12C equals
on average 89%. In this work we assume that the missing
strength (11%) can be attributed to the short-range nucleon-
nucleon (NN ) correlations in the ground state, leading to
the appearance of the high-momentum (HM) and high-energy
component in the nucleon distribution in the target. To estimate
this effect in the inclusive cross sections, we consider a phe-
nomenological model that incorporates both the single-particle
nature of the nucleon spectrum at low energy (IPSM orbitals)
and the high-energy and high-momentum components due to
NN correlations.

In the IPSM, the relativistic wave functions of the bound
nucleon states 	 are obtained as the self-consistent (Hartree-
Bogoliubov) solutions of a Dirac equation, derived within a
relativistic mean-field approach, from a Lagrangian containing
σ , ω, and ρ mesons (the σ -ω model) [35]. We use the nucleon
bound-state functions calculated for carbon by the TIMORA

code [36] with the normalization factors S(α) relative to the
full occupancy of the IPSM orbitals of 12C: S(1p3/2) = 84%,
S(1s1/2) = 100%, and an average factor of about 89%. These
estimations of the depletion of hole states follow from the
RDWIA analysis of 12C(e,e′p) for Q2 < 2 (GeV/c)2 [34]
and are consistent with a direct measurement of the spectral
function using 12C(e,e′p) in parallel kinematics [37], which
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observed approximately 0.6 protons in a region attributable to
a single-nucleon knockout from a correlated cluster.

For the outgoing nucleon, the simplest choice is to use
plane-wave function �, that is, no interactions are considered
between the ejected nucleon N and the residual nucleus B .
For a more realistic description, FSI effects should be taken
into account. In the RDWIA the distorted wave function �

is evaluated as a solution of a Dirac equation containing a
phenomenological relativistic optical potential. The channel
coupling in the FSI [38] of the N + B system is taken into
account. The relativistic optical potential consists of a real
part which describes the rescattering of the ejected nucleon
and an imaginary part that accounts for the absorption of it
into unobserved channels.

Using the direct Pauli reduction method, the system of
two coupled first-order radial Dirac equations can be reduced
to a single second-order Schrödinger-like equation for the
upper component of the Dirac wave function �. We use
the LEA program [39] for the numerical calculation of the
distorted wave functions with the EDAD1 parametrization [40]
of the relativistic optical potential for carbon. This code,
initially designed for computing exclusive proton-nucleus and
electron-nucleus scattering, was successfully tested against
A(e,e′p) data [33,41] and we adopted this program for neutrino
reactions.

A complex optical potential with a nonzero imaginary part
generally produces an absorption of the flux. For the exclusive
A(l, l′N ) channel this reflects the coupling between different
open reaction channels. However, for the inclusive reaction,
the total flux must be conserved. In Refs. [9,42], it was shown
that the inclusive CCQE neutrino cross section of the exclusive
channel A(l, l′N ) calculated with only the real part of the
optical potential is almost identical when calculated via the
Green’s function approach [9,43] in which the FSI effects on
inclusive reaction A(l, l′X) are treated by means of a complex
potential and the total flux is conserved. We calculate the
inclusive and total cross sections with the EDAD1 relativistic
optical potential in which only the real part is included.

The inclusive cross sections with the FSI effects in the
presence of the short-range NN correlations were calculated
using the method proposed in Ref. [17]. In this approach
the contribution of the NN correlated pairs is evaluated in
the plane-wave impulse approximation (PWIA) model. We
use the general expression for the high-momentum and high-
energy part of the spectral function from Ref. [44] with the
parametrization for the nucleon high-momentum distribution
from Ref. [45], which was renormalized to a value of 11%. The
FSI effects for the high-momentum component are estimated
by scaling the PWIA cross section with the (εf �f ) function
determined in Ref. [17].

B. Flux-averaged and flux-integrated differential cross sections

In neutrino experiments the differential cross sections of
CCQE neutrino-nucleus scattering are measured within rather
wide ranges of the (anti)neutrino energy spectrum. Therefore
flux-averaged and flux-integrated differential cross sections
can be extracted.

