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Using as a tool the s-wave approximation (sWA), this work demonstrates that the nonmesonic weak decay
transition rates �n and �p can be expressed in all hypernuclei up to 29

� Si (and very likely in heavier ones too) in
the same way as in the s-shell hypernuclei, i.e., as a linear combination of only three elementary transition rates.
This finding leads to the analytic prediction that, independently of the transition mechanism, all hypernuclei that
are on the stability line (N = Z), i.e., 5

�He, 7
�Li, 9

�Be, 11
� B, 13

� C, 17
� O, 29

� Si, etc., should roughly have the same ratio
�n/�p , the magnitude of which rapidly increases when one approaches the neutron drip line (N � Z), and the
opposite happens when one goes toward the proton drip line (N � Z).
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I. INTRODUCTION

The nonmesonic weak decay (NMWD) of � hypernuclei,
�N → nN , takes place only within a nuclear environment
with the decay rate �N (N = p, n). Without producing any
additional on-shell particle (as does the mesonic weak decay
� → πN ), the mass is changed by 176 MeV, and the
strangeness by |�S| = 1, which implies the most radical
modification of an elementary particle within the nucleus.
At the same time, it offers the best opportunity to study the
strangeness-changing interaction between hadrons and is the
main decay channel for medium and heavy hypernuclei.

With the incorporation of strangeness, the radioactivity
domain is extended to three dimensions (N, Z, S), which,
because of the additional binding due to the � hyperon, is
even richer in elements than the ordinary (N, Z) domain.
(For instance, while the one-neutron separation energy in
20C is 1.01 MeV, it is 1.63 MeV in 21

� C [1].) This attribute
of hypernuclei has motivated a recent proposal to produce
neutron-rich � hypernuclei at the Japan Proton Accelerator
Research Complex (J-PARC), including 9

�He [2].1

Important experimental efforts have been invested in
hypernuclear weak physics during the last few years [5–16].
The correlative theoretical advances in our knowledge of the
NMWD have been also quite significant [17–49]. For recent
review articles, see Refs. [50–53]. The ratio �n/p ≡ �n/�p,
together with the asymmetry parameter ratio a� for emission
of protons from polarized hypernuclei [37,53], has been in
the past and still is the main concern in the physics of
NMWD. For a long time, the large experimental value for the
�n/p ratio (close to unity) remained unexplained. But, recent
improved data tend to converge to ∼=0.5 [7–10], both for 5

�He
(s shell) and 12

� C (p shell), indicating similarity in the transition
mechanism.

In the meantime, the theoretical estimates of �n/p,
done within the one meson-exchange (OME) model, have
increased. For instance, Parreño and Ramos [24] have found
�n/p(5

�He) = 0.34–0.46, and �n/p(12
� C) = 0.29–0.34, when

1It is also speculated that the NMWD could have an important role
in the stability of rotating neutron stars with respect to gravitational
wave emission [3,4].

the exchanges of the complete pseudoscalar (π,K, η) and
vector (ρ, ω,K∗) meson octets are taken into account, with the
weak coupling constants obtained from soft meson theorems
and SU(6)W [17,18]. The dominant role is played by the
exchange of pion and kaon mesons, and when their effect
is combined with the direct-quark (DQ) model, the value
of the n/p ratio is increased up to 0.70 [20,23]. However,
these transition mechanisms continue to predict too large and
negative value for a�. There are two recent proposals to bring
this value into agreement with experiments by going beyond
the OME + DQ models. The first considers incorporating new
scalar-isoscalar terms induced by 2π exchanges [38]. (See also
Refs. [22,31] on the relevance of these terms.) In the second, in
addition to the model of π + 2π/ρ + 2π/σ + 2p/s + ω + K

exchanges, is introduced the axial-vector a1-meson exchange
[40].

Quite recently we have discussed the parameter a� within
the independent particle shell model (IPSM), together with
the s-wave approximation (sWA) [37]. The corollary of this
study was that, independently of the NMWD dynamics, this
observable has the same value in all hypernuclei that have
totally full proton subshells, such as 5

�He and 12
� C, and very

likely also in the remaining hypernuclei. This result is a direct
consequence of the fact that a�, same as �n/p, is a ratio of two
transition rates, which makes it, in the absence of final state
interactions (FSI), dependent purely on the dynamical features
of the NMWD.

The aim of this work is twofold. First, we establish the
link between the theoretical formalism for the NMWD of
the s-shell hypernuclei originally introduced by Block and
Dalitz [54] and the general formalism used presently for
any type of hypernuclei. Second, we show that the IPSM
framework, together with the sWA, allows us to formulate the
rates �N within the p, d, etc., shells in terms of the s-shell
nuclear matrix elements (NME). Previous research in this
direction has been done by Alberico and Garbarino [21] and by
Cohen [55].

