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up to energies W � 2.0 GeV
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Within the previously developed Dubna-Mainz-Taipei meson-exchange model, the singularity structure of the
πN scattering amplitudes has been investigated. For all partial waves up to F waves and c.m. energies up to
W ∼ 2 GeV, the T -matrix poles have been calculated by three different techniques: analytic continuation into
the complex energy plane and speed-plot and regularization method. For all four-star resonances except the
S11(1535), we find very good agreement between the analytic continuation and the regularization method. We
also find resonance poles for resonances that are not so well established, but in these cases the pole positions and
residues obtained by analytic continuation can substantially differ from the results predicted by the speed-plot
and regularization methods.
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I. INTRODUCTION

Ever since the �(1232) resonance was discovered by Fermi
and collaborators in 1952 [1–3], the excitation spectrum of the
nucleon has played a fundamental role in our understanding
of low-energy hadronic physics. The most direct evidence
for resonance structure is based on pion-nucleon elastic and
charge-exchange scattering. Because total angular momentum,
parity, and isospin are conserved within the realm of the strong
interaction, the S matrix for the reactions π + N → π ′ + N ′
may be decomposed into the partial-wave amplitudes T I

�±, with
I the isospin, � the orbital angular momentum, and the ± indi-
cating the total spin of the hadronic system, J = � ± 1

2 . Two
decades after the discovery of the �(1232), a dedicated pro-
gram at the meson factories had provided enough data to estab-
lish a rich resonance spectrum of the nucleon [4,5]. The further
partial-wave analysis was driven by studies of the Karlsruhe-
Helsinki (KH) [6,7] and Carnegie-Mellon–Berkeley (CMB)
[8,9] collaborations. In the following years, R. A. Arndt and co-
workers at Virginia Polytechnic Institute and State University
(VPI) compiled the data base SAID [10], which was later up-
dated and extended in collaboration with George Washington
University (GWU) [11,12]. The works of the CMB, KH, and
GW/VPI groups are the main sources of the nucleon resonance
listings in the Review of Particle Physics (PDG) [13].

In the most intuitive way, a resonance is an intermediate
state of target and projectile that lives longer than in a typical
scattering process. Translated into the language of scattering
theory, resonances are defined as poles of the S matrix.
Different methods were developed to derive the resonance
properties from the observables. In the 1930s it was suggested
that a Breit-Wigner function should be a good representation
for a resonance pole, and the Breit-Wigner formula for
spin-zero particles and its generalization to finite spin were
developed (see an illustrative discussion in Cottingham and
Greenwood, p. 241, in Ref. [14]). Later the discussion centered
on the rapid increase of the eigenphase shifts through 90◦ and
on the related backward looping of Argand diagrams [15].

However, Breit-Wigner parametrizations have been found
to be very model dependent. As was recently shown in the
framework of effective quantum field theory, Breit-Wigner
masses are in general field-redefinition dependent [16]. The
same model dependency also applies to electromagnetic
properties as charges, magnetic moments, transition moments,
and form factors. However, all these resonance properties are
uniquely defined at the pole of the S matrix [17].

The analytic properties of the S matrix are imposed by the
principles of unitarity and causality. Because of unitarity, each
physical channel leads to a square-root-type branch point of
the partial-wave amplitude T (W ) at the respective threshold,
with the result that T (W ) is a multivalued function in the
complex W plane. In particular, if the branch cut is taken
on the real axis to the right, a partial wave for elastic πN

scattering is described by the amplitudes T [1] on the physical
and T [2] on the unphysical sheet. The experimental amplitudes
are identified with the amplitudes above the cut, Texp(W ) =
limε→0T