Because the νµ mode of beams incorporates νµ and ν̄µ

spectra, the flux-averaged double differential cross section
d2σ/dT d cos θ in muon kinetic energy T and muon scattering
angle θ is the sum of neutrino and antineutrino cross sections〈

d2σ

dT d cos θ

〉
=

〈
d2σ ν

dT d cos θ

〉
+

〈
d2σ ν̄

dT d cos θ

〉
, (5)

where〈
d2σ ν,ν̄

dT d cos θ
(T , cos θ )

〉

=
∫ ε2

ε1

Wν,ν̄(T , cos θ, εi)
d2σ ν,ν̄

dT d cos θ
(T , cos θ, εi) dεi, (6)

and Wν,ν̄ are weight functions. The normalization of these
functions is given by∫ ε2

ε1

[Wν(T , cos θ, εi) + Wν̄(T , cos θ, εi)]dεi = 1. (7)

The weight functions are defined as

Wν,ν̄(T , cos θ, εi) = Iν,ν̄(εi)/	(T , cos θ ), (8)

where Iν,ν̄ is the neutrino (antineutrino) spectrum in the
ν mode of the flux and

	(T , cos θ ) =
∫ ε2

ε1

[Iν(εi) + Iν̄(ε)]dεi, (9)

are the neutrino and antineutrino fluxes that give the contri-
bution to the measured double differential cross section at
fixed values of (T , cos θ ). This flux depends on (T , cos θ ) due
to the limits of integration in Eqs. (6), (7), and (9), which
are functions of (T , cos θ ) [i.e., εi = εmin(T , cos θ ) and ε2 =
εmax(T , cos θ )]. In Fig. 1 the double differential cross sections,
calculated within the RDWIA and RFGM (with the Fermi
momentum pF = 221 MeV/c and a binding energy εb =
25 MeV for carbon), are shown as functions of neutrino energy.
Apparently the ranges [εmax(T , cos θ ) − εmin(T , cos θ )], where
dσ 2/dT d cos θ is not equal to zero, are different in the
RDWIA and RFGM. Therefore, the value of 	(T , cos θ ) is
model dependent and ultimately the weight functions and the
cross section 〈d2σ/dT d cos θ〉 depend on nuclear models as
well. Note that the flux 	(T , cos θ ) should be used to extract
the measured flux-averaged cross section in the i, j bins of
(T , cos θ ) variables (for example, see Eq. (3) in Ref. [30]).

Similarly, the flux-averaged dσ/dQ2 cross section can be
written as the sum〈

dσ

dQ2

〉
=

〈
dσ ν

dQ2

〉
+

〈
dσ ν̄

dQ2

〉
, (10)

where〈
dσ ν,ν̄

dQ2
(Q2, Tth)

〉
=

∫ ε2

ε1

Wν,ν̄(Q2,εi)
dσ ν,ν̄

dQ2
(Q2, Tth, εi) dεi,

(11)

and Tth is the muon threshold energy after all cuts for the
CCQE events selection.

The weight functions in Eq. (11) are defined as follows:

Wν,ν̄(Q2,εi) = Iν,ν̄(εi)/	(Q2), (12)
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FIG. 1. (Color online) Double differential
cross sections vs. the neutrino energy calculated
in the RDWIA (solid line) and RFGM (dashed
line) approaches for the four values of (T , cos θ ):
(0.4 GeV, −0.5), (0.4 GeV, 0.7), (0.6 GeV, 0.8),
and (1 GeV, 0.8).

where

	(Q2) =
∫ ε2

ε1

[Iν(εi) + Iν̄(ε)]dεi, (13)

are the neutrino and antineutrino fluxes that give the con-
tribution to the measured cross section at the fixed value
of Q2. The flux is a function of Q2 because ε1 = εmin(Q2)
and ε2 = εmax, where εmax is the maximum energy in the
(anti)neutrino spectrum. The limit εmin(Q2) and ultimately
the flux 	(Q2) depend on the nuclear model. As a result,
the extracted flux-averaged cross section 〈dσ/dQ2〉 is also
model dependent.