Later on, it is demonstrated that regardless of the decay
mechanism, (i) all hypernuclei with the same number of
protons and neutrons (i.e., with Z = N) should have the
same ratio �n/p, (ii) the value of this observable increases
(decreases) as the neutron (proton) excess is enlarged, and
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(iii) simple analytic relationships exist between �n, �p, and
�n/p in different hypernuclei with the same mass number A.
The derivation of these results, same as those on the parameter
a� [37], is based on the assumption that the emission of the
nucleons N from different single-particle states is affected in a
similar way by the FSI. Then, before presenting the formalism,
it might be convenient to comment on the relationship between
the ratio �n/�p and the FSI.

The primary partial decay rates �N are in principle derivable
from the measurements of emitted nucleons n and N spectra.
These are (i) the single-nucleon spectra S(EN ), as a function
of one-nucleon kinetic energies EN , and (ii) nN coincidence
spectra S(EnN ), and S(cos θnN ), as functions of the sum of
kinetic energies EnN = En + EN , and the opening angle θnN ,
respectively. From these spectra are determined the number of
protons Np and neutrons Nn, and number of pairs Nnn and Nnp,
which are not related in a simple way with �n and �p. This
is because not all primary nucleons originated by the NMWD
are measured. In propagating within the nuclear environment,
they interact with the surrounding nucleons, and in some cases
they change their momenta and energies, some of them even
can be absorbed by the medium, and emission of additional
(secondary) nucleons can take place as well [43–48]. All these
processes represent a complicated many-body problem and
are generically designated as FSI. To describe them, while
keeping the calculations feasible, are indispensable model
assumptions, and the FSI are usually simulated by a semi-
classical model, developed by Ramos et al. [19], and called
the intranuclear cascade (INC) model. This model interrelates
the rates �n and �p with the numbers Nn, Np, Nnn, and Nnp,
and therefore, as stressed recently by Bauer and Garbarino
[47], the FSI described by the INC model should not be
included in the evaluation of decay rates �n and �p. However,
not all FSI are considered within the INC model, and which ad-
ditional FSI contribute to the NMWD spectra and decay rates,
and how and which of them should be included in the calcula-
tion are nontrivial questions. Some candidates are as follows:

(i) Short-range correlations (SRCs) acting on final
nN states; here one starts from the plane-wave approx-
imation for the outgoing nucleons and the SRCs are
incorporated a posteriori, either phenomenologically
through Jastrow-like SRC functions, or by solving the
Bethe-Goldstone equation. The first approach is used
within both nuclear matter [30,43–45] and finite nuclei
calculations [18,26–28], and the second one only in the
shell-model-type calculations [18,24,25,40].

(ii) Self-energy and vertex particle-hole corrections, and
RPA-like rescattering effects [see, for instance, di-
agrams (b)–(d) in Fig. 2 of Ref. [56]]. It is not
known whether these FSI contribute coherently or
incoherently, and it can even happen that (b) and (c)
cancel out, as do the divergences in the vertex, and
fermion self-energy corrections in the QED, because
of the Ward identity. (Something similar happens also
in the nuclear particle-phonon-coupling model.) The
first ones can be associated with the mean-field effects
on the single-particle wave functions engendered by an
energy-dependent complex optical potential [49].

(iii) Interactions of the deep-hole states (which become
highly excited states in the continuum after the NMWD)
with more complicated configurations (2h1p, 3h2p, . . . ,
collective states, etc.), which spread their transition
strengths in relatively large energy intervals [41].

There is no theoretical study in the literature on the NMWD
encompassing all aspects of the FSI. The development of a
microscopic many-body model for the FSI described by the
INC model would be also extremely welcome, and so far only
in Refs. [39,45] were the first steps taken toward this goal.
Finally, the two-body induced NMWD �NN → nNN , which
has been recently measured [15], should be also considered.2

Briefly, the issue of FSI is a tough nut to crack, and a lot of
theoretical work has to be done still, particularly in relation to
the recently measured spectra S(EN ), S(EnN ), and S(cos θnN )
[5–16], which are certainly affected by them. However, as the
purpose of the present contribution is not to make progress in
this direction, among all possible FSI, only the SRCs will be
considered here. This is done phenomenologically, and initial
�N state SRCs are included on the same footing [18,26–28]. It
is our belief that this is a fair approximation for the objectives
of the present work.

