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We consider the two-flavor version of the linear sigma model as well as of the Nambu–Jona-Lasinio model, at
finite temperature and quark chemical potential, beyond the mean field approximation. Using parameter values
for the pion and quark current masses which weakly break chiral symmetry, we show that both models can
present more than one critical end point. In particular, we explicitly show that the appearance of a new critical
point associated with a first-order line at high temperature and low densities could help to conciliate some lattice
results with model predictions. Using different techniques, we perform an extensive thermodynamical analysis
to understand the physical nature of the different critical points. For both models, our results suggest that the new
first-order line which starts at vanishing chemical potential has a more chiral character than the usual line which
displays a character more reminiscent of a liquid-gas phase transition.
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I. INTRODUCTION

Numerical analyses of quantum chromodynamics (QCD)
on a discrete space-time lattice (lattice QCD) indicate that
the transition from confined to deconfined matter at finite
temperature T and vanishing quark chemical potential µ is
a crossover [1]. On the other hand, model studies [2–5] predict
a first-order transition to occur for µ of the order of 1/3 of
the baryon mass and T = 0. In between these two regimes,
a second-order critical point is expected in the T -µ plane
at some intermediate values of T and µ. The existence and
the exact location of the critical point is still a matter of
dispute [6] and has been under intense theoretical study using
effective field theory models of QCD [2,3,5,7–13] (see also
the recent analysis performed in Ref. [14]). Unfortunately, a
direct application of lattice QCD at finite µ is, at present, still
quite problematic. Only relatively recently, new theoretical
developments and technical improvements allowed one to
circumvent in various ways the fermion determinant problem
and start performing Monte Carlo calculations (see Ref. [15]
for a review). Although most of the results obtained up to
now seem to support the QCD critical point, an interesting
observation against its existence comes from Ref. [16] where,
from numerical simulations of QCD at imaginary chemical
potential, one observes that the region of quark masses where
the transition is presumably of the first order (for quark
masses smaller than the physical ones) tends to shrink for
small positive values of the chemical potential µ. Conversely,
according to models supporting the critical point, the first-
order region should expand when µ increases, so that the
physical quark mass point hits the critical line at some finite
values of T and µ. A possible explanation for this discordance
has been given in Ref. [11], where it was pointed out that a
strong (repulsive) vector coupling may account for the initial
shrinkage of the first-order region, which would then start
expanding again at larger values of µ. As a result, two critical
points might appear for a given range of (small) quark masses,
as argued in Ref. [13]. However, it has been remarked [11]

that this does not necessarily imply the existence of the QCD
critical point, since a too strong repulsive potential may in fact
provoke the disappearance of the first-order line (and thus of
the critical point) for physical quark masses. If the vector
coupling is too small, instead, the initial shrinkage of the
first-order region is not clearly seen. A recent estimate [17]
of the vector coupling from flavor susceptibilities evaluated
with lattice QCD seems to support the latter scenario.

Based on the analysis of the linear sigma model (LσM)
with two-flavor quarks, it was shown in Refs. [12,13] that
the inclusion of thermal fluctuations of the mesonic fields
leads to the appearance of two critical points for a small finite
vacuum pion mass, m0

π < 50 MeV, without the need for a
vector interaction. For physical values of the pion mass, the
model predicts only one critical point, as one would naively
expect for QCD. Also in this case, the initial shrinkage of the
first-order region at small µ was proved to be a not uncommon
feature. However, as we will discuss, the direct transposition
of these arguments to QCD should be done with special
care. In the chiral limit and µ = 0, in fact, the two-flavor
LσM has a first-order transition, whereas in QCD, universality
arguments [18] suggest also the possibility of a transition of
the second order [of the O(4) universality class] depending on
the strength of the UA(1) anomaly. Very recently, it was found
(see Ref. [19]) that the correct treatment of the fermion vacuum
fluctuations (which were neglected in most LσM applications)
can change the order of the transition in the chiral limit from
first to second order, depending on the coupling constants. In
this case the phase diagram of the LσM would resemble the
Nambu–Jona-Lasinio model (NJL) one with a second-order
line starting at µ = 0 and high T and terminating at a tricritical
point (at intermediate T and µ) where the first-order line starts
ending at T = 0.

Interestingly enough, these findings of Ref. [12] suggest
the possibility of a rich structure for the QCD phase diagram
in a situation which is similar to the one which arises in
metamagnetic systems whose phase diagram may display
two critical points in the magnetic field versus temperature
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plane [20]. A multi-critical-point structure induced by charge
neutrality and vector interaction has been recently discussed
by Zhang and Kunihiro in the context of the 2 + 1 flavor NJL
model [14]. It is worth pointing out that the presence of strong
magnetic fields (B � 1019 G) may change the order of the
phase transition, as shown by Fraga and Mizher [21] who
considered the two-flavor LσM, at µ = 0, obtaining that the
usual crossover can turn into a first-order phase transition in
this regime.

The aim of the present work is to explore in some detail
the phase diagram of two of the most important effective field
theory models of QCD with two quark flavors represented
by the LσM and the NJL model when small finite pion (and
quark current) masses are considered. The thermodynamics of
both models have been compared, with standard parametriza-
tion in Ref. [8] where the mean field approximation (MFA)
has been used. As we shall see, going beyond the MFA allows
the appearance of more than one critical point in both models
for certain parameter values. For the LσM we will use the
same approximation as in Ref. [12] and will closely follow the
methods therein to map the phase diagram for various values
of the pion mass, m0

π . As it will be shown, by varying m0
π , two

and three critical points (two of them are actually very close to
each other) may appear. As a further step, we will explore the
nature of these critical points by analyzing the susceptibilities
and correlations of the net-quark number density, the entropy
density, and the scalar density.

The second part of the paper will be dedicated to the NJL
model, in its simplest form, which will be treated in the so-
called optimized perturbation theory (OPT). The OPT method
(which also goes by different names or has many variants,
e.g., delta expansion [22] and order-dependent mapping [23])
is well known for allowing evaluations beyond MFA due to
the way it modifies ordinary perturbative expansion, giving a
nontrivial (nonperturbative) coupling dependence. Examples
of successful applications include the most precise analytical
values of the critical temperature for noninteracting Bose gases
[24,25] as well as the precise location of the tricritical point and
the mixed liquid-gas phase within the Gross-Neveu model in
2 + 1 dimensions [26]. The latter illustrates how this method
can be a powerful tool beyond standard perturbation theory,
since these important effects were missed by the MFA
and could not be precisely determined by Monte Carlo
simulations [27]. The OPT version adopted here is mainly
indicated to nongauge theories, which (at finite temperature)
require the method to be extended, e.g., by adding and
subtracting a hard thermal loop improvement that modifies
the propagators and vertices in a self-consistent way, in the
so-called hard-thermal-loop perturbation theory (HTLpt) [28].
Regarding its use within renormalizable theories, the OPT
has just been substantially improved by its combination with
renormalization group properties [29].

This method has been recently applied to the NJL model
in the evaluation of the thermodynamical potential beyond
MFA, using standard parametrization [30]. The same type of
application will be considered here, with a different set of
parameters, in order to verify the possibility of multiple critical
points as found in the LσM. Our investigation, as already
anticipated, shows that in the very strong coupling limit this

situation (which would be missed by the MFA) arises. It is
interesting to remark that the OPT brings 1/Nc corrections to
the MFA effective potential which are proportional to the scalar
density, ρs = 〈ψ̄ψ〉, as well as to the net-quark number density,
ρq = 〈ψ+ψ〉, whose contribution to the pressure goes as
−G/(2Nf Nc)(2ρ2

q − ρ2
s ) where G is the usual NJL coupling,

Nc is the number of colors, and Nf the number of flavors.
This means that a type of 1/Nc suppressed vector term whose
strength is twice its scalar counterpart will contribute to the
pressure, so that when the interaction is sufficiently strong
the results seem to support the findings of Ref. [11] where the
SU(3) NJL with an explicit repulsive vector interaction, such
as the one suggested in Ref. [31], was used. We recall that,
contrary to the LσM, the NJL is a nonrenormalizable theory
which is often regularized by a noncovariant ultraviolet cutoff1

�. Then, from the quantitative point of view, our whole NJL
application must be taken with care, since to generate exotic
phase diagrams similar to the LσM one, we need very high
values for G which in turn generate high effective quark masses
at zero temperature and density. Although the effective quark
mass value generated by those parameters becomes larger
than �, the values of relevant observables, such as the quark
condensate and the pion decay constant, remain well within
reasonable values. Also, as already emphasized, one of the
goals of the present NJL application is to check whether this
model, like the LσM, supports the existence of more than
one critical point in its phase diagram. After obtaining the
OPT effective potential (or free energy density), we derive
the pressure and many thermodynamical quantities of interest
including susceptibilities and critical exponents. The results
obtained with both models indicate that the first-order line
observed at low chemical potential and high temperature has
a more “chiral” character, while its low temperature and high
chemical potential counterpart displays characteristics typical
of a “liquid-gas” phase transition. Finally, it will be shown that
with both models, our results seem to support the back-bending
of the critical line in the µ-mc plane (where mc is the
quark current mass) which, as first discussed in Refs. [11,13],
could reconcile the actual lattice findings with most model
predictions. It is also shown that the MFA completely misses
the possibility of more than one critical point in the T -µ plane,
for both models.

The paper is organized as follows. In the next section, the
LσM is reviewed with the inclusion of thermal fluctuations.
After obtaining the phase diagram in the T -µ plane for
small pion masses, the characteristics of each different critical
point is examined by a careful analysis of the densities and
susceptibilities. In Sec. III, the recent OPT application [30] to
the NJL model is quickly reviewed. Here, we show that a strong
coupling and small current mass may lead to the emergence
of a second critical point, analogous to the one found in the
LσM. We perform a comprehensive thermodynamical analysis
to investigate how multiple critical points appear in the T -µ
plane as well as in phase coexistence diagrams in the T -ρB and
P -1/ρB planes. We also numerically investigate the behavior

1See Ref. [8] for an interesting discussion regarding how this
difference may affect thermodynamical results.
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of quantities such as the interaction measure, the equation
of state parameter, bulk viscosity, and susceptibilities at, and
around, each critical end point. The latter quantities allow
us to estimate some relevant critical exponents in order to
distinguish the physical nature of both critical points, which
is also done by considering the free energy in terms of two
ordering densities, ρs and ρq . Finally, in Sec. IV we present
our main conclusions.