In Eq. (11) the cross section dσ/dQ2 is defined as

dσ

dQ2
(Q2, Tth, εi) =

∫ ωcut

ωmin

d2σ

dQ2dω
(Q2, ω) dω, (14)

where ωcut = min{ωmax(Q2), εi − mµ − Tth}, mµ is the muon
mass, and ωmax(Q2) and ωmin(Q2) are the limits of the
kinematic allowed ω range at the fixed value of Q2. If
Tth = 0, the upper limit ωcut = ωmax(Q2). So the flux-averaged
differential 〈dσ 2/dT d cos θ〉 and 〈dσ/dQ2〉 cross sections are
model dependent.

In Ref. [30] the differential cross sections were extracted
using the flux 	BNB that was determined by integration of the
Booster Neutrino Beamline flux [46] over 0 � εi � 3 GeV
(i.e., 	BNB is a single number, 2.90 × 1011νµ/cm2). Therefore,

these flux-integrated differential cross sections are not model
dependent and can be written as(

d2σ

dT d cos θ

)int

=
(

d2σ ν

dT d cos θ

)int

+
(

d2σ ν̄

dT d cos θ

)int

,

(15)

where (
d2σ ν,ν̄

dT d cos θ
(T , cos θ )

)int

=
∫ ε2

ε1

W̃ν,ν̄(εi)
d2σ ν,ν̄

dT d cos θ
(T , cos θ, εi) dεi, (16)

and (
dσ

dQ2

)int

=
(

dσ ν

dQ2

)int

+
(

dσ ν̄

dQ2

)int

, (17)

where(
dσ ν,ν̄

dQ2
(Q2,Tth)

)int

=
∫ ε2

ε1

W̃ν,ν̄(εi)
dσ ν,ν̄

dQ2
(Q2,Tth, εi) dεi.

(18)

The weight functions W̃ν,ν̄ are defined as

W̃ν,ν̄(εi) = Iν,ν̄(εi)/	BNB, (19)
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FIG. 2. (Color online) Flux-averaged (solid line) and flux-
integrated (dashed line) double differential cross sections versus cos θ

for T = 0.4 GeV (upper panel) and versus T for cos θ = 0.7 (lower
panel) calculated in the RDWA approach for the ν mode of the BNB
flux.

and ∫ ε2

ε1

[W̃ν(εi) + W̃ν̄(εi)]dεi � 1. (20)

because 	BNB � 	(T , cos θ ) and 	BNB � 	(Q2). These
functions depend only on (anti)neutrino energy and are model
independent. As an example, on Fig. 2 the flux-averaged and
flux-integrated double differential cross sections calculated
within the RDWIA model for the ν mode of the BNB flux are
compared. The flux-averaged cross sections are higher than
the flux-integrated ones. This is because the normalization of
W̃ν,ν̄ [Eq.(20)] is less than unity. From the practical point of
view, the extracted flux-integrated differential cross sections
are more useful than the flux-averaged ones because they
feature minimal model dependence and can be used for a
comparison to models of CCQE interactions on nuclei.

III. RESULTS AND ANALYSIS

A. CCQE flux-integrated dσ/d Q2 differential cross section

New data for the Q2 distribution of CCQE events measured
in the MiniBooNE experiment were presented in Refs. [30,47].
The measured, instead of calculated, CC one pion production
(CC1π+) background was subtracted [1]. With the measured
CC1π+ background incorporated, a “shape-only” fit to the
CCQE events sample was performed to extract values for
adjusted CCQE model parameters MA and κ within the Fermi

gas model. To tune this model to the low Q2 the parameter
κ was introduced [1], which reduced the phase-space volume
at low-momentum transfer. Note that when κ = 1 the
phase-space volume is the same as in the “standard” RFGM.
This parameter controls the Q2 distribution only in the low-Q2

region. The shape-only fit yields the model parameters, MA =
1.35 ± 0.17 GeV/c2 and κ = 1.007 ± 0.012. The extracted
value for MA is approximately 30% higher than the world
average.