[1](W + iε), with W > M + m and ε > 0. As a
consequence, the physical sheet has a discontinuity over the
real axis, along the right-hand cut M + m � W < ∞, with
M the nucleon and m the pion mass. Causality requires that
the physical sheet be free of any further singularity; the
nucleon resonances should appear as simple poles on the
unphysical sheet closest to the real axis of the physical sheet, in
agreement with Höhler’s remark [18]: “It is ‘noncontroversial
among theorists’ (see Chew [19] and the references in my
‘pole-emics,’ p. 697 in Ref. [20]) that in S-matrix theory the
effects of resonances follow from first order poles in the 2nd
sheet.” A pole on the second sheet, described by T [2](W ) ≈
rp/(Mp − W − i�p/2), will often lead to a maximum of the
experimental cross section near W = Mp. The resonance is
therefore defined by (i) its pole position in the complex c.m.
energy plane at Wp = Mp − i�p/2, with Mp the real part
of the pole position and �p the width of the resonance, and
(ii) the residue of the amplitude, rp = |rp|exp(iθp), at the
pole.
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In a more physical way, resonance is characterized by a
maximum time delay, the time passing between the arrival
of a wave packet and its departure from the collision region.
In general, a large time delay indicates the formation of an
unstable particle in the intermediate state. However, mislead-
ing effects can occur by rapid variation of backgrounds, such
as narrow cusp effects above S-wave thresholds or spurious
singularities owing to phenomenological parametrization of
form factors and cutoffs. If a resonance lives long enough, it
should decay into all energetically possible final states, unless
prevented by general selection rules. Furthermore, the pole
position derived from the data should not depend on how the
resonance is excited or decays. Whereas such resonances exist
in atomic and also in nuclear physics, some caveat is in order
for nucleon resonances. As an example, a simple classical
model of the �(1232) leads to the conclusion that the pion
stays in its orbit around the nucleon for only about 100◦ of a
full circle.

The focus of the present work is on how to extract resonance
properties from the data, that is, how do we find a pole in the
complex energy plane having at our disposal only data on the
real axis. Different pole-extraction methods have been applied
in the past. The pole positions of nucleon resonances have
often been derived from the data by the speed plot [4,21],
which is related to the time delay. The “speed” is defined
by the slope of the amplitude with energy, dT (W )/dW ,
which eliminates constant backgrounds. The “speed plot” (SP)
shows the modulus of the speed, SP(W ) = |dT (W )/dW |, and
resonances are identified with peaks in the plot. The resonance
parameters are then obtained by fitting the speed of a single
pole to the data at physical values of the energy. The idea of
the SP has been recently generalized to higher derivatives by
the “regularization method” (RM) [22]. Within a convergence
circle given by the closest neighboring singularity, the Laurent
expansion about a pole is given by the sum of T pole(W )
and a Taylor series T reg(W ). With an increasing number of
differentiations, the signature of the pole sticks out more
and more sharply, whereas more and more leading terms of
the Taylor series disappear. It goes without saying that the
differentiation of the data will fail after a few steps because
of numerical instabilities. However, the RM is an interesting
tool for studying the singularity structure of analytic models.
In particular, this method will reveal any rapid variation
owing to cusp effects and spurious singularities introduced
by phenomenological parametrizations.

Although lattice QCD (LQCD) has obtained promising
results for the masses and several resonances of the low-lying
hadrons [23–25], the large pion mass used and the quenching
approximation make it (yet) impossible to treat the resonances
as a pion-nucleon scattering state. As shown by Ref. [26]
for the N� form factors, the chiral extrapolation from the
stable � at large pion masses to the experimental pion mass
yields unexpected and rather dramatic nonanalytic effects at
the � → Nπ threshold. The very fact that lattice theory cannot
yet describe the pion-nucleon final state interaction makes it
impossible to compare the lattice data to the experimental
scattering amplitudes in a direct way. In principle, the LQCD
data should be compared to the results of effective field theories
or dynamical models which are extrapolated to the pion mass

used in LQCD. In addition to kinematical mass effects such as
shifts of branch points, the mass dependence of the coupling
constants also should be considered. As long as the pion mass is
large, mπ > mN∗ − mN , the N∗ appears as an excited bound
state. In this case the mass predicted by LQCD should be
compared to the “dressed” mass of the dynamical model, which
contains the “bare” mass and a real self-energy owing to meson
loops. In the mass region where the N∗ decays, the LQCD
calculation would provide a complex amplitude, comparable
to the scattering phases of a partial-wave expansion. Based
on the work of Lüscher [27], the width of the ρ meson [28]
and of the � resonance [29] have been recently studied. In
such a case the lattice data can be treated like experimental
amplitudes, that is, by SP or Breit-Wigner analyses. However,
as long as the LQCD pion mass lies above the physical value, an
extrapolation to the physical pion mass will still be necessary
by use of a dynamical model or an effective field theory.