II. DECAY RATES

To derive the NMWD rate within the IPSM, we start with
the Fermi Golden Rule. For a hypernucleus, in its ground state
with spin JI and energy EJI

, decaying to (i) several states αN

in the residual nuclei with spins JF and energies EαN JF
, and

(ii) two free nucleons n and N , with momenta pn, and pN ,
kinetic energies En = p2

n/2M , and EN = p2
N/2M , and total

spin S, reads [26–28]

�N = 2π
∑

SαN JF

∫
δ
(
�αNJF

− ER − En − EN

)

× |〈pnpNS; αNJF |V |JI 〉|2 dpn

(2π )3

dpN

(2π )3
, (2.1)

where for sake of simplicity we have suppressed the mag-
netic quantum numbers. The NMWD dynamics, contained
within the weak hypernuclear transition potential V , will be
described by the OME model. The wave functions for the
kets |pnpNSMSJF MF 〉 and |JIMI 〉 are assumed to be anti-
symmetrized and normalized, and the two emitted nucleons n

and N are described by plane waves. Initial and final SRCs are
included phenomenologically at a Jastrow-like level, while the
finite nucleon size effects at the interaction vertices are gauged
by monopole form factors [18,26]. Moreover,

ER = |pn + pN |2
2M(A − 2)

= En + EN + 2 cos θnN

√
EnEN

A − 2
(2.2)

is the recoil energy of the residual nucleus, and

�αN JF
= � + EJI

− EαN JF
, (2.3)

with � = M� − M = 176 MeV, is the liberated energy.

2It also has been shown that the kinematical and nonlocal and
kinematical effects on the NMWD could be sizable [27].
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It could be convenient to perform a transformation to
the relative and c.m. (i) momenta p = (pn − pN )/2, P =
pn + pN , (ii) coordinates r = rn − rN , R = (rn + rN )/2, and
(iii) orbital angular momenta l and L. The energy conservation
is expressed as

En + EN + ER − �αN JF
= εp + εP − �αN JF

= 0, (2.4)

where

εp = p2

M
, ER = P 2

2M(A − 2)
,

(2.5)

εP = P 2

4M

A

A − 2
= A

2
ER,

are, respectively, the energies of the relative motion of the
outgoing pair, of the recoil, and of the total c.m. motion
(including the recoil).

Following the analytical developments done in Ref. [26],
the transition rate can be expressed as a function of the c.m.
momentum P :

�N = 2M

π

√
A − 2

A

∫
dP

∑
αN JF

P 2
√

P 2
�αN JF

− P 2FαNJF
(pP ),

(2.6)

with

FαNJF
(pP ) = Ĵ−2

I

∑
SλlLT J

∣∣∣∣∣
∑
jN

M(plPLλSJT; j�jNJ t�N )

×〈JI |
∣∣(a†

jN
a
†
j�

)
J

∣∣|αNJF 〉
∣∣∣∣∣
2

, (2.7)

where

P�αN JF
= 2

√
A − 2

A
�αN JF

, (2.8)

and

p = 1

2

√
A

A − 2

[
P 2

�αN JF
− P 2

]
, (2.9)

It is clear that the condition P � P�αN JF
has to be fulfilled for

each final state |αNJF 〉. Moreover,

M(plPLλSJT; j�jNJ t�N )

= 1√
2

[1 − (−)l+S+T ]OL(P )(lLλSJT|V (p)|j�jNJ t�N ),

(2.10)

where (and henceforth) the ket |), unlike |〉, indicates that the
state is not antisymmetrized,

OL(P ) =
∫

R2dRjL(PR)R0L(b/
√

2, R), (2.11)

is the overlap of the c.m. radial wave functions R0L, and
jL for the bound and outgoing particles, respectively, and
b is the harmonic oscillator size parameter. More, λ =
l + L, T ≡ {T MT ,MT = mt� + mtN }, and t�N ≡ {t� = 1/2,

mt� = −1/2, tN = 1/2,mtN }, with mtp = 1/2, and mtn = −1/2,

where we have assumed that the �N → nN interaction occurs
with the isospin change �T = 1/2. Explicitly,

|t�N ) =
{ |T = 1), for N = n

(|T = 1) − |T = 0))/
√

2, for N = p
. (2.12)

It might be pertinent to mention that the factor (A − 2)/A in
Eqs. (2.6), (2.8), and (2.9) comes from the recoil effect, which,
in the same way as the spreading of the deep-hole states, is
relevant for the NMWD spectra [41,42], but its role is of minor
importance for the total transition rates �N .

A. Independent-particle shell model

Up to now nothing has been said about the initial state
|JI 〉 and final states |αNJF 〉. Within the IPSM, the following
assumptions are made, which greatly simplify the numerical
calculations:

(i) The initial hypernuclear state is taken as a � particle
in single-particle state j� = 0s1/2 weakly coupled to an
(A − 1) nuclear core of spin JC , i.e., |JI 〉 ≡ |(JCj�)JI 〉.