The MiniBooNE νµ CC flux-integrated single differential
per neutron cross section dσ/dQ2 was extracted as a function
of Q2 in the range 0 � Q2 � 2 (GeV/c)2. To extract a value
for the parameter MA we calculated this cross section with the
BNB flux in the RDWIA and RFGM models using the Q2 bins
�Q2 = Q2

i+1 − Q2
i similar to [30](

dσ

dQ2

)int

i

= 1

�Q2

∫ Q2
i+1

Q2
i

[
dσ

dQ2
(Q2)

]int

dQ2. (21)

Because the data include events with T � 200 MeV [30],
we calculated dσ/dQ2 with T = 0 in Eq. (14). Within the
RDWIA (RFGM) model the fit to the extracted flux-integrated
dσ/dQ2 cross section with only-shape error yields the param-
eter MA = 1.37 ± 0.05 GeV/c2 (MA = 1.36 ± 0.05 GeV/c2).
These values are consistent with the MiniBooNE result MA =
1.37 ± 0.17 GeV/c2.

Figure 3 shows measured flux-integrated dσ/dQ2

differential cross section as a function of Q2 compared with the
RDWIA (MA = 1.37 GeV/c2) and RFGM (MA =
1.36 GeV/c2) calculations. There is an overall agreement
between the RDWIA result and the data across the full
range of Q2, whereas the RFGM overestimates the measured

FIG. 3. (Color online) Flux-integrated dσ/dQ2 cross section
per neutron target for the νµ CCQE scattering. Calculations from
the RDWIA with MA = 1.37 GeV/c2 and RFGM with MA =
1.36 GeV/c2. The MiniBooNE data are shown as points with the
shape error only.

055501-5



A. V. BUTKEVICH PHYSICAL REVIEW C 82, 055501 (2010)

FIG. 4. (Color online) Flux-integrated
d2σ/dT d cos θ per neutron cross section for
the νµ CCQE process as a function of cos θ for
the four muon kinetic energy bins: T (GeV) =
(0.2–0.3), (0.3–0.4), (0.4–0.5), and (0.5–0.6). As
shown in the key, cross sections were calculated
within the RDWIA (MA = 1.37 GeV/c2) and
RFGM (MA = 1.36 GeV/c2). The MiniBooNE
data are shown as points with the shape error
only.

differential cross section at Q2 � 0.2 (GeV/c)2. At higher Q2

a good match between the RFGM calculated and measured
cross sections is observed. Thus, the so-called low-Q2

problem is successfully solved in the distorted wave approach.

B. CCQE flux-integrated double differential cross section

The flux-integrated double differential per neutron cross
section d2σ/dT d cos θ for the νµ CCQE process was extracted
in Ref. [30] for the kinematic range −1 < cos θ < 1, 0.2 <

T < 2 GeV. The flux-integrated CCQE total cross section,
obtained by integrating the double differential cross section
over this range (Table VI in Ref. [30]), was measured to be
8.447 × 10−39 cm2 and 9.429 × 10−39 cm2 for the range −1 <

cos θ < 1, 0 < T (GeV) < ∞. The total normalization error
on this measurement is 10.7%. These results contain the most
complete and model-independent information that is available
for the CCQE process.

We calculated the flux-integrated double differential cross
section [d2σ/dT d cos θ )int] for the BNB νµ flux within the
RDWIA and RFGM models with the extracted values of MA

using the T and Q2 bins from Ref. [30](
d2σ

dT d cos θ

)int

ij

= 1

�T � cos θ

∫ Ti+1

Ti

∫ (cos θ)j+1

(cos θ)j

[
d2σ

dT d cos θ
(T , cos θ )

]int

× dT d cos θ, (22)

where �T = Ti+1 − Ti = 0.1 GeV and � cos θ =
(cos θ )j+1 − (cos θ )j = 0.1.