II. THE LINEAR SIGMA MODEL WITH QUARKS

In standard notation, the density Lagrangian of the LσM
with quarks reads

L = 1
2 (∂µπ )2 + 1

2 (∂µσ )2 − U (σ,π )

+ ψ̄[iγ µ∂µ − g(σ + iγ5τ · π )]ψ, (2.1)

where ψ is the flavor isodoublet spinor representing the quarks
(u and d), and

U (σ,π ) = λ

4
(σ 2 + π2 − f 2)2 − Hσ (2.2)

is the classical potential energy density. In the chiral limit
(obtained by setting H = 0 in the previous equation), the chiral
symmetry SU(2)V × SU(2)A is spontaneously broken at the
classical level, and the pion is the associated massless Goldston
boson. For H �= 0, the chiral symmetry is explicitly broken by
the term Hσ in Eq. (2.2), which gives the pion a finite mass
at T = 0 and µ = 0. The scalar field σ has a finite vacuum
expectation value v determined by the classical equation of
motion

λ(v2 − f 2)v − H = 0. (2.3)

Accordingly, the σ field is conveniently expressed as a sum
of the condensate plus fluctuations, σ = v + 	. In the LσM
Lagrangian given by Eq. (2.1) there is no explicit mass term
for the quark field, the quark mass being given only by the
condensate, gv. The parameters of the model are given by the
set of equations

H = fπm0 2
π , λ = m0 2

σ − m0 2
π

2f 2
π

,

(2.4)

f 2 = m0 2
σ − 3m0 2

π

m0 2
σ − m0 2

π

f 2
π , g = m0

q

fπ

,

where fπ = 92.4 MeV is the pion decay constant. Consistent
with Refs. [12,32], we set the vacuum σ mass to m0

σ =
700 MeV and the quark mass to m0

q = 313 MeV (i.e., one-third
of the nucleon mass). The last parameter that one needs to fix
is the vacuum pion mass, m0

π , which will be varied from 10 to
140 MeV.

A. Linearized mesonic action for the linear
sigma model with quarks

To calculate the equation of state of the model, we
closely follow the self-consistent method first proposed in
Ref. [32] and used also in Ref. [12]. Accordingly, we write
the grand canonical partition function as a functional integral

in Euclidean space with the imaginary time τ = it

Z = Tr exp[−β(Ĥ − µN̂ )]

=
∫

DψDψ̄DσDπ exp

{∫ β

0
dτ

∫
V

d3x(L + µψ̄γ0ψ)

}
,

(2.5)

where Ĥ and N̂ are the Hamiltonian and the net-quark number
operator, respectively. In Eq. (2.5), β = 1/T is the inverse
temperature, µ is the quark chemical potential,2 and V is the
system volume. Following the same steps as in Refs. [12,32],
we now integrate away the quark degrees of freedom. This
amounts to calculating the partition function of the quark sector

Zqq =
∫

DψDψ̄ exp

{∫ β

0
dτ

∫
V

d3xψ̄D̂ψ

}
, (2.6)

where

D̂ = −γ 0∂τ + iγ · ∇ − g(σ + iγ5τ · π ) + µγ 0. (2.7)

The Gaussian integral in Eq. (2.6) can be solved with standard
techniques [33] and yields

Zqq = det D̂. (2.8)

In Ref. [34] an expression such as Eq. (2.8) has been expanded
in a series of commutators involving the derivatives of the
mesonic fields. In our analysis we will discard these terms,
implicitly assuming that the meson mode amplitudes vary
slowly in space and time (the same approximation was
introduced also in Refs. [12,32]). The determinant in Eq. (2.8)
can then be evaluated as for the free case. After performing
a Fourier transformation in momentum-frequency space and
using the property

ln det D̂ = Tr ln D̂, (2.9)

we finally obtain

ln det D̂ = NcNf

βV

∑
p,n

ln
{
β2

[
ω2

n + (ε − µ)2
]}

+ ln
{
β2[ω2

n + (ε + µ)2]}, (2.10)

where Nf = 2, Nc = 3, and ωn are the Matsubara frequencies
taking the values ωn = (2n + 1)πT because of the antiperiod-
icity condition on the fermionic functional integral ψ(x, 0) =
−ψ(x, β). In Eq. (2.10), ε =

√
p2 + m2

q is the energy, with

the quark effective mass

m2
q = g2(π2 + σ 2). (2.11)

We note that Eq. (2.10) is formally identical to the standard
result except for the dependence of mq on the mesonic fields.
Performing the summation over the Matsubara frequencies in
Eq. (2.10), one then obtains

ln Zqq(σ,π ) = −
∫ β

0
dτ

∫
V

d3x�qq (σ,π ),

�qq(σ,π ) = −NcNf T

π2

∫
dp p2{βε + ln[1 + e−β(ε−µ)]

+ ln[1 + e−β(ε+µ)]}. (2.12)

2In this work, we use the quark chemical potential µ. The
baryochemical potential is µB = 3µ.
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Since we are interested in the low-energy properties of the
model, we will ignore (as was done in Refs. [12,13]), for
simplicity, the shift in the zero point energy. The effect of
such a contribution at finite temperature has been analyzed in
Ref. [32] for mπ = 138 MeV. For physical values of the pion
mass, this is not expected to change the qualitative behavior
of the model. As we pointed out in the Introduction, however,
the effect of the fermion vacuum loop could actually play
an important role, changing the order of the transition in the
chiral limit at µ = 0 from first to second order [19]. These
contributions are taken into account in the NJL model, where
they are responsible of the dynamical breaking of the chiral
symmetry.

Using the result in Eq. (2.12) we can now write an effective
Lagrangian that includes only the mesonic degrees of freedom

L = 1
2 (∂µπ)2 + 1

2 (∂µσ )2 − Ueff(σ,π ), (2.13)

where

Ueff(σ,π ) = U (σ,π ) − T

V
ln Zqq(σ,π ). (2.14)

The Euler-Lagrange equations then read

∂µ∂µσ + ∂Ueff(σ,π )

∂σ
= 0,

∂µ∂µπi + ∂Ueff(σ,π )

∂πi

= 0, i = 1, 2, 3. (2.15)

We now proceed to linearize the mesonic action by taking
the average 〈· · ·〉 of the equations of motion over the field
fluctuations. First we decompose, as before, the σ field as
σ = v + 	 where v = 〈σ 〉 and 	 is the fluctuation. Of course,
〈	n〉 = 0 when n is odd, and the same is true for 〈πn〉.
Therefore, since the pion fluctuations always occur as π2,
the average 〈∂Ueff/∂πi〉 = 0, whereas from the first one of the
Eqs. (2.15) we get the condition for the condensate〈

∂Ueff(v + 	,π )

∂	

〉
=

〈
∂Ueff(v + 	,π )

∂v

〉
= 0. (2.16)

The meson masses are then identified with the average of the
second derivative of the effective potential

m2
σ =

〈
∂2Ueff(v + 	,π )

∂	2

〉
, m2

π =
〈
∂2Ueff(v + 	,π )

∂π2
i

〉
,

(2.17)

and the effective potential is linearized as

Ueff(v + 	,π ) ∼ 〈Ueff(v + 	,π )〉 + 1
2m2

σ (	2 − 〈	2〉)
+ 1

2m2
π (π2 − 〈π2〉). (2.18)

The two terms 1/2m2
σ	2 and 1/2m2

ππ2 on the right-hand side
of the last equation are the mass terms to be added to the
kinetic energy in the mesonic Lagrangian to give the mesonic
partition function

Zσ ;π =
∫

DσDπ exp

{
1

2

∫ β

0
dτ

∫
V

d3x
[
(∂µπ )2 + (∂µσ )2

−m2
σ	2 − m2

ππ2
]}

= exp

[
− V

T
(�σ + �π )

]
, (2.19)

where3

�σ = T

2π2

∫
dp p2

[
1

2
βεσ + ln (1 − e−βεσ )

]
,

(2.20)

�π = 3T

2π2

∫
dp p2

[
1

2
βεπ + ln (1 − e−βεπ )

]
,

and

εσ =
√

p2 + m2
σ , επ =

√
p2 + m2

π . (2.21)

Stemming from Eq. (2.19), we have two self-consistency
relations between the meson masses and the corresponding
fluctuations

〈	2〉 = 2
∂�σ

∂m2
σ

, 〈π2〉 = 2
∂�π

∂m2
π

. (2.22)

Finally, we write the thermodynamic potential density as4

� = −T

V
ln Z

= 〈Ueff〉 − 1

2
m2

σ 〈	2〉 − 1

2
m2

π 〈π2〉 + �σ + �π. (2.23)

The average over the field fluctuations is performed by
using the techniques of Refs. [32,35,36]. Given an arbitrary
functional O(v + 	,π2) we can write the Taylor expansion
around 	 = π2 = 0 and take the average term by term

〈O(v + 	,π2)〉=
∞∑

n,k=0

∂n+kO(v + 	,π2)

∂	n∂π2k

∣∣∣∣
	=π2=0

〈
	nπ2k

n!k!

〉
.

(2.24)

By using the relation derived in Ref. [35], we then relate the
terms 〈	nπ2k〉 to powers of 〈	2〉 and 〈π2〉, i.e., 〈	n〉 = (n −
1)!!〈	2〉n/2 and 〈π2k〉 = (2k + 1)!!〈π2/3〉k , which amounts
to summing up the infinite series of daisy and superdaisy dia-
grams in the Hartree approximation. The resulting expression
turns out to be equivalent to an integration over a Gaussian
distribution [32]

〈O(v + 	,π2)〉 =
∫ ∞

0
dzPσ (z)

∫
dyy2Pπ (y)O(v + z, y2),

(2.25)

where

Pσ (z) = 1√
2π〈	2〉

exp

(
− z2

2〈	2〉
)

,

(2.26)

Pπ (y) =
√

2

π

(
3

〈π2〉
)3/2

exp

(
− 3y2

2〈π2〉
)

.