(ii) When the nucleon inducing the decay is the single-
particle state jN (j ≡ nlj ), the final residual nucleus
states are |αNJF 〉 ≡ |(JCj−1

N )JF 〉.
(iii) We adopt the simplest version of the IPSM, in which all

the relevant particle states are assumed to be stationary,
and the liberated energy is

�
j

N = � + ε� + ε
j

N , (2.13)

where N = p, n, and ε are single-particle energies.
(The nonstationary version of the IPSM is discussed
in Ref. [41].)

Within this scheme, we get [26,28]

�N =
∑

j

�
j

N , �
j

N =
J=j+1/2∑
J=|j−1/2|

F
j

NJR
j

NJ , (2.14)

where the summation goes over all single-particle transition
rates �

j

N , which in turn results from the sum over the values
of J = jN + j� of products of the spectroscopic factors F

j

NJ

with the partial �n → nN transition rates Rj

NJ . For the s-
shell nuclei, the latter have the same physical meaning as the
quantities RNJ introduced in the seminal work of Block and
Dalitz [54] (see also Ref. [55]), i.e., Rs1/2

NJ ≡ RNJ .3

The spectroscopic factors F
j

NJ are defined as

F
j

NJ = ĴI
−2 ∑

JF

|〈JI ||
(
a
†
jN

a
†
j�

)
J
||JF 〉|2

(2.15)

= Ĵ 2
∑
JF

{
JC JI j�

J jN JF

}2

|〈JC ||a†
jN

||JF 〉|2,

3In order to use here the same notation for RNJ as in Ref. [54], as
well as to write Rj

NJ instead of RjN

J , the jN variable employed in
previous publications is frequently split here into j and N .
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with the notation Ĵ = √
2J + 1, while the partial transition

rates read

Rj

NJ = 2MN

π

√
A

A − 2

∫ P
j

N

0
dPP 2

√(
P

j

N

)2 − P 2

×
∑

SlLλT

|M(plPLλSJT; j�jNJ t�N )|2, (2.16)

with

P
j

N = 2

√
A − 2

A
MN�

j

N (2.17)

the maximum value of P for each jN , and

p = 1

2

√
A

A − 2

[(
P

j

N

)2 − P 2
]

(2.18)

the corresponding relative momentum.
It should be stressed that the most important virtue of

the IPSM is that the index α becomes superfluous, and the
summation on the final spins JF can be carried out without
knowing the nuclear structure of the initial and final nuclear
states. This simplifies enormously the numerical calculations.
As far as we know, the IPSM has been used to a great extent
in all previous finite nucleus evaluation of the NMWD.

B. s-wave approximation

Galeão [57] has shown that the matrix elements in Eq. (2.10)
can be cast in the form

(lLλSJT|V (p)|j�jNJ t�N )

=
∑
KS ′ l

(lSKT|V (p)|lS ′Kt�N )Cl(lLλSJ lNjN ; KS ′),

(2.19)

with

Cl(lLλSJ lNjN ; KS ′)

= (−)jN+ 1
2 +S+λl̂N λ̂ĵN Ŝ ′K̂2(0l0LlN |000lN lN )

×
{

J jN
1
2

1
2 S ′ lN

}{
L l λ

S J K

} {
L K J

S ′ lN l

}
, (2.20)

where (0 · · · | · · · lN ) are the Moshinsky brackets [58]. The
plain sWA implies that we make l = 0 in Eqs. (2.19) and
(2.20), which leads to

(lLλSJT|V (p)|j�jNJ t�N )

=
∑

K=0,1

C0(lλSJ lNjN ; K)(lSKT|V (p)|0KKt�N ),

(2.21)

with

C0(lλSJ lNjN ; K)

= K̂2λ̂ĵN (000lN lN |000lN lN )δLlN (−)jN+ 1
2 +S+λ+lN +K+J

×
{

J jN
1
2

1
2 K lN

}{
K l S

λ J lN

}
. (2.22)

In particular, for the s-shell hypernuclei,

C0(llSJ0, 1/2; K) = δJK, (2.23)

and using Eqs. (2.10) and (2.12), Eq. (2.16) becomes

Rs1/2

NJ ≡ RNJ = (1 + δnN )
2MN

π

√
A

A − 2

×
∫ PN

0
dPP 2

√
P 2

N − P 2O2
0(P )

∑
SlT

[1 − (−)l+S+T ]

× |(lSJT|V (p)|0JJT)|2, (2.24)

where PN ≡ P
s1/2

N , and

O2
0(P ) =

(
π

2

)1/2

b3e−(Pb)2/2. (2.25)

As is well known, the corresponding transition rates

�N

(3
�

H
) = 3

4RN0 + 1
4RN1,

�n

(4
�

H
) = 1

2Rn0 + 3
2Rn1, �p

(4
�

H
) = Rp0,

(2.26)
�p

(4
�

He
) = 1

2Rp0 + 3
2Rp1, �n

(4
�

He
) = Rn0,

�N

(5
�

He
) = 1

2RN0 + 3
2RN1,

with N = n, p, depend only on four single-particle transition
rates Rn0, Rn1, Rp0, and Rp1.