Figures 4 and 5 show measured flux-integrated
d2σ/dT d cos θ cross sections as functions of cos θ for several
bins of muon kinetic energy in the range 0.2 � T � 2 GeV as
compared with the RDWIA and RFGM calculations. There
is good agreement between the RDWIA calculations and
data within the error of the experiment. However, in the
regions 0.2 � T � 0.3 GeV, −1 � cos θ � −0.3, and 0.2 �
T � 0.5 GeV, 0.9 � cos θ � 1 the RDWIA result is slightly
lower than the measured cross section and the difference
decreases with muon energy. The RFGM prediction also agrees
well with the data, except in the regions 0.7 < cos θ < 1 and
0.2 < T < 0.5 GeV, where the calculated cross sections fall
rapidly with cos θ . In this kinematic region, the Fermi gas
model underestimates the double differential cross section
significantly. This trend is characteristic of the nucleon
momentum distribution and Pauli blocking effect as calculated
in the Fermi gas model [48].

Figure 6 shows measured flux-integrated d2σ/dT d cos θ

cross sections as functions of muon energy for four bins of
the muon scattering angle compared with the RDWIA and
RFGM calculations. The RDWIA cross sections are lower
than the data in the kinematic region 0.9 < cos θ < 1, 0.2 �
T � 0.5 (GeV) and the RFGM calculation underestimates the
measured double differential cross section significantly in the
range 0.7 < cos θ < 1, 0.2 < T < 0.5 GeV.

So, the comparison of measured to calculated flux-
integrated d2σ/dT d cos θ cross sections shows that the Fermi
gas model prediction are significantly lower than the data in
the range 0.7 < cos θ < 1, 0.2 < T < 0.5 GeV. The RDWIA
cross sections underestimate the data for muon production with
energies T � 0.3 GeV and scattering angles cos θ > 0.9.
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FIG. 5. (Color online) Same as Fig. 4 but for
muon kinetic energy bins: T (GeV) = (0.6–0.7),
(0.7–0.8), (0.8–0.9), and (0.9–1).

C. CCQE flux-integrated dσ/dT and dσ/d cos θ cross section

The flux-integrated single differential cross sections dσ/dT

and dσ/d cos θ (for T � 0.2 GeV) are presented in Fig. 7,
which shows dσ/dT as a function of muon kinetic energy and
dσ/d cos θ as a function of the muon scattering angle. Here

the results obtained in the RDWIA and Fermi gas models are
compared with the MiniBooNE data.

The measured flux-integrated dσ/dT (dσ/d cos θ ) cross
section with the shape error was obtained by summing the
double differential cross section over cos θ bins (T bins)

FIG. 6. (Color online) Flux-integrated
d2σ/dT d cos θ per neutron cross section for the
νµ CCQE process as a function of muon energy
for the four muon scattering angle bins: cos θ =
(0.6–0.7), (0.7–0.8), (0.8–0.9), and (0.9–1). As
shown in the key, cross sections were calculated
within the RDWIA (MA = 1.37 GeV/c2) and
RFGM (MA = 1.36 GeV/c2). The MiniBooNE
data are shown as points with the shape error
only.
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FIG. 7. (Color online) Flux-integrated dσ/dT cross section as a
function of muon energy (upper panel) and dσ/d cos θ cross section
for T � 0.2 GeV as a function of muon scattering angle (lower panel)
for the νµ CCQE process. As shown in the key, cross sections were
calculated within the RDWIA and RFGM. The MiniBooNE data are
shown as points with the shape error only.

presented in Tables VI and VII in Ref. [30]. There is
good agreement between the calculated and measured cross
sections, with the exception of the bin 0.2 � T � 0.3 GeV.
The flux-integrated total cross sections obtained in the RDWIA
and RFGM approaches by integrating the double differential
cross sections (over −1 � cos θ � 1, 0.2 � T � 2 GeV)
are equal to 8.208 × 10−39 cm2 and 8.310 × 10−39 cm2,
correspondingly, and agree with the measured value of 8.447 ×
10−39 cm2.