In the following, we will need to perform derivatives of the
average value of some quantities such as the thermodynamic
potential density �. After two integration by parts, using

3Also for these terms we ignore the shift in the zero point energy,
as was done in Ref. [12].

4In the following, where not needed, we will avoid writing explicitly
the dependence of the functionals on σ and π 2.
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Eqs. (2.25) and (2.26), one can obtain the following useful
relation [32]:

∂

∂α
〈O(v + 	,π2)〉 = ∂v

∂α

〈
∂O(v + 	,π2)

∂v

〉

+ 1

2

∂〈	2〉
∂α

〈
∂2O(v + 	,π2)

∂	2

〉

+ 1

2

∂〈π2〉
∂α

〈
∂2O(v + 	,π2)

∂π2
i

〉
. (2.27)

With Eq. (2.27), and Eqs. (2.16) and (2.17), it is not difficult
to see that

∂�

∂v
=

〈
∂Ueff

∂v

〉
+ 1

2

∂〈	2〉
∂v

(〈
∂2Ueff

∂	2

〉
− m2

σ

)

+1

2

∂〈π2〉
∂v

(〈
∂2Ueff

∂π2
i

〉
− m2

π

)
= 0. (2.28)

In a similar way, using the Eqs. (2.22) one can also easily show
that

∂�

∂m2
σ

= ∂�

∂m2
π

= 0. (2.29)

Equations (2.28) and (2.29) guarantee the consistency of the
approach and the standard connection between thermody-
namic and statistical mechanics [37]. The equation of state
of the system is given by the simultaneous solutions in the
variables v,mσ ,mπ of Eqs. (2.16) and (2.17), with the field
fluctuations given by Eq. (2.29). In Ref. [12] this was done
numerically, and the authors found a rich phase structure with
one or two critical points, depending on the value of vacuum
pion mass m0

π . In the next section, we will repeat the same
calculation as in Ref. [12], and we will show that another
critical point (very difficult to detect) appears in the phase
diagram.

B. The phase diagram

We now proceed and map the phase diagram of the model
for various values of the vacuum pion mass ranging from
mπ = 10 MeV to mπ = 140 MeV. As a first step, we need
to find a way to localize the first-order line(s) and the critical
end point(s). This is usually done by looking at the change in
shape of the thermodynamic potential across a transition line.

This method (which will be adopted for the NJL model in
Sec. III) allows us to see quite clearly the onset (and usually
the order) of a phase transition, but unfortunately it cannot
be used for the present analysis. Our approximation is, in
fact, based on an expansion of the thermodynamic potential
around a minimum, and our equations are defined only there,
so a different method must be employed. A typical signature
of the onset of a first-order transition is the presence of two
minima of the thermodynamic potential, corresponding to the
high- and low-temperature phases. In turn, we should see two
distinct solutions for v,mσ ,mπ at the same T and µ. The
transition happens when these two solutions have the same
potential (pressure), i.e., the point when the system switches
from one minimum to the other. For each value of µ, we solve
the system of equations starting from low temperatures (the

T (GeV)

v/
f π

mπ
0=20 MeV

µ= 0 MeV v1/fπ

v2/fπ

v/fπ

0

0.2

0.4

0.6

0.138 0.139 0.14 0.141 0.142

FIG. 1. (Color online) Condensate v (normalized to fπ ) as a
function of the temperature in the vicinity of the first-order transition
for m0

π = 20 MeV and µ = 0. The stable solution v (shown with
black markers and the dashed line) is the one that corresponds to the
highest pressure. The other two (metastable) solutions v1 and v2 are
also shown.

broken phase5) and following the line of minima increasing
the temperature by a small amount 	T at each step, using the
latest solution as the initial point for the solving routine. Once
we are sure to be in the high-T symmetric phase, we solve
the system of equations backward (going from high to small
T ) until we are sure to be below the transition temperature.
If the transition is continuous, we will find a unique solution
for each value of T . Conversely, if the transition is of the first
order, we will have a region where two solutions exist at the
same T .

In Fig. 1, this is shown for the condensate v around
the transition line for m0

π = 20 MeV. For this value of the
pion mass, the system undergoes a first-order transition at
T ∼ 140 MeV and µ = 0. As one can see, the solution
corresponding to the symmetry-broken phase (v1) exists at
low T and shortly above the transition temperature, whereas
the symmetric solution (v2) exists at high T and below the
transition. The actual solution (the one corresponding to the
greater pressure) is shown by black dots and the dashed line.

With this method, we now map the phase diagram of
the model in the T -µ plane. Our results are consistent with
those in Ref. [12], where the authors performed the same
calculation and found that for sufficiently small values of the
vacuum pion mass (m0

π � 50 MeV), the system has two critical
points. In Fig. 2, we plot the phase diagram of the model
in the MFA [Fig. 2(a)] and with the inclusion of mesonic
fluctuations [Fig. 2(b)]. In Fig. 2(b), we have analyzed various
values of m0

π = 10, 20, 35, 50, 140 MeV. For m0
π = 10 MeV,

the phase diagram is divided into two parts by a continuous
first-order line. For m0

π = 20 and 35 MeV, the first-order
line is interrupted by a continuous region; and for some

5Since the symmetry is explicitly broken by the vacuum pion mass,
expressions such as “symmetric phase” or “broken phase” must be
understood just as a nomenclature convention.
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FIG. 2. (Color online) Left panel: the phase diagram of the LσM
in the MFA for m0

π = 10, 100, and 140 MeV. Right panel: the phase
diagram of the LσM with the inclusion of mesonic fluctuations for
m0

π = 10, 20, 35, 50, 140 MeV.

35 < m0
π � 50 MeV, the branch at low µ disappears and we

have the usual continuous transition at low µ and first order at
high µ.

The leftmost branch of the first-order line (when it exists)
ends in a critical point. For the rightmost one, the situation
seems to be different. A closer look reveals the presence of
a double critical point. This is shown in Fig. 3(a) for m0

π =
35 MeV. As one can see, the first-order line bifurcates and
ends in two critical points, which have been labeled c2 and
c′

2. Their existence is revealed by the presence of two first-
order transitions that have been detected, as before, looking at
the double solutions of our system of equations. In Fig. 3(b),
we show the parameter v along the dashed line crossing the
two first-order lines in Fig. 3(a). As one can see, there are
two distinct solutions (which we have checked to correspond
to minima of the thermodynamic potential) for two slightly
different (∼1 MeV) values of the temperature, indicating a
double first order.
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FIG. 3. (a) Detail of the phase diagram for m0
π = 35 MeV

showing the rightmost first-order line bifurcating and ending in two
critical points. (b) Condensate v (normalized to fπ ) as a function of
the temperature for µ = 248 MeV. The plotted region corresponds
to the dashed vertical line crossing the two first-order lines in (a).
The stable solution is represented by black dots and the metastable
solutions by open circles.
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FIG. 4. Condensate v (normalized to fπ ) as a function of
temperature for µ = 249.6 MeV and m0

π = 10 MeV. Two first-order
transitions are visible at T ∼ 85.9 and T ∼ 86.2 MeV. The stable
solution is represented by black dots and the metastable solutions by
open circles.

A similar behavior can be observed for all the explored
values of the pion mass, i.e., 20, 35, 50, and 140 MeV. Also
for mπ = 10 MeV, where the transition is of the first order
everywhere, a very short branch of the the first-order line
appears around µ ∼ 250 MeV and T ∼ 86 MeV, producing
another very short branch ending in a critical point at
µ ∼ 249 MeV and T ∼ 87 MeV. The situation is qualitatively
similar to the one in Fig. 3(a) except for the fact that the
leftmost critical point c2 does not exist as the first-order line
continues until µ = 0. In Fig. 4, one can see the multiple
solutions for v, indicating the two first-order lines at T ∼ 85.9
and T ∼ 86.2 MeV, respectively. For the rightmost transition,
the discontinuity in v is very small, but its presence is proved by
the existence of the metastable solution. At present the reason
for the this unusual bifurcation of the high-µ first-order line
is not understood and requires further study. It may simply be
an artifact of the approximation (mean field plus fluctuations)
used for the treatment of the linear sigma model. However,
as we will see in the next section, despite their vicinity in the
phase diagram, the two first-order lines appear to have slightly
different qualitative features.

C. Densities and susceptibilities

We now go one step further and analyze the susceptibilities
in the LσM with the aim of characterizing the critical point(s)
by studying the fluctuations of the net-quark number density
ρq , scalar density ρs , and entropy density s in the vicinity of
the critical regions. By definition, the quark density is

ρq = T

V

∂ ln Z

∂µ
= −∂�

∂µ
. (2.30)

By using Eqs. (2.27)–(2.29), one then has

ρq = −
〈
∂Ueff

∂µ

〉
= T

V

〈
∂ ln Zqq

∂µ

〉
. (2.31)

To calculate the scalar density, it is convenient to introduce a
mass term −ηψ̄ψ for the quarks in the Lagrangian in Eq. (2.1),
where η is a fictitious bare quark mass to be set to zero
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afterward. This amounts to a thermal quark mass

m2
q = g2π2 + (gσ + η)2. (2.32)

From the partition function written as in Eq. (2.5), one then
sees that

ρs = 〈ψ̄ψ〉 = −T

V

∂ ln Z

∂η

∣∣∣∣
η=0

= ∂�

∂η

∣∣∣∣
η=0

, (2.33)

that is, as before,

ρs =
〈
∂Ueff

∂η

〉
η=0

= −T

V

〈
∂ ln Zqq

∂η

〉
η=0

. (2.34)

Unlike the quark density in Eq. (2.31), the scalar density can be
directly evaluated, once v and the meson masses are known,
without the need to solve any further integral. Indeed, from
Eq. (2.16), one gets

T

V

〈
∂ ln Zqq

∂v

〉
= λ(v2 + 3〈	2〉 + 〈π2〉 − f 2)v − H. (2.35)

Noting that

∂ ln Zqq

∂η
= ∂ ln Zqq

∂v

∂m2

∂η

(
∂m2

∂v

)−1

= 1

g

∂ ln Zqq

∂v
, (2.36)

and using Eqs. (2.34) and (2.35), we finally obtain

ρs = 1

g
[H − λ(v2 + 3〈	2〉 + 〈π2〉 − f 2)v]. (2.37)

The net-quark number density and the scalar density are the
thermodynamic variables conjugate to µ and the fictitious
quark mass η, respectively. The last density that we need
to evaluate is the the entropy density (conjugate to the
temperature T ), i.e.,

s = −∂�

∂T
=

〈
1

V
ln Zqq + T

V

∂ ln Zqq

∂T

〉
− ∂�σ

∂T
− ∂�π

∂T
.