Here we will express the �N of heavier hypernuclei in the
same way as was done in Eq. (2.26) for the s-shell hypernuclei,
i.e., as a linear combination of RN0 and RN1 only:

�N = FN0RN0 + FN1RN1. (2.27)

To derive the generalized spectroscopic factors (GSFs) FN0

and FN1 for hypernuclei up to 29
� Si, we perform summations

over λ in Eq. (2.16) for each single-particle state j =
p3/2, p1/2, and j = d5/2. The resulting Rj

NJ turn out to be
quite similar to Eq. (2.24) for Rs1/2

NJ , except that now PN and
O0(P ) are substituted, respectively, by P

j

N and OlN (P ). Thus,
we supplement the plain sWA with the substitutions

P
j

N → PN,
(2.28)

OlN (P ) → O0(P ),

which are fair approximations for the evaluations of ratios
�n/�p and a�.4 In this way we get

Rp3/2

N1 = RN0

3
+ RN1

6
, Rp3/2

N2 = RN1

2
,

Rp1/2

N1 = RN0

6
+ RN1

3
, Rp1/2

N0 = RN1

2
, (2.29)

Rd5/2

N2 = 3RN0

20
+ RN1

10
, Rd5/2

N3 = RN1

4
,

where the numerical factors come from the summation on
λ of the squares of coefficients C0(lλSJ lNjN ; K) given by
Eq. (2.22).

4This sWA has been used in Ref. [37] to relate the matrix ele-
ments M(plPLλSJT; j�jN = 0p3/2, J t�N ), and (plSJT|V |l = 0,

JJ t�N ) in 12
� C [see Eq. (B2) of Ref. [37]]. There are two misprints

in Eq. (B2) [37]. The correct results are M(p2, P 1, 1110; �p) =
1

2
√

6
d(p)(P 1|11), and M(p2, P 1, 2120; �p) =

√
3

2
√

10
d(p)(P 1|11).
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It could be useful to express Eq. (2.24) within the Block-
Dalitz notation [54]:

a = 〈1S0|V |1S0〉, b = 〈3P0|V |1S0〉,
c = 〈3S1|V |3S1〉, d = 〈3D1|V |3S1〉, (2.30)

e = 〈1P1|V |3S1〉, f = 〈3P1|V |3S1〉,
for the NME. Assuming the same value of single-particle
energies for protons and neutrons in the state 0s1/2, one gets
the well-known results

Rn0 = 2(a2 + b2), Rp0 = a2 + b2,
(2.31)

Rn1 = 2f 2, Rp1 = c2 + d2 + e2 + f 2,

where

a = MN

π

√
A

A − 2

∫ PN

0
dPP 2

√
P 2

N − P 2O2
0(P )a2(p),

(2.32)

and similarly for b, . . . , f . As the NME depends very weakly
on the momentum p, we can compute them at p = p� ≡√

MN� [37], and write

a = J0a2(p�), etc., (2.33)

with

J0 = 2MN

π

√
A

A − 2

∫ PN

0
dPP 2

√
P 2

N − P 2O2
0(P ), (2.34)

which after performing the integration reads [59]

J0 = 2M2
N

√
2π

A − 2

A
�Nbe−zI1(z), (2.35)

where I1(z) is a modified Bessel function of the first kind, and

z = �NMNb2 A − 2

A
. (2.36)

Using the asymptotic form of I1(z) [I1(z) ∼= ez/
√

2πz],
one gets

J0 = 2
√

M3
N�N � 2MNp�, (2.37)

which is the same result as that derived previously in Ref. [37],
where the recoil effect was not considered. Therefore one sees
that after performing the integration in Eq. (2.32), this effect
is totally washed out from the transition rates.