In the present contribution we study the Dubna-Mainz-
Taipei (DMT) model [30] by comparing the pole parameters
resulting from analytic continuation with approximate proce-
dures such as the SP and the RM. The DMT is similar in spirit
to the work of several other collaborations [30–36] who have
studied the nucleon resonances within Lagrangian models.
The building blocks of these models are “bare” resonances
simulating quark configurations which are “dressed” by
meson-nucleon continua through the respective Lagrangians.
Compared to the partial-wave amplitudes obtained in
Refs. [8–12], the dynamical models provide a field-theoretical
description of pion-nucleon scattering by meson-baryon loops.
Therefore, the energy dependence of the DMT amplitudes is
largely determined by theoretical considerations even though
there are free parameters in the model. Another strong point
of the DMT is the fact that its predictions for electromagnetic
pion production [37–39] are in excellent agreement with the
experimental data from threshold up to the �(1232) region.
In Sec. II we give an overview of the SP, time-delay, and
regularization methods to derive the pole parameters. The
DMT model is presented in Sec. III, in particular with regard to
the definitions of resonant vs background terms, as well as form
factors and cutoffs. Our results for the resonance parameters
are reported in Sec. IV, and the different techniques to derive
these parameters are compared. We conclude with a summary
and outlook in Sec. V.

II. HOW TO FIND A RESONANCE

A. Time delay

In the framework of a potential scattering problem, reso-
nance phenomena are related to the formation and the decay
of intermediate quasistationary states. A resonance should
decay in all energetically possible final states, unless forbidden
by selection rules for a specific channel. Provided that the
interaction is of short range, resonances can be characterized
by the time delay between the arrival of a wave packet and its
departure from the collision region. In general, the time delay
shows a pronounced peak at the resonance energies. The time
delay was introduced by Eisenbud in his Ph.D. thesis [40] and
later applied to multichannel scattering theory by Smith [41].
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Following the work of Refs. [15,42–44], we define the time
delay for a single-channel scattering problem in a partial wave
as follows:

�t(W ) = Re

(
−i

1

S(W )

dS(W )

dW

)
= 2

dδ(W )

dW
, (1)

where S(W ) = exp[2iδ(W )] is the S matrix and δ(W ) the
scattering phase shift. A simple ansatz for a unitary S matrix
with a pole at Wp = Mp − i

2�p and a constant background
phase δB is given by

S(W ) = Mp + i
2�p − W

Mp − i
2�p − W

e2iδB = e2iδR (W )e2iδB , (2)

where δR(W ) = arctan[ 1
2�p/(Mp − W )] is the resonant phase.

The related T matrix T = (S − 1)/(2i) and the real matrix
K = i(1 − S)(1 + S)−1 take the forms

T (W ) =
1
2�p

Mp − i
2�p − W

e2iδB + sinδBeiδB , (3)

K(W ) =
1
2�p + (Mp − W )tanδB

Mp − W − 1
2�ptanδB

. (4)

Combining Eqs. (1) and (2), we obtain a simple form for the
time delay,

�t(W ) = �p

(W − Mp)2 + 1
4�2

p

. (5)

In this ideal case, the maximum time delay is �t(Mp) = 4/�p.
We observe that both the real (Mp) and imaginary (− 1

2�p)
parts of the pole position are determined by the time delay
(and therefore also by the scattering matrix) at real (physical)
values of the c.m. energy W .

To describe a system of coupled channels, the lifetime
matrix Q was introduced [41],

Qij (W ) = −i
dSik(W )

dW
S∗

jk(W ). (6)

The analog of the time delay for a multichannel system was
found to be the trace of Q as function of W . This trace takes
a more transparent form after diagonalization of the S matrix
[15,45],

tr[Q(W )] = 2
∑

α

dδα(W )

dW
, (7)

with δα the eigenphase shifts. However, a realistic application
of the lifetime matrix requires the knowledge of all open
channels, that is, the reactions πN → πN , πN → ππN ,
ππN → ππN , πN → ηN , and so on. As a consequence
of the Neumann-Wigner no-crossing theorem [46], individual
eigenphases have a complicated energy dependence. It is
therefore only the sum of the eigenphases that shows distinct
resonance structures. Based on this observation, it has been
recently proposed to search for resonance parameters by
studying the traces of multichannel T and K matrices [47,48].
The respective scattering matrices were constructed from
experimental data for the πN and ηN channels and models
for the two-pion channels.