(2.38)

In what follows, we will always assume the same number of
u and d quarks in the system. The isospin density is therefore
always vanishing for any value of T , µ, and η, and, of course,
the same is true for its derivatives with respect to these
quantities. The isospin density, therefore, does not mix with
the other degrees of freedom6 (ρq , ρs , and s) and will not be
considered in our analysis at this time.

We can now go ahead and calculate the 3 × 3 covariance
matrix as

C = T

⎛
⎜⎜⎝

∂ρq

∂µ
− ∂ρq

∂η

∂ρq

∂T

∂ρs

∂µ
− ∂ρs

∂η

∂ρs

∂T

∂s
∂µ

− ∂s
∂η

∂s
∂T

⎞
⎟⎟⎠ ≡ Cij , i, j = 1, 2, 3. (2.39)

This matrix is symmetric and can be diagonalized. We
call e1, e2, e3 the three eigenvalues of C, and u, v, z the

6Note that even though the correlations with the other densities
vanish, the isospin susceptibility (i.e. the derivative of the isospin
with respect to the isospin chemical potential) does not.

corresponding eigenvectors. Each one of the three eigenvectors
can be related to a different orthogonal combination of the three
original densities ρq , ρs , and s

ρu = u1ρq + u2ρs + u3s,

ρv = v1ρq + v2ρs + v3s,

ρz = z1ρq + z2ρs + z3s. (2.40)

These three new densities are now independent. At the critical
point, only one of them will have divergent fluctuations,
whereas the other two will remain finite. We chose, as a
convention, to order the eigenvalues from the biggest e1 to
the smallest e3. At the critical point, we then expect the first
eigenvalue, e1, to diverge. According to Eq. (2.40), the three
components of the corresponding eigenvector u = (u1, u2, u3)
will then give us the expression of the critical density in terms
of the original densities ρq , ρs , and s.

It is worth mentioning that in our analysis, the correlations
between ρq and s are positive, whereas the correlations
between ρs and s, and ρs and ρq are negative. This is because,
at the transition, the thermal contribution to the scalar density
drops from its maximum value (in the broken phase) to a very
small value (exactly zero in the chiral limit) in the symmetric
phase (see Ref. [32]), whereas both s and ρq exhibit the
opposite behavior, going from smaller values (in the broken
phase) to higher values (in the symmetric phase). Unlike s and
ρq the scalar density is, in fact, dominated by the zero-point
contributions. With their inclusion, one recovers the physically
expected behavior [32]. One must then bear in mind that the
following results are relevant for the thermal part of the model.
Our general conclusions, however, are in agreement with the
results obtained with the NJL in Sec. III where the zero-point
contributions are included.

We analyze two different values for the vacuum pion mass:
m0

π = 35 MeV (Figs. 5 and 6) and m0
π = 140 MeV (Fig. 7). We

remind the reader here that we have chosen to label with c1 the
critical end point of the leftmost first-order line (if there is any)
that starts at µ = 0 and T ∼ 140 MeV in the phase diagram.
With c2 and c′

2 we refer to the two critical end points of the
first-order line (which ultimately splits in two) that starts at
T = 0 and µ ∼ 300 MeV, c′

2 being the rightmost of the two as
in Fig. 3. As we have seen in the last section, for m0

π = 10 MeV
there is only the critical point c′

2. We will not consider that case
here, however.

We begin with c1 for m0
π = 35 MeV. In Figs. 5(a)–5(d),

we show the three diagonal components of the covariance
matrix (C11, C22, C33), and the three off-diagonal components
(C12, C13, C23) for µ = 70 and µ = 86 MeV. For µ =
70 MeV, the system undergoes a first-order phase transition at
T = 138.6 MeV, whereas for µ = 86 MeV the transition
is continuous (but still very sharp) and takes place at T =
137 MeV. In between, one finds the unusual critical point c1. By
looking at the elements of the covariance matrix for these two
values of µ, one sees that the dominant fluctuations are given
by the entropy density and the scalar density. This is shown
in Figs. 5(a) and 5(b), where the dominant diagonal terms in
the vicinity of the transition are C22 = T ∂ρs/∂η and C33 =
T ∂s/∂T . From the off-diagonal terms in Figs. 5(c) and 5(d),
one notices that the scalar and the entropy density are the most
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FIG. 5. (Color online) Panels (a) and (b): diagonal matrix ele-
ments of the covariance matrix as a function of temperature in the
vicinity of the critical point c1 for m0

π = 35 MeV and µ = 70 and µ =
86 MeV, respectively. Panels (c) and (d): off-diagonal matrix elements
of the covariance matrix as a function of the temperature in the
vicinity of the critical point c1 for m0

π = 35 MeV and µ = 70 and µ =
86 MeV, respectively. Panels (e) and (f): eigenvalues of the covariance
matrix as a function of temperature in the vicinity of the critical point
c1 for m0

π = 35 MeV and µ = 70 and µ = 86 MeV, respectively.
Panels (g) and (h): square components of the (normalized) eigenvector
corresponding to the larger eigenvalue (e1) of the covariance matrix
as a function of temperature in the vicinity of the critical point c1 for
m0

π = 35 MeV and µ = 70 and µ = 86 MeV, respectively.

strongly anticorrelated (the magnitude of C23 = T ∂ρs/∂T is
much larger than the other off-diagonal coefficients). This
fact can be observed in a more direct way by looking at
the eigenvalue e1 and the corresponding eigenvector u. In
Figs. 5(e) and 5(f), the three eigenvalues of the covariance
matrix are plotted for the same range of values of T and µ. The
largest eigenvalue e1 is the only one showing a peak (it should
actually diverge at the critical point). The eigenvector u [see
Eq. (2.40)] gives us the three components of the critical density
ρu = u1ρq + u2ρs + u3s. As one can see, from Figs. 5(g)
and 5(h), the critical density ρu is a mixture of almost solely
the scalar and the entropy density (the first component u1

does not appear in the plot, since it is always very close
to zero).

As we have already discussed, in addition to this critical
point the system exhibits two more critical points (c2 and c′

2)
in the high-µ region (see Fig. 3). The analysis of these two
points is shown in Fig. 6, where the three eigenvalues and
the square components of the eigenvector u corresponding
to e1 are plotted for µ = 243, 246, 248, and 250 MeV. For
µ = 243 MeV [Figs. 6(a) and 6(b)], the transition is continu-
ous, but one can already clearly distinguish two peaks in the
value of e1 that are associated with the two critical points.
The first one on the left (the one corresponding to c2) is very
sharp, while the other (a little bit on the right, corresponding
to c′

2) looks still like a bump. For µ = 246 MeV [Figs. 6(b)
and 6(f)], we have a first-order and a continuous transition.
The first peak on the left is now a discontinuity, whereas the
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FIG. 6. (Color online) Panels (a)–(d): eigenvalues of the co-
variance matrix as a function of temperature in the vicinity of
the critical points c2 and c′

2 for m0
π = 35 MeV and µ = 243,

246, 248, and 250 MeV. Panels (e)–(h): square components of the
(normalized) eigenvector corresponding to the larger eigenvalue (e1)
of the covariance matrix as a function of temperature in the vicinity
of the critical point c2 and c′

2 for m0
π = 35 MeV and µ = 243, 246,

248, and 250 MeV.

bump becomes sharper as the critical point c′
2 is approached.

For µ = 248 MeV, we have a double first-order line [Fig. 6(c)
and 6(g)]; and for µ = 250 MeV, the two first-order lines have
merged together to form a single transition line.

Looking at the square components of u in the lower panels
of Fig. 6 one immediately sees that the density ρq is now
playing a relevant role and its fluctuations are of the same
order as those of the scalar density.

The two critical points c2 and c′
2, indeed, show different

features. From the analysis of the diagonal matrix, one sees
(lower panels in Fig. 6) that the critical density ρu is in both
cases dominated by the entropy density. However, for point
c2 [see Figs. 6(a) and 6(e)], the scalar component is rather
small [Fig. 6(e)] and overcomes the net-quark number density
component only at a temperature immediately higher than the
one corresponding to the peak of the eigenvalue e1 [compare
to Fig. 6(a)]. For the critical point c′

2, instead, the critical
density ρu is ∼ 50% entropy density and the remnant 50%
is almost equally split between net-quark and scalar density
[see Fig. 6(f)].