To evaluate the �N from Eq. (2.14), as well as to derive the
GSFs in Eq. (2.27), we need to know the spectroscopic factors
F

j

NJ given by Eq. (2.15). These, in turn, depend on the angular
momenta JC and JI , which are fixed from the experimental
data and are exhibited in Table I. The F

j

NJ values for most of
the hypernuclei discussed here are listed in Table I of Ref. [28].
The remaining can be easily inferred from this table, except for
the p-wave ones in 7

�Li (F
p3/2

N1 = 5/8, and F
p3/2

N2 = 3/8), and
in 9

�Be (F
p3/2

N1 = 3/4, and F
p3/2

N2 = 5/4). The resulting GSFs
FNJ are listed in Table I. It is noticeable that in the jj closed
shells the singlet to triplet ratio (FN0 : FN1) is always (1:3).

In all hypernuclei heavier than 5
�He, the contribution of the

state 0s1/2 to the total rate �N is

�s
N = 1

2RN0 + 3
2RN1, (2.38)

TABLE I. Core spins JC , initial spins JI , and generalized
spectroscopic factors FNJ within the jj coupling.

A
�Z JC, JI Fn0 Fn1 Fp0 Fp1

5
�He 0, 1

2 1/2 3/2 1/2 3/2
7
�Li 1, 1

2 17/24 43/24 17/24 43/24
9
�He 0, 1

2 1 3 1/2 3/2
9
�Be 0, 1

2 5/8 15/8 5/8 15/8
9
�C 0, 1

2 1/2 3/2 1 3
11
� B 3, 5

2 25/24 59/24 25/24 59/24
12
� C 3

2 , 1 13/12 29/12 1 3
13
� C 0, 1

2 1 3 1 3
21
� C 0, 1

2 13/8 39/8 1 3
16
� O 1

2 , 1 7/6 10/3 5/4 15/4
17
� O 0, 1

2 5/4 15/4 5/4 15/4
28
� Si 5

2 , 2 33/20 23/5 13/8 39/8
29
� Si 0, 1

2 13/8 39/8 13/8 39/8

while the contributions of the single-particle states 0p3/2,
0p1/2, etc., depend on their occupations, which, in turn, are
reflected in the values of the GSFs listed in Table I. For
instance, �

p3/2
p = �s

p and �
p3/2
n = �s

n in all hypernuclei with
Z � 6 and N � 6, respectively. In the same way, �

p1/2
p = �s

p/2
and �

p1/2
n = �s

n/2 in all hypernuclei with Z � 8 and N � 8,
respectively. The orbital 0d5/2 supplies less transition strength
than the 0s1/2 state, and it is given by

�
d5/2

N = 3
8 (RN0 + 3RN1), (2.39)

in all hypernuclei with Z � 14 or N � 14.
Several years ago, by means of the sWA, Cohen [55] arrived

at the estimate

�n/p = Rn0 + 3Rn1

Rp0 + 3Rp1
, (2.40)

for the “heavy species” of hypernuclei. From Table I, one sees,
however, that this relation is (i) strictly fulfilled only for N = Z
nuclei, i.e., 5

�He, 9
�Be, 13

� C, 17
� O, and 29

� Si, (ii) approximately
correct for hypernuclei with N ∼= Z, and (iii) totally invalid for
hypernuclei far from the stability line.

Moreover, as all hypernuclei with the same A hold the
same elementary rates (2.24), very simple relationships can be
established from Table I between their rates �p, and �n, and
ratios �n/p. For instance,

�p

(9
�

He
) = 0.8�p

(9
�

Be
) = 0.5�p

(9
�

C
)
,

�n

(9
�

He
) = 1.6�n

(9
�

Be
) = 2�n

(9
�

C
)
, (2.41)

�n/p

(9
�

He
) = 2�n/p

(9
�

Be
) = 4�n/p

(9
�

C
)
.

These and similar results for other values of A are very likely
independent of both the decay mechanism and the final-state
interactions.

Detailed calculations of Refs. [18,25,26] have proved
that the contribution of the p partial wave to NMWD in
p-shell hypernuclei, as well as in heavy-mass systems, is
relatively small (�10%). In particular, Itonaga et al. [25]
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have explored the decay rates �n and �p in hypernuclei
from A = 4 up to A = 209, establishing that the p-wave
contributions to the calculated total one-nucleon induced decay
rates �nm = �p + �n and ratios �n/p are only a few percent of
the respective s-wave contributions (see Fig. 9 of Ref. [25]).
They have attributed this finding to the short range of the decay
interaction. In fact, it is well known that the ranges of the radial
pieces v(r) of the OME potentials are inversely proportional
to the meson masses (see Figs. 3–5 in Ref. [25]), the largest
inverse mass being that of the pion (m−1

π = 1.4 fm). Then,
when one analyzes the radial matrix element in Eq. (2.19),
which reads [see Eq. (A19) of Ref. [27]]

(pl|v(r)|0l) =
∫

r2drjl(pr)gNNv(r)gN�R0l(
√

2b, r),

(2.42)

where gN� and gNN are, respectively, the initial and final SRC
functions, one can see that (i) the harmonic oscillator wave
function R0l(

√
2b, r) is picked at the origin for l = 0, and

(ii) the integrand maxima for l = 1, which in principle should
be at the distance

√
2b (= 2.5 fm for 12

� C) from the origin,
is shifted even farther because of the factor r2. This, together
with the approximation (2.28) for the c.m. overlaps, makes the
s-wave radial matrix elements large compared to the p-wave
ones. Moreover, it could be worth mentioning that with the
Wood-Saxon radial wave functions, one gets analogous results
since they are quite similar to that of the harmonic oscillator,
as can be seen, for instance, from Fig. 2-22 in Ref. [60].