D. CCQE total cross section

The MiniBooNE flux-unfolded CCQE per neutron cross
section as a function of neutrino energy is shown in Fig. 8
together with the data of Refs. [49–52]. Also shown for
comparison are the results obtained in the RDWIA, PWIA,
and RFGM approaches. The calculated cross sections, which
use the values of MA extracted from the shape-only fit to
the flux-integrated dσ/Q2 data, reproduce the MiniBooNE
total cross section within the experimental errors over the
entire measured energy range. At the average energy of the
MiniBooNE flux (≈800 MeV), the extracted cross section
is ≈30% higher than what is commonly assumed for this
process assuming the RFGM and world-average value of the
axial mass MA = 1.03 GeV/c2. Note that the spread in the
data is much higher than the difference in predictions of the
RDWIA, PWIA, and RFGM approaches. So the comparison of

FIG. 8. (Color online) Total νµ CCQE per neutron cross section
as a function of neutrino energy. Data points for different targets
are from Refs. [25,30,49–52]. Also shown are predictions of the
RDWIA (MA = 1.37 GeV/c2), PWIA (MA = 1.37 GeV/c2), and
RFGM (MA = 1.36 GeV/c2).

the predicted and measured model-independent flux-integrated
double differential cross sections is more a sensitive test of the
employed models of the CCQE process than the comparison
of the total cross sections.

IV. CONCLUSION

In this article, we analyzed the flux-averaged and flux-
integrated differential and total νµ CCQE cross sections, plac-
ing particular emphasis on their nuclear-model dependence.
We found that the extracted flux-integrated cross sections
feature minimal model dependence. The flux-integrated dou-
ble differential d2σ/dT d cos θ , single differential dσ/dQ2,
dσ/dT , dσ/d cos θ , and flux-unfolded σ (εi) CCQE cross
sections were measured in the MiniBooNE experiment [30].

Using the RDWIA and RFGM approaches with the BNB
flux, we extracted an axial mass from a “shape-only” fit of the
measured flux-integrated dσ/dQ2 differential cross section.
The extracted values of MA = 1.37 ± 0.05 GeV/c2 (RDWIA)
and MA = 1.36 ± 0.05 GeV/c2 (RFGM) are consistent with
the MiniBooNE result of MA = 1.35 ± 0.17 GeV/c2. The
flux-integrated double differential cross sections were calcu-
lated in these models with the extracted values of MA. There
is an overall agreement between the RDWIA result and data,
whereas the RFGM calculation overestimates the measured
cross section at Q2 < 0.2 (GeV/c)2. Thus, the so-called
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low-Q2 problem is successfully solved in the framework of
RDWIA.

We also calculated in the RDWIA and RFGM approaches
the flux-integrated d2σ/dT d cos θ , dσ/dQ2, dσ/dT (for
muons with kinetic energy T � 0.2 GeV), and total cross
sections and compared them with the MiniBooNE data. The
RDWIA double differential cross section shows good agree-
ment with the data, except in the region 0.2 � T � 0.3 GeV,
0.9 � cos θ � 1 where the calculated cross sections are
lower than the measured ones. Good agreement between the
RFGM calculation and data is observed exclusive of the range
0.7 � cos θ1, 0.2 � T � 0.5 GeV where the Fermi gas model
predictions are completely off from the data. The calculated
dσ/dT and dσ/d cos θ also describe well the measured cross
sections except in the muon energy bin 0.2 � T � 0.3 GeV
where the calculations are lower than the data.

The calculated and measured flux-integrated total cross sec-
tions match well. The RDWIA, PWIA, and RFGM calculations
with the extracted values of MA reproduce the MiniBooNE
flux-unfolded CCQE cross section within the experimental
error over the entire measured energy range.

We conclude that the extracted flux-integrated double
differential cross section should be used as the preferred
choice for comparison to the employed model of the CCQE
interaction on nuclear targets.
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