The same analysis has been repeated for m0
π = 140 MeV

in Fig. 7 in the vicinity of the two critical points c2 and
c′

2 (the point c1 does not exist) for µ = 275, 277, 278, and
280 MeV. Once again, for µ = 275 MeV the transition is
continuous, whereas for µ = 277 MeV we have a first-order
and a continuous transition (corresponding to the rightmost
spike), for µ = 278 MeV we have a double first-order line,
and finally for µ = 280 MeV the two first-order lines have
merged together to form a single one. By looking at the square
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FIG. 7. (Color online) Panels (a)–(d): eigenvalues of the
covariance matrix as a function of temperature in the vicinity of
the critical points c2 and c′

2 for m0
π = 140 MeV and µ = 275,

277, 278, and 280 MeV. Panels (e)–(h): square components of the
(normalized) eigenvector corresponding to the larger eigenvalue (e1)
of the covariance matrix as a function of temperature in the vicinity
of the critical point c2 and c′

2 for m0
π = 140 MeV and µ = 275, 277,

278, and 280 MeV.

components of u (lower panels in Fig. 7), one can see that now
the fluctuations of both critical points are dominated by the
net-quark density and the entropy density. Even though in this
case the scalar density plays only a minor role, it behaves in
an even more visibly different way in the two critical points
c2 and c′

2. In Fig. 7 (panels a and e) at T = 75.8 MeV we are
very close to the critical point c2. In correspondence to this
temperature, the scalar component of the critical density u2

2 is
suddenly suppressed [this can be seen, with some difficulty,
in Fig. 7(e)]. At the same time, further inspections revealed
that the correlations between ρs and ρq and the correlations
between ρs and s cross zero. Indeed, in correspondence to the
leftmost critical point c2, the scalar density seems to behave
as a “spectator” of the critical phenomenon, since it does not
mix with the other densities. This is not the case for the critical
point c′

2. Even though smaller than the entropy and net-quark
number density components, the critical density now has a
nonvanishing scalar contribution [Fig. 7(f)].

Increasing the mass of the pion, the critical points c2 and c′
2

move to the right of the phase diagram toward higher values
of the chemical potential and lower temperature. As a result,
the fluctuations of the net-quark number density become more
important. In contrast, the critical point c1 (when it exists)
has only a minor component of the net-quark number density,
and the transition is dominated by the entropy density and the
scalar density, reflecting a more “chiral” behavior. This is in
part due to the fact that the critical point c1 exists only when
the vacuum pion mass is small, i.e., when the chiral symmetry
is only slightly (explicitly) broken.

III. THE NAMBU–JONA-LASINIO MODEL

Let us now consider the standard version of the two-flavor
NJL model which is described by [38]

L = ψ̄[iγµ∂µ − mc]ψ + G[(ψ̄ψ)2 + (ψ̄iγ5τψ)2], (3.1)

where ψ (a sum over flavors and color degrees of freedom
is implicit) represents a flavor isodoublet (u and d type
of quarks) Nc-plet quark fields, while τ are isospin Pauli
matrices. The Lagrangian density (3.1) is invariant under
(global) U(2)f × SU(Nc) and, when mc = 0, the theory is
also invariant under chiral SU(2)V × SU(2)A × U(1)V groups.
Note that, as emphasized in Refs. [31,39], the introduction of
a vector interaction term of the form (ψ̄γ νψ)2 in Eq. (3.1)
is also allowed by the chiral symmetry, and such a term can
become important at finite densities, generating a saturation
mechanism depending on the vector coupling strength that
provides better matter stability. Regarding analytic nonpertur-
bative evaluations, one can consider one-loop contributions
dressed up by a fermionic propagator, whose effective mass
is determined in a self-consistent way. This approximation
is known under different names, e.g., Hartree, large-Nc, or
mean-field approximations. To obtain the effective potential
(or Landau free energy density) for the quarks, Ueff , it is
convenient to consider the bosonized version of the NJL, which
is easily obtained by introducing auxiliary fields (σ,π ) through
a Hubbard-Stratonovich transformation. Then, to introduce the
auxiliary bosonic fields and to render our results more suitable
to compare with the large-Nc approximation, it is convenient to
use G → λ/(2Nc) and to formally treat Nc as a large number,
which is set to the relevant value, Nc = 3, at the end of the
evaluations. One then has

L = ψ̄(iγµ∂µ − mc)ψ − ψ̄(σ + iγ5τ ·π )ψ − Nc

2λ
(σ 2 + π2).

(3.2)

The Euler-Lagrangian equations show that σ = −(λ/Nc)ψ̄ψ

= −2Gψ̄ψ and π = −(λ/Nc)ψ̄iγ5τψ = −2Gψ̄iγ5τψ .

A. Optimized perturbation theory for the NJL model

The basic idea of the OPT method is to deform the
original Lagrangian density by adding a quadratic term such
as (1 − δ)ηψ̄ψ to the original Lagrangian density as well as
multiplying all coupling constants by δ. The new parameter
δ is just a bookkeeping label, and η represents an arbitrary
mass parameter.7 Perturbative calculations are then performed
in powers of the dummy parameter δ which is formally treated
as small and set to the original value, δ = 1, at the end.8

Therefore, the fermionic propagators are dressed by η which
may also be viewed as an infrared regulator in the case of

7Note that although we have kept the same notation, the η used here
has a completely different role than the one used previously in the
LσM.

8Recall that within the large-Nc one performs an expansion in
powers of 1/Nc where Nc is formally treated as large but set to
the original value (Nc = 3 in our case) at the end.
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massless theories. After a physical quantity, such as Ueff , is
evaluated to the order k and δ is set to unity, a residual η

dependence remains. Then, optimal nonperturbative results
can be obtained by requiring that U

(k)
eff (η) be evaluated where it

is less sensitive to variations of the arbitrary mass parameter.
This requirement translates into the criterion known as the
principle of minimal sensitivity (PMS) [40]

dUeff
(k)(η)

dη

∣∣∣∣
η̄,δ=1

= 0. (3.3)

In general, the solution to this equation implies self-consistent
relations generating a nonperturbative G dependence. In most
cases, nonperturbative 1/Nc corrections appear already at the
first nontrivial order, while the MFA results can be recovered
at any time simply by considering Nc → ∞. Finally, note that
the OPT has the same spirit as the Hartree and Hartree-Fock
approximation in which one also adds and subtracts a mass
term. However, within these two traditional approximations,
the topology of the dressing is fixed from the start: direct
(tadpole) terms for Hartree and direct plus exchange terms for
Hartree-Fock. On the other hand, within the OPT, η̄ acquires
characteristics which change order by order, progressively
incorporating direct, exchange, vertex corrections, etc., effects.
The OPT convergence within critical scalar theories has been
proved in Ref. [25], but so far, no direct proof exists for
the NJL model. Nevertheless, some important OPT results
observed in the related four-fermion theory described by the
Gross-Neveu model are encouraging for the present NJL
application. Namely, in the 1 + 1-dimensional Gross-Neveu
model, the OPT improves over the large-N approximation by
predicting smaller Tc values [41] in accordance with Landau’s
theorem for phase transitions in one space dimension, and
in 2 + 1 dimensions the OPT results point toward the Monte
Carlo estimates [26].

To implement the OPT within the NJL model, one follows
the prescription used in Refs. [26,30,41] by first interpolating
the original four-fermion version. Then, in terms of the
auxiliary fields, the deformed Lagrangian density becomes

L = ψ̄[iγµ∂µ − mc − δ(σ + iγ5τ · π )

− η(1 − δ)]ψ − δ
Nc

2λ
(σ 2 + π2), (3.4)

which shows that the Yukawa vertices have weight δ, while the
meson “propagators” are proportional to 1/δ. One is then ready
to perform a perturbative evaluation of Landau’s free energy
in powers of δ. In the σ direction, for the first nontrivial order,
the relevant contributions are represented in Fig. 8. Then, at
finite temperature and finite chemical potential, the order-δ
result for the NJL free energy density is (see Ref. [30] for a
more detailed discussion)

Ueff(σ ) = σ 2

4G
− 2NfNcI1(µ, T )

+ 2δNfNc(η + mc)(η − σ )I2(µ, T )

+ 4δGNfNc I 2
3 (µ, T )

− 2δGNfNc(η + mc)2I 2
2 (µ, T ), (3.5)

FIG. 8. Diagrams contributing to Ueff (η̂) to order δ. The thick con-
tinuous fermionic lines represent η̂ = mc + η − δ(η − σ ) dependent
terms which must be further expanded. The dashed lines represent the
σ propagator, and the π propagator is represented by dashed-dotted
line. The first contributes with 1/N0

c , the second and third diagrams
(of order δ) contribute with 1/Nc.

where we have replaced λ → 2GNc. In the above equation
we have defined, for convenience, the following basic relevant
integrals:

I1(µ, T ) =
∫

d3p

(2π )3
{ε + T ln[1 + e−(ε+µ)/T ]

+ T ln[1 + e−(ε−µ)/T ]}, (3.6)

I2(µ, T ) =
∫

d3p

(2π )3

1

ε

[
1 − 1

e(ε+µ)/T + 1
− 1

e(ε−µ)/T + 1

]
,

(3.7)

and

I3(µ, T ) =
∫

d3p

(2π )3

[
1

e(ε−µ)/T + 1
− 1

e(ε+µ)/T + 1

]
, (3.8)

where ε2 = p2 + (η + mc)2. Notice also that I3 only survives
at µ �= 0. Here, we impose a sharp noncovariant cutoff � only
for the vacuum term, since the finite temperature has a natural
cutoff in itself specified by the temperature. This choice of
regularization, which allows the Stefan-Boltzmann limit to be
reproduced at high temperatures, is sometimes preferred in the
literature [11,30,42]. Moreover, in the present application, it
ensures that the temperature integrals appearing in the LσM
and in the NJL are integrated over the same momentum range.
Also, as will be further discussed, this regularization choice
appears to be a crucial condition in order for the NJL model
to reproduce the phase diagram with two critical points.

The divergent integrals occurring at T = 0 and µ = 0 are

I1(0, 0) =
∫

d3p

(2π )3
ε

= 1

32π2

{
(η + mc)4 ln

[
[� +

√
�2 + (η + mc)2]2

(η + mc)2

]

− 2
√

�2 + (η + mc)2[2�3 + �(η + mc)2]

}
,

(3.9)

and

I2(0, 0) =
∫

d3p

(2π )3

1

ε
= 1

4π2

{
�

√
�2 + (η + mc)2

− (η + mc)2

2
ln

[
[� +

√
�2 + (η + mc)2]2

(η + mc)2

]}
.