III. COMPARISON BETWEEN EXACT AND sWA RESULTS

For the hypernuclei of interest here, the approximated
results are confronted numerically with the full calculations in
Table II. This is done within the following framework: (a) The
NMWD dynamics is described by the π + K OME potential,
with the weak coupling constants from Refs. [18,24]. (b) The
parameter b is evaluated as in Ref. [28], i.e., b = 1/

√
h̄ωMN,

with h̄ω = 45A−1/3 − 25A−2/3 MeV. (c) The initial and final
SRC, as well as the finite nucleon size effects, are included
in the same way as in our previous works [26–28,37]. The
results displayed in Table II clearly show that the agreement
between the exact and sWA results is indeed quite satisfactory.
In fact, the differences between them are of the same order
of magnitude or smaller than that of the kinematical and
nonlocality effects discussed in Ref. [27].

A more rigorous inclusion of the strong interaction ingre-
dients on the initial and final two-body states, as done in
Refs. [24,25,40], will modify in the same way as the exact and
sWA results, without affecting the conclusions of the present
work. Namely, there is no physical reason why the mixing
between states with the same total angular momenta and
different orbital and spin angular momenta—induced by the
SRC and exhibited in Eqs. (46) and (47) of Ref. [40]—should
influence differently the exact and sWA calculations. That this
is true for the final state follows immediately from the fact
that the sWA is done only on the initial state. Thus, all the
discussion performed in Refs. [24,40] for the final-state tensor
correlation is equally valid for both calculations. The initial

TABLE II. Results for exact and sWA transition rates, evaluated,
respectively, from Eqs. (2.14) and (2.27). Those for 9

�Be are not
shown, since they fall in between those for 9

�He and 9
�C.

A
�Z Approx. �n �p �nm �n/p

5
�He Exact 0.149 0.358 0.507 0.417
7
�Li Exact 0.154 0.375 0.529 0.409

sWA 0.153 0.369 0.523 0.416
9
�He Exact 0.265 0.317 0.583 0.836

sWA 0.262 0.318 0.581 0.824
9
�C Exact 0.131 0.676 0.807 0.194

sWA 0.131 0.637 0.768 0.206
11
� B Exact 0.208 0.528 0.736 0.394

sWA 0.207 0.499 0.706 0.414
12
� C Exact 0.200 0.628 0.828 0.319

sWA 0.199 0.594 0.794 0.335
12
� C′ Exact 0.205 0.793 0.998 0.259

sWA 0.201 0.755 0.955 0.266
13
� C Exact 0.241 0.615 0.855 0.391

sWA 0.238 0.582 0.820 0.409
21
� C Exact 0.340 0.535 0.874 0.635

sWA 0.335 0.510 0.845 0.657
16
� O Exact 0.253 0.719 0.972 0.352

sWA 0.250 0.689 0.938 0.362
17
� O Exact 0.279 0.710 0.989 0.393

sWA 0.275 0.677 0.952 0.406
28
� Si Exact 0.297 0.815 1.112 0.364

sWA 0.289 0.760 1.049 0.380
29
� Si Exact 0.311 0.806 1.117 0.385

sWA 0.302 0.751 1.053 0.401

�N SRCs are less discussed in the literature. Nevertheless, it
was established that the phenomenological spin-independent
correlation function in Eq. (21) of Ref. [18], which is the same
as that used here, is a good approximation of the full correlation
function.

The sWA works very well for any other choice of the OME
potential different from the model assumption of π + K ex-
changes considered above. As one example in Table II are also

Rp1

     0.5
    0.45
     0.4

    0.35
     0.3

    0.25
     0.2

    0.15

 1.1  1.2  1.3  1.4  1.5  1.6  1.7  1.8  1.9  2

b(fm)

 120

 130

 140

 150

 160

∆ p
 (

M
eV

)

FIG. 1. (Color online) Single-particle decay rate Rp1 as a function
of the length parameter b and the liberated energy �p .
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TABLE III. s-shell single-particle decay rates RNJ scaled by a
factor of 10. The results for 9

�C and 9
�Be are not shown, since they

are the same as those for 9
�He.