B. Speed plot

The SP of a partial-wave amplitude T is defined by

SP(W ) =
∣∣∣∣dT (W )

dW

∣∣∣∣ . (8)

As was recognized by the Particle Data Group already in
the early 1970s, the SP is a convenient tool for extracting
the pole position of a resonance [5,49]. This technique was
intensively studied by Höhler, who wanted to extract resonance
parameters from the Karlsruhe-Helsinki partial-wave analysis
(KH80) [21,50]. Because the KH analysis was restricted to
elastic pion-nucleon scattering, a multichannel treatment like
the construction of the lifetime matrix was out of reach.

For a single-channel system, the time delay and the SP are
identical up to a factor of 2. In particular, the pole ansatz of
Eq. (3) leads to the speed

SP(W ) =
1
2�p

(W − Mp)2 + 1
4�2

p

. (9)

As a result, the SP shows a maximum for W = Mp, which
defines the real part of the pole position in the complex W

plane. The imaginary part of the pole position can be obtained
from the relation

SP
(
Mp ± 1

2�p

) = 1
2 SP(Mp). (10)

In practical applications, this straightforward method has to be
modified. In the vicinity of a pole, Eq. (3) can be generalized
to

T (W ) = rp

Mp − W − i
2�p

+ T reg(W ), (11)

with T reg a regular function of the energy W and rp, the
complex residue at the pole, given by

Res T (W )|W=Wp
= −|rp|eiθp . (12)

If all higher-order terms are neglected, Eq. (8) leads to the
more general speed

SP(W ) = |rp|
(W − Mp)2 + 1

4�2
p

, (13)

which is fitted to speed data obtained from the partial-
wave amplitudes in the vicinity of the maximum. The pole
parameters Mp, �p, and |rp| are then obtained from the best
fit to the selected speed points. Finally, the phase θp of the
residue is obtained from the phase of dT /dW ,

θp = arg

(
− dT

dW

∣∣∣∣
W=Mp

)
. (14)

C. Regularization method

As discussed before, the SP technique is successful if the
background under the resonance is approximately constant.
It fails if the background changes over the resonance region.
The RM extends the idea behind the SP by constructing higher
derivatives, T (N) ≡ dNT /dWN , N � 1 [22]. Let there be an
analytic function T (z) of a complex variable z with a first-order
pole at some complex point µ = x + iy. This function can be
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any of the T -matrix elements, and the variable z is identified
with the c.m. energy W to compare with the SP technique. The
described function takes the form

T (z) = r

µ − z︸ ︷︷ ︸
pole part

+
(

T (z) − r

µ − z

)
︸ ︷︷ ︸

nonpole part

, (15)

where µ and r are the position and residue of the pole. In a
sufficiently small region around the pole, the nonpole part is
a smooth analytical function. Of course, the experiment can
determine the T -matrix elements only for real values of W . To
continue T (W ) into the complex energy plane and to search
for the pole position, we construct a regular function f by
multiplying T with the factor µ − z,

f (z) = (µ − z)T (z), (16)

with f (µ) = r . In the neighborhood of the pole, the function
f can be expanded in a Taylor series. Because the scattering
matrix can be accessed for real arguments only, we construct
f (µ) from the derivatives of f taken along the real axis,

r = f (µ) =
N∑

n=0

f (n)(W )

n!
(µ − W )n + RN (W,µ). (17)

This expansion is explicitly written to order N , and RN (W,µ)
stands for the higher orders. The derivatives f (n)(W ) can be
turned in derivatives of the T matrix by use of Eq. (16), and
mathematical induction leads to the following equation:

f (n)(W ) = (µ − W )T (n)(W ) − nT (n−1)(W ). (18)

Insertion of these derivatives into Eq. (16) cancels all the terms
in the sum except for the last one,

r = T (N)(W )

N !
(µ − W )(N+1) + RN (W,µ). (19)

In the neighborhood of the pole, the remainder RN should de-
crease with increasing N . Assuming that the higher derivatives
can be neglected for a sufficiently large value of N and taking
the absolute values of both sides, we obtain an approximation
of the pole parameters at O(N ),

|rN | = |T (N)(W )|
N !

|µN − W |(N+1). (20)