(3.10)
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If needed, the T → 0 limit of those integrals can be readily
obtained (see Ref. [30]). Then, by applying the PMS relation
to Ueff , one gets{

[η − σ − 2(η + mc)GI2]

[
1 + (η + mc)

d

dη

]
I2

+ 4GI3
d

dη
I3

}
η=η̄

= 0. (3.11)

Notice that if one ignores the terms proportional to G (which
are of order 1/Nc), the optimal result is simply η̄ = σ . In this
situation, Eq. (3.5) shows that the MFA result is exactly repro-
duced. Since we are mainly interested in the thermodynamics,
one basic quantity of interest is the thermodynamical potential
�, whose relation to the free energy is given by � = Ueff(σ̄ ).
The order parameter σ̄ is determined from the gap equation
generated by minimizing Ueff with respect to σ . From Eq. (3.5)
we obtain [30]

σ̄ = 4GNfNc(η + mc)I2. (3.12)

To further discuss the relation of some of our results with
those obtained by Fukushima [11], it is interesting to note,
at this stage, that since σ̄ = 〈σ 〉 = −2G〈ψ̄ψ〉 = −2Gρs one
can write the optimum thermodynamical potential as

� = Gρ2
s + �MFAL(η̄) − (η̄ + 2Gρs)ρs + G

NcNf

(
ρ2

q − ρ2
s

2

)
,

(3.13)

where �MFAL(η̄) has the mathematical structure of a MFA-
like thermodynamical potential whose effective mass is given
by η̄. Since � = −P , one sees that the OPT introduces a
correction like −G/(NcNf )ρ2

q , which, although suppressed
by 1/Nc, is of the same form as the one considered by the
MFA when a vector interaction term like −GV ψ̄V γµV µψ , as
proposed in Ref. [31], is added to the original NJL Lagrangian
density. When Nc → ∞, η̄ = −2Gρs and the MFA result (for
the standard NJL model) with no ρq dependence is recovered.

B. Nonstandard parametrization and the appearance
of two critical points

Usually, the three NJL parameters, G, mc, and �, are
fixed by fitting the pion decay constant fπ = 92.4 MeV, the
quark condensate 190 � −〈ψ̄ψ〉1/3 � 260 MeV as well as the
pion mass mπ = 135 MeV, leading, in the MFA, to values
such as � = 664.3 MeV, G�2 = 2.06, and mc = 5 MeV
[39]. With these values, one obtains satisfactory predictions
for the quark vacuum effective mass m0

q and for the quark
condensate 〈ψ̄ψ〉 given by m0

q = 300MeV and −〈ψ̄ψ〉1/3 =
250.8 MeV. Although in general the noncovariant cutoff lies
within the range 500–700 MeV while mc ∼ 5 MeV, the cou-
pling can be further increased producing much higher values
for m0

q without affecting too much the G independent quark
condensate. For example, another MFA set also presented
in Ref. [39] is given by � = 568.6MeV, G�2 = 3.17, and
mc = 5.1 MeV, predicting m0

q = 600MeV > � and 〈ψ̄ψ〉 =
−247.5 MeV. As one can see, the value of m0

q doubles
while that of the observable 〈ψ̄ψ〉 remains within the bounds

190 MeV � −〈ψ̄ψ〉1/3 � 260 MeV set by sum rules [43] and
the value −〈ψ̄ψ〉1/3 � 231 MeV which corresponds to lattice
estimates [44]. Regarding applications at finite temperature
and density, one sees that also the values of the critical
temperature (at µ = 0) and of the critical chemical potential (at
T = 0) increase with G. In general, the size of the first-order
transition line, which originates at high µ(∼ m0

q) and T = 0,
increases with G approaching the T axis for very high coupling
strengths. This observation, together with the LσM results that
the appearance of two critical points becomes possible for
mπ < 50 MeV gives us the hint to use the OPT at high G and
small mc (since mπ ∝ mc) while setting � to usual values.
For consistency we must use the OPT two-loop relations for
fπ and mπ recently found in Ref. [30] and which predict
some deviations from the MFA result for the Gell–Mann-
Oakes-Renner relation. Taking � = 590 MeV, and G�2 = 3.7
with mc = 4.5 MeV, one obtains the very reasonable values
fπ � 92 MeV, mπ � 135 MeV, and −〈ψ̄ψ〉1/3 � 264 MeV.
However, now G has an extremely high value which is reflected
in the vacuum effective quark mass value, m0

q � 787 MeV.
Next, one can keep those values of � and G, decreasing mc

so as to make contact with the LσM results. For example,
mc = 0.1, 0.28, and 0.55 MeV lead to mπ = 20, 35, and
50 MeV, while fπ and 〈ψ̄ψ〉1/3 remain very stable. With
this aim, let us analyze the phase transition pattern at high
T and µ = 0 in search for a first-order transition, taking
mc = 0.1 MeV (with � = 590 MeV and G�2 = 3.7). Within
the OPT this choice predicts fπ � 92.2 MeV, mπ � 20 MeV,

and −〈ψ̄ψ〉1/3 � 263 MeV with the expected high quark mass
value, m0

q = 781 MeV. In principle, one could object to the fact
that m0

q > � (apart from having a numerical value much higher
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FIG. 9. Normalized free energy, Ueff
N (σ ) = [Ueff (σ ) −

Ueff (σ̄ )] × 10−7, as a function of σ for (µ = 0 MeV, Tc = 0.25 GeV)
(top panel) and (µ = �, Tc = 0.096 GeV) (bottom panel), showing
first-order phase transition.
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FIG. 10. ε/T 4 vs T/Tc for µ = 0, Tc = 250 MeV (top panel)
and µ = � = 590 MeV, Tc = 96 MeV (bottom panel). The
associated latent heat is 	ε = 0.3 × 10−2 GeV4 for the top panel
and 	ε = 1.72 × 10−2 GeV4 for the bottom panel. In both cases,
G�2 = 3.7 and mc = 0.1.

than 1/3 of the baryonic mass). However, the large value of G

mostly affects m0
q , which is a bare parameter apart from being

unphysical, while physical observables such as fπ , mπ , and
〈ψ̄ψ〉1/3 remain realistic.

With these unusual parameter values, one indeed obtains a
first-order transition at µ = 0 and T = 0.25 GeV, as shown by
the top panel of Fig. 9, while the usual first-order transition
is also observed at T = 0 and µc � 680MeV < m0

q starting
a line of first-order transitions, as shown by the bottom panel
of Fig. 9, which shows the degenerate minima at µ = � and
T = 0.096 GeV.

The differences in latent heat, 	ε, between the two
transitions can be further observed by looking at Fig. 10, which
shows the normalized ε/T 4 versus the dimensionless ratio
T/Tc. The values are 	ε = 0.3 × 10−2 GeV4 for µ = 0 and
T = 250 MeV and 	ε = 1.72 × 10−2 GeV4 for µ = � and
T = 96 MeV (and of course higher for T = 0, µ = 680 MeV,
but we shall refrain from numerically exploring the µ > �

region).
The situation can be also observed by analyzing the thermal

behavior of the order parameter represented by the quark
condensate v = 〈ψ̄ψ〉, which is given in Fig. 11 for µ = 0
and µ = �. This figure clearly indicates that the first order
happening at high T and vanishing µ = 0 is much softer than
the one happening in the reversed situation of small T and high
µ, a fact which is well illustrated by the three-dimensional
plot of Fig. 12, which already shows that these two first-order
transition lines are indeed separated by a crossover region at
intermediate T and µ.

This fact can be more clearly appreciated by projecting the
first-order lines of Fig. 12 on the T -µ plane as in Fig. 13.

0
Tc 0.25 GeV

0.0 0.2 0.4 0.6 0.8 1.0 1.2
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FIG. 11. Dimensionless quark condensate ratio v/v0 vs T/Tc for
µ = 0, Tc = 250 MeV (top panel) and µ = � = 590 MeV, Tc =
96 MeV (bottom panel). In both cases, G�2 = 3.7 and mc = 0.1.

This phase diagram is qualitatively very similar to the one
obtained in Fig. 2 for the LσM (as mentioned above, our
value mc = 0.1 leads to mπ = 20 MeV) and constitutes our
first important result concerning the NJL model. Namely,
that by going beyond the MFA and choosing the parameters
so as to reproduce small pion masses, one may obtain a
second critical end point in the phase diagram. In addition,
the choice of regularization procedure appears to be crucial
to the appearance of c1 in the NJL model. If one uses a
cut off also in the T dependent integrals the critical point
c1 does not emerge. However, some authors (see Ref. [42])
have recognized that a three-dimensional cutoff is only needed
at zero temperature, since the presence of high-momentum
quarks in the T -dependent Feynman loops is required to ensure
that the entropy density scales as T 3 at high temperature. Here,
we have found that in the limit of a very strong coupling and
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FIG. 12. (Color online) Dimensionless quark condensate ratio
v/v0 as a function of T/� and µ/�.
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FIG. 13. Phase diagram in the T -µ plane for mc = 0.1 MeV
(mπ � 20 MeV) and corresponding to the choice G�2 = 3.7.

small current mass, which induces high Tc(µ = 0) ∼ 0.4�,
the upper limit of the thermal integral, given by �/T , seems
to wash out important thermal contributions which induce the
rather subtle first-order transition. That is, it seems that the
appearance of a critical point at high T can only be achieved
when a regularization which reproduces the Stefan-Boltzmann
limit is adopted. On the other hand, only the T -µ plane location
of the usual critical point (small T and high µ) is influenced by
the regularization choice. In contrast, by being renormalizable,
the LσM always allows for high-momentum quarks in the T -
dependent loops. Therefore, with our regularization choice, the
temperature-dependent integrals within the NJL are treated on

c1

c2

LG
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FIG. 14. (Color online) Phase coexistence diagram in the T -
ρB/ρ0 plane, where ρB = ρ/3 is the baryonic density and ρ0 =
0.17 fm−3 is the nuclear matter density. Here, mc = 0.1 MeV,
predicting mπ � 20 MeV with the choice G�2 = 3.7. The two dark
regions denote a mixed phase with LG denoting the liquid-gas type.
The bottom panel is an expanded view of the phase coexistence region
associated with the high-T first-order transition line.

the same footing as their LσM counterparts. A comprehensive
discussion about how parameters and regularization affect
NJL has recently been carried out by Costa et al. [42].
For our parameter values, the location of c1 happens at the
point (Tc1 = 249.75 MeV, µc1 = 51.16 MeV) and of c2 at
the point (Tc2 = 149.78 MeV, µc2 = 497.55 MeV). From the
quantitative point of view, these values are high, as one would
expect from the fact that m0

q is also high. Note also how the
first-order line associated with c1 is almost parallel to the µ

axis.
The next step is to understand the physical nature of both

critical first-order lines. Our study of the susceptibilities and
densities in the LσM has revealed that the high-T small-µ
line terminating at c1 has a more “chiral” character, while
the small-T and high-µ line terminating at c2 has a more
hydrodynamical character. One can then map the T -µ points
to form a phase coexistence diagram such as the T versus
ρB/ρ0 shown in Fig. 14, where ρ0 = 0.17 fm−3 is the normal
nuclear density. The top figure shows that the coexistence
region associated with the traditional c2 point goes from T = 0
to T = 149.78 MeV, covering very high baryonic densities.
The unusual region, on the other hand, is very tiny going
from ρB = 0 to ρB = 0.85ρ0, being restricted to a very narrow
temperature range as shown by the bottom panel. The critical
points c1 and c2 are located at ρB = 0.95ρ0 and ρB = 4ρ0,
respectively.