A
�Z 10Rn0 10Rn1 10Rp0 10Rp1

5
�He 0.1411 0.9470 0.0705 2.3620
7
�Li 0.1310 0.8842 0.0655 2.2194
9
�He 0.1228 0.8334 0.0614 2.1026
11
� B 0.1162 0.7915 0.0581 2.0054
12
� C 0.1133 0.7732 0.0567 1.9626
13
� C 0.1107 0.7563 0.0553 1.9230
21
� C 0.0950 0.6557 0.0475 1.6845
16
� O 0.1038 0.7124 0.0519 1.8196
17
� O 0.1018 0.6997 0.0509 1.7894
28
� Si 0.0860 0.5975 0.0430 1.5441
29
� Si 0.0849 0.5905 0.0425 1.5272

shown the results for 12
� C (labelled as 12

� C′) obtained with the
full π + η + K + ρ + ω + K∗ OME potential. It is also evi-
dent that more realistic estimates of the oscillator parameter b,
as the one given by Itonaga et al. [25], would affect both
calculations in the same manner, and would yield to the same
degree of agreement between the exact and sWA results.5

One should keep in mind that in the Fermi gas model, the �

hyperon is taken to be always in a relative s state with respect
to any of the nucleons within the hypernucleus. Therefore, the
success of the sWA indirectly justifies the application of such
a model to the NMWD of finite nuclei [39].

After fixing the OME potential, all RNJ depend only on
b and �N . As an example, the dependence of Rp1 on these
two quantities is illustrated in Fig. 1. The variation of �p has
a very small effect, as can be seen from Eq. (2.37). Contrary
to this, the RNJ depend very strongly on b through the radial
wave function R00(

√
2b, r) in Eq. (2.42). The corresponding s-

shell single-particle decay rates RNJ are exhibited in Table III.
Finally, we note that by using the values listed in Tables I
and III, together with Eq. (2.27), we recover the sWA results
shown in Table II.

Table III, as well as Fig. 1, clearly show that the size
parameter b is the most important nuclear structure parameter
for the NMWD rates �n and �p, and therefore the knowledge
of its value for each individual hypernuclei could become cru-
cial in comparing the theory with experiments. However, this

5The b values used here of 1.765, 1.781, 1.838, and 1.966 fm for
11
� B, 12

� C, 16
� O, and 28

� Si do not differ much from the values reported
in Ref. [25], which are, respectively, 1.65, 1.65, 1.755, and 1.865.

has not come to pass with the ratio �n/p, which is mainly
tailored by the OME potential.

IV. CONCLUSIONS AND SUMMARY

The following conclusions can be drawn regardless of the
OME potential that is used:

(i) The sWA is sufficiently accurate for not only for qual-
itative discussions but also quantitative descriptions of
the NMWD in hypernuclei within the IPSM, when the
SRCs are described by phenomenological correlation
functions as done here.

(ii) The increase of transition rates �n, �p, and �nm, as a
function of the hypernuclear mass number, stems from
the interplay of the increase of FNJ and the decrease
of RNJ .

(iii) The ratio �n/p is almost the same for all hypernuclei
that are on the stability line (N = Z), i.e., 5

�He, 7
�Li,

11
� B, 13

� C, 17
� O, 29

� Si, etc. Moreover, it decreases when
one moves toward the proton drip line (Z > N) and
increases when one goes toward the neutron drip line
(N > Z). It diminishes, for instance, by more than
a factor of 4 when going from 9

�He to 9
�C, while

the constituent RNJ rates remain the same. It might
be somewhat surprising that �n < �p even when the
neutron number is greater than the proton number.
But, as seen from Table III, the reason for this is the
dominance of Rp1 on the other three single-particle
decay rates. This dominance, in turn, comes from the
dominance of the tensor amplitude d on the remaining
amplitudes. The only exception is 4

�H for which Rp1

does not contribute.

In summary, using as a tool the IPSM and the s-wave
approximation, we have shown that the decay rates �n and
�p can be interrelated in a very simple way in all hypernuclei
going from 5

�He up to 29
� Si. The relationships between them

are particularly simple for the hypernuclei with the same
mass number, as illustrated by Eq. (2.41) for the sequence
9
�He →9

�Be→9
�C. Results of this type are very likely valid

in general, and as such they could be exploited to study
experimentally the variations of �n, �p, and �n/p along many
similar arrays in a systematic way.
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and D. Tadić, Phys. Rev. C 66, 055209 (2002).
[27] C. Barbero, C. De Conti, A. P. Galeão, and F. Krmpotić, Nucl.
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