At ρB = 0, the small coexistence region terminates into a
point located at T = 250 MeV. Both coexistence regions have
very different shapes, especially near the critical points, from
which one may expect that the associated critical exponent β,
to be evaluated later, acquires different values in each situation.
Let us now map the T -µ results into the P -ρ0/ρB plane as
shown by Fig. 15, which, again, clearly indicates that the region
associated with c2 in fact looks like the mixed liquid-gas phase
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FIG. 15. (Color online) Phase diagram in the P -ρ0/ρB plane,
where ρB = ρ/3 is the baryonic density and ρ0 = 0.17 fm−3 is the
nuclear matter density. Here mc = 0 (chiral limit), and CSB represents
the broken phase (“gas”), while CSR represents symmetric phase
(“liquid”). The long dashed line is the T = 0 isothermal, and the dark
region to its left is not accessible. The short dashed line represents the
T = 220 MeV isothermal corresponding to a crossover temperature.
The large mixed phase corresponding to the usual first-order transition
line of the liquid-gas (LG) type is labeled, the dot marks c2. The
thick continuous line at P � 0.45 GeV/fm3 represents the region
associated with the unusual line, and the dot marks c1.
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FIG. 16. (Color online) Interaction measure 	 for the critical
points c1 (top panel) and c2 (bottom panel). Chemical potentials above
and below the critical point values are also shown for reference. In
both cases, G�2 = 3.7 and mc = 0.1.

appearing in the P -V type of phase diagram for a van der Waals
fluid (which does not contain a phase analogous to the mixed
phase associated with c1).

C. Thermodynamical quantities near the critical points

The OPT result for � = −P allows us to obtain ε =
−P + T s + µρq for the NJL with the inclusion of finite 1/Nc

corrections, which makes it possible to analyze the critical
behavior near each of the two critical points. With this aim
we will numerically evaluate the following thermodynamical
quantities: the interaction measure (or trace anomaly, 	),
the equation-of-state (EOS) parameter (w = P/ε), the bulk
viscosity over entropy density (ζ/s), the quark number and
chiral susceptibilities (χq and χm) as well as some critical
exponents. Let us start by considering the interaction measure

	 = ε − 3P

T 4
, (3.14)

which is plotted in Fig. 16 for regions near c1 and c2. This
quantity is expected to peak near a phase transition or crossover
and can be helpful in locating the critical line. Figure 16
indicates that the rise near c1 looks more uniform around c2 and
happens for temperatures near Tc1 , which is not surprising since
there is little variation in T along the associated first-order
line as already emphasized. Although the peaks associated
with c2 look more pronounced, one has to recall that 	 is
normalized by 1/T 4 and that the c2 region is associated with
lower temperatures.

Next, let us investigate the EOS parameter w, as represented
by Fig. 17 for the two critical points. In both situations, one ob-
serves a downward cusp at the critical temperatures (very much
like in the case of the squared speed of sound, V 2

s = dP/dε).
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FIG. 17. (Color online) EOS parameter w = P/ε vs temperature
for the critical points c1 (continuous line, top panel) and c2

(continuous line, bottom panel). In both cases, G�2 = 3.7 and
mc = 0.1. For reference, we show the EOS parameter for µ > µc1

(dashed line, top panel) and µ < µc2 (dashed line, bottom panel).
Here, G�2 = 3.7 and mc = 0.1.

Below the critical temperature, our results show a bump which
is also observed in the usual LσM, Polyakov LσM, and lattice
studies (see Ref. [45]). For high values of T , the quantity
w = P/ε converges to approximately 1/3, as expected.

The bulk viscosity ζ is an intrinsic dynamical quantity
which, however, can be expressed in terms of the static
thermodynamical quantities derived from the free energy
as [46]

ζ = 1

9ω0

[
T 5 ∂

∂T

(ε − 3P )

T 4
+ 16|ε0|

]
, (3.15)

where ω0 is a scale which will be set to �, as in Ref. [30],
while ε0 represents the vacuum part of the energy density.
Since ζ is proportional to the specific heat Cv , the bulk
viscosity over entropy density, ζ/s, behaves as 1/V 2

s near
Tc in this approximation and peaks at the critical end points,
as indeed shown by our Fig. 18, where the divergences at
(Tc1 , µc1 ) and at (Tc2 , µc2 ) indicate that the energy density has
a sudden change at the critical points typical of a first-order
transition. For our purposes, this is an interesting quantity since
it has been pointed out that one can distinguish whether the
system experiences a first-order phase transition or a crossover
from observables which are sensitive to the bulk viscosity
in experiments like those performed at the BNL Relativistic
Heavy Ion Collider. One expects that a sharp rise of bulk
viscosity near a phase transition induces an instability in the
hydrodynamic flow of the plasma, and this mode will blow up,
tearing the system into droplets [45].

Let us now examine numerically the behavior of the quark
susceptibility χq , as well as of the chiral susceptibility χm,
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FIG. 18. (Color online) Bulk viscosity over entropy density, ζ/s,
as a function of temperature for the critical points c1 (top panel) and c2

(bottom panel). Chemical potential above and below the critical point
values are also shown for reference. Here, G�2 = 3.7 and mc = 0.1.

near the two critical points. These quantities are, respectively,
given by

χq = ∂ρq

∂µ
, (3.16)
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FIG. 19. (Color online) Normalized quark susceptibility, χq/�
2,

for the critical points c1 (top panel) and c2 (bottom panel). Chemical
potentials above and below the critical point values are also shown
for reference. Here, G�2 = 3.7 and mc = 0.1.
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FIG. 20. (Color online) Normalized chiral susceptibility, χm/�2,
for the critical points c1 (top panel) and c2 (bottom panel). Chemical
potentials above and below the critical point values are also shown
for reference. Here, G�2 = 3.7 and mc = 0.1.

and

χm = ∂ρs

∂mc

. (3.17)

Figures 19 and 20 show χq and χm, respectively, as
functions of T for relevant values of µ. As expected, one
observes that these two quantities peak for both c1 and c2.
However, for χq , the magnitude of the peak associated with
c2 seems to be much larger, while for χm the difference is
not so dramatic. In principle these results could be interpreted
as showing that the quark density ρq plays a very minor role
within c1, while ρs seems to dominate that critical point. At
the same time, the liquid-gas type of critical point, c2, seems to
receive contributions from both types of density in accordance
with our results for the LσM.

These findings can be further appreciated if one investigates
free energy in terms of the two ordering densities, ρs and ρq ,
by using the techniques of Fujii and Ohtani [47] to Legendre
transform Ueff(T ,µ,mc) to Veff(T ,µ,mc; ρs, ρq ). The result
of this type of manipulation is shown in Fig. 21 for the two
critical points c1 and c2, as well as at an intermediate point
(T = 240 MeV, µ = 150 MeV) where a crossover takes place.
The contour plots displayed by Fig. 21 indicate that c1 is indeed
dominated by the scalar interaction ρs , while the quark (vector)
density also plays an important role at c2 in accordance with
the covariance matrix results for the LσM.

Finally, the data used in the coexistence phase diagram
T -ρB allow us to evaluate the critical exponent β defined as
|ρ+

q − ρ−
q | ∝ |T − TE|β , where E represents c1 or c2, while

ρ+
q and ρ−

q represent the two corresponding densities for a
given temperature. Having the quark number susceptibility
allows the numerical evaluation of the critical exponent ε, χq ∝
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FIG. 21. (Color online) Legendre-transformed effective potential
Veff (T , µ, mc; ρs, ρq ) projected in the dimensionless plane ρ̃s-ρ̃q

plane, where ρ̃ = ρ/(106 MeV3) in both cases. The top panel shows
this quantity at c1, the middle panel shows it at T = 240 MeV, µ =
150 MeV, where a crossover takes place. The bottom panel shows the
contour plot at c2.

|µ − µE|−ε , for which one may define a chiral counterpart εm,
given by χm = |mc − m|−εm . This procedure is illustrated by
the top panel of Fig. 22, in which ε is obtained by approaching
the critical point in a path parallel to the µ axis from µ <

µc1(c2). The value ε � 0.64 for c2 is close to the one obtained
in Ref. [48] while for c1 the value is ε � 0.50. The bottom
panel of Fig. 22 shows the same procedure for εm with the
critical points being approached from the m “wing” of the
T -µ plane, with m > mc. Interestingly enough, the numerical
values get approximately inverted, when compared to ε, and
one gets εm � 0.49 for c2 and εm � 0.63 for c1. A similar type
of procedure gives β � 0.48 for c1 and β � 0.35 for c2. Having
β and ε allows us to determine δ, γ , and α using ε = 1 −
1/δ, γ = β(δ − 1), and α + 2β + γ = 2. The values for the
remaining exponents have been obtained after approximating
our numbers for β and ε by the ratios shown in Table I. Note
that although our numerical estimates are very crude, since
we do not cover many orders of magnitude nor try possible
different paths leading to the critical points, they support our
previous discussion regarding the nature of the two critical
points found in this work. In particular, the values for β listed
in Table I support the liquid-gas character of c2 [49]. For this
critical point also, the exponent ε, associated with χq , is greater
than the one for the critical point c1. Note also that the values
of α obtained by using our approximate ratios for β and ε in
the scaling relations show that α = ε for both critical points,
which is consistent with the universal arguments presented in
Refs. [10,50] since it is expected that χq and Cv should be
the same near the critical points. A detailed and highly precise
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FIG. 22. (Color online) Top panel: Logarithmic plot of the dimen-
sionless χq/�

2 as a function of 	(µ) = |µ − µc2(c1)| approached
from µ < µc2(c1). The dots correspond to c1 and the squares to c2.
Bottom panel: Same type of plot for the dimensionless χm/�2 as a
function of 	(m) = |m − mc| approached from m > mc.

determination of the associated critical exponents is beyond
the scope of the present application, and the interested reader
is referred to Refs. [10,42,48].

D. Back-bending in the µ-mc plane

It will be interesting to explicitly show that, at least
from a qualitative perspective, our model predictions can be
relevant for the lattice results obtained by de Forcrand and
Philipsen [16] who observed a shrinkage of the first-order
transition region when considering higher values of µ. For
completeness, let us also compare the OPT with the MFA
results when the model parameters are tuned so that the
latter approximation also generates a first-order transition
at µ = 0. Within the NJL model, the MFA can predict a

TABLE I. Approximate ratios for the critical exponents associated
with c1 and c2 in the NJL model. The values in parentheses are the
results which have been numerically obtained.

CEP α β γ δ ε εm

c1 1/2 1/2 (0.48) 1/2 2 1/2 (0.50) 2/3 (0.63)
c2 2/3 1/3 (0.35) 2/3 3 2/3 (0.64) 1/2 (0.49)
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FIG. 23. (Color online) µ vs mc plane showing the second-
order transition boundary (dashed lines) associated with the critical
point(s) for the NJL. The shadowed regions correspond to first-order
transitions, and the white areas represent the crossover regions. The
top panel corresponds to MFT and shows only a single first-order
branch with one critical point. The bottom panel corresponds to OPT
and shows the possibility of two first-order branches associated with
two distinct critical points. Both results are for G�2 = 3.98.

first-order transition at µ = 0 and for � = 590 MeV when the
higher coupling, G�2 = 3.98, is used with mc = 0.1 MeV.
In this case, the MFA also predicts fπ � 93 MeV, mπ �
20 MeV, and −〈ψ̄ψ〉1/3 � 263.5 MeV, and m0

q � 814 MeV
while, for the same set of parameters, the OPT pre-
dicts fπ � 90.68 MeV, mπ � 20.73 MeV, and −〈ψ̄ψ〉1/3 �
265 MeV, and m0

q � 856 MeV.
In the µ -mc plane, the NJL model then generates Fig. 23, in

which the top panel, corresponding to the MFA, shows only a
one-branch first-order line. When the OPT is applied to the NJL
with the stronger G�2 = 3.98 considered in this section, one
observes a first-order line for mc < 3.5 MeV which roughly
corresponds to mπ = 122 MeV. Starting at the point mc =
3.5 MeV, µ = 0, one may follow a second-order transition line
which goes left touching the µ axis at µ � 70 MeV and then
going up to µ � 350 MeV where it bends back to the right-
hand side for finite values of mc. The situation is illustrated by
the bottom panel of Fig. 23.

Therefore, when one goes beyond MFA, the NJL also
predicts a bending-back behavior of the critical line in a
way which is consistent with the negative curvature of the
lattice simulations of Refs. [16]. This result also supports
Fukushima’s suggestion [11] regarding the eventual back
bending. Although this author has considered the SU(3)
version of the NJL (being able to reproduce a critical surface
in the mu,d -ms-µ space) with standard parametrization, it is
interesting to note that the bending was obtained by adding
a vector interaction which generated a −GV ρ2

q contribution
to the pressure. By looking at our Eq. (3.13), one sees that

the OPT also brings a term like −G/(NcNf )ρ2
q to P = −�.

Finally, note that a back-bending behavior is also implied by
our LσM results if one considers that c2 and c′

2 almost coincide.

IV. CONCLUSIONS

In recent publications [12,13], it was shown that for small
values of the vacuum pion mass (�50 MeV) the phase diagram
of the LσM has two distinct first-order lines terminating
in two critical points. One, as predicted by most models,
starts at finite µ and T = 0, whereas the other is an unusual
first-order line which starts at high T and µ = 0. In between
the critical endpoints (whose exact location depends on the
vacuum pion mass) of these two lines, there is a crossover
transition. At the origin of this behavior, which is not observed
in the MFA, are the thermal fluctuations of the mesonic fields,
which have been taken into account adopting a self-consistent
method first proposed in Ref. [32]. Inspired by this finding,
we have performed a careful analysis of the LσM with the
aim of understanding in deeper detail the nature of the critical
points. At the same time, we have considered another popular
effective quark model, the NJL model, to investigate under
which conditions a phase diagram with at least two distinct
critical points could be reproduced.

The analysis of the LσM has been performed by using the
same method of Ref. [12], and our results agree with the ones
obtained therein: the unusual first-order line which starts at
high T and µ = 0 ending in the “new” critical point (c1) was
also found. At the same time, a closer look in the vicinity of the
“usual” critical end point revealed that, right before the end,
the first-order line that starts at finite µ and T = 0 bifurcates
into two critical end points (c2 and c′

2) separated by a few MeV
in T and µ.

In addition to the phase diagram, we have studied suscep-
tibilities and correlations of the net-quark number density, the
entropy density, and the scalar density. Our results for the
covariant matrix show that for c1 the dominant fluctuations are
given by the scalar density and the entropy density, whereas
the quark number density plays only a minor role. For the
two critical points c2 and c′

2, instead, the fluctuations of the
quark number density are also important. Their contribution
becomes larger as the vacuum pion mass is increased, probably
also due to the fact that c2 and c′

2 move toward higher values
of µ. Despite their vicinity in the phase diagram, c2 and c′

2
seem to exhibit distinct features. The main difference is the
fluctuation of the scalar density, which is more important in c′

2
than in c2.

We then considered the NJL thermodynamical potential,
recently evaluated with the OPT [30], with parameter values
which simulate small pion masses in order to generate a T -µ
phase diagram in which the existence of two critical points,
c1 and c2, separated by a crossover region has been observed.
This type of phase diagram is similar to the one found, in
the temperature-magnetic field plane, for the compressible
metamagnetic Ising model [20].

We have performed an extensive thermodynamical analysis
in order to find the essential physical features that distinguish
both critical points, concluding, in agreement with the LσM
case, that the usual one (c2) located at intermediate values of
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T and µ has a more hydrodynamical character, with the quark
number density playing an essential role. This density has little
influence at lower values of µ where the new, unusual, critical
point c1 region is dominated by the scalar density. Although
we have not considered a vector term in the version of the NJL
model considered here, it is rather interesting to note that the
OPT pressure has the term −G/(2Nf Nc)(2ρ2

q − ρ2
s ) which

by being 1/Nc suppressed does not contribute to the MFA,
which completely misses the possible existence of c1 and the
associated first-order line.

From these results, it is clear that the inclusion of con-
tributions beyond MFA can have dramatic consequences on
the phase diagram of quark models and cannot be neglected.
With the combined analysis of the LσM and the NJL model,
we have shown that the appearance of multiple critical points
is not an uncommon feature of effective quark models, even
without explicitly introducing a vector interaction as was done
in Ref. [11].

Before exporting these notions to QCD, however, some
caution is advisable. As has been very recently shown in
Ref. [19], based on the analysis of the LσM in MFA, the
inclusion of vacuum fluctuations can change the transition
in the chiral limit at µ = 0 from first to second order, so
that this model would behave as the NJL model in the same
regime. However, our results for the latter suggest that the
consideration of vacuum contributions should not influence
the appearance of the critical point c1, at least qualitatively,
when an appropriate tuning of model parameters is carried out
beyond the MFA. In the minimal version of the NJL model
considered here, c1 appears only if the coupling is larger than
usual (see discussion in Sec. III B), while a sharp cutoff is
introduced only in the divergent integrals. However, having
a large parameter space, more sophisticated versions of the
model could also allow the appearance of a critical point like
c1 while generating more plausible values for the vacuum
effective quark mass.

Concerning the other two critical points found in the LσM
(c2 and c′

2), instead, vacuum fermion loops are not expected
to modify dramatically the qualitative behavior of the model,
especially for values of the vacuum pion mass close to the
physical one [32]. The presence of c′

2 in the LσM with thermal
fluctuations, however, has not been confirmed by the OPT

analysis of the NJL model. This might be due to various reasons
including the fact that the two models have been evaluated
under different approximations, the fact that the NJL does not
have true mesonic degrees of freedom, etc. The clarification
of these points calls for further investigations.

Nevertheless, our results allow us to conclude that it is pos-
sible to use these effective models to generate metamagnetic-
like phase diagrams at the expense of using nonstandard
parameters for mc and mπ which weakly break chiral sym-
metry in approximations which go beyond the MFA. Having
two critical points, it then becomes possible to observe the
shrinkage of the first-order region, in the µ-mc(mπ ) plane, as
one considers higher values of µ so that model predictions
could be conciliated with the lattice results by de Forcrand and
Philipsen [16]. Then, as we have shown, the first-order region
should increase again, eventually intercepting the physical
mass point as argued in Ref. [13]. The chiral-like first-order
transition observed in the line associated with c1 seems to be
much softer and the coexistence regions much smaller than in
the traditional liquid-gas type of line associated with c2, which
perhaps would make it harder to be detected in lattice QCD
calculations (see, for example, Ref. [51]). Although quantities
such as the trace anomaly, EOS parameter, bulk viscosity, and
susceptibilities display the expected behavior associated with
first-order phase transitions, it seems that the different critical
points belong to distinct universality classes.
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