On condition that the Taylor series converges and in the limit
N → ∞, rN and µN should approach the values r and µ,
respectively. In the next step, we (i) write the pole position
as a general complex number, µ = a + ib, and (ii) raise both
sides of Eq. (20) to the power of 2/(N + 1) and collect the
information about the T matrix and the pole position on the
right and left sides, respectively. The result is a parabolic
equation in W ,

(aN − W )2 + b2
N

N+1
√

|rN |2
= N+1

√
(N !)2

|T (N)(W )|2 . (21)

This equation relates the pole position (a = Mp, b = − 1
2�p)

and the absolute value of the residue, |r|, to the T -matrix
values on the real axis, as obtained from a model or an energy-
dependent partial-wave analysis of the data. Finally, the phase

of the residue is determined by

θN = arg[(−i)N+1 T (N)(Mp)]. (22)

The comparison of the preceding equations with the results of
Sec. II B shows that the SP is identical to the RM for N = 1.

The further procedure is as follows: (i) Construct the
N th derivative of the T -matrix element and the right-hand
side of Eq. (21). Note that the pole parameters are uniquely
determined by the exact knowledge of T (W ) in only three
points. However, the problem is how to choose the right points.
If the distance between the points gets too large, the influence
of other singularities may increase. If the points are too close,
numerical problems may occur. (ii) Solve Eq. (21) for the
pole parameters by either choosing various three-point sets to
evaluate the right-hand side and perform a statistic analysis of
the results or fitting the right-hand side of the equation to a
three-parameter parabolic function. In our approach we have
chosen the latter option.

In closing this section, we note that the RM does not depend
on any particular functional form of the T matrix. However, we
have to assume that (a) the N th derivative can be constructed
with a sufficient precision and (b) the pole position lies within
the circle of convergence for the Taylor expansion; that is, no
further singularities should intrude into the region between the
pole and the related resonance region on the real W axis.

D. Poles from analytic continuation

The most accurate way to determine pole positions and
residues is certainly obtained by analytic continuation into
the complex region. Because resonance poles cannot appear
on the physical sheet, we have to take a careful look at the
structure of different Riemann sheets opening at all branch
points for particle production in a coupled-channels model.
The most important particle thresholds in our energy region
below 2 GeV are ππN , π�, ηN , and ρN , with branch points
at 1178 MeV, (1350 − 50i) MeV, 1486 MeV, and (1713 −
75i) MeV, in order. In the dynamical DMT model we have
included the πN and ππN channels in all the partial waves
and the ηN channel in the S11 partial wave. However, the ππN

channel is treated in a phenomenological way, as is described
in the following section. Because the particular ansatz for the
two-pion width [Eq. (36)] contains only even powers of q2π , the
model does not give additional branch points for the two-pion
channel. This leads to a relatively simple sheet structure, and
we can easily reach the poles on the most important second
Riemann sheet (first unphysical sheet). Technically, we first
map the relevant region on this sheet by contour plots and
search for the accurate pole position by standard root-finding
routines applied to the function

h(zp) = 1

|T (zp)| = 0. (23)

Next we obtain the residue by approaching the pole along
different paths in the complex plane,

Res T (z)|zp
= lim

z→zp

(z − zp)T (z). (24)
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A word of caution is in order. If the fitted form factor
parameters, for example, �α of Eq. (32) or XR of Eq. (36),
become smaller than about 500 MeV, additional poles can
appear in the region where the resonance poles are expected.
To avoid such spurious singularities, it is very important to map
out the structure of the T matrix very precisely. Also, the SP
and regularization methods are very helpful in distinguishing
between resonance and spurious poles, because the latter ones
usually affect the T matrix at real W in a similar way as a
broad background does.

III. THE DUBNA-MAINZ-TAIPEI
MESON-EXCHANGE MODEL

The DMT πN meson-exchange model was developed
on the basis of the Taipei-Argonne πN meson-exchange
model [51–53], which describes pion-nucleon scattering up
to 400 MeV pion laboratory energy. The DMT πN model was
extended to c.m. energies W = 2.0 GeV by inclusion of higher
resonances and the ηN channel [30,54]. The model describes
well both πN phase shifts and inelasticity parameters in all the
channels up to the F waves and energies of 2 GeV [55], except
for the F17 partial wave. The DMT πN model is also a main
ingredient of the DMT dynamical model describing the photo-
and electroproduction of pions [56] up to 2 GeV. This model
gives an excellent agreement with pion production data from
threshold to the first resonance region [37,57]. In this section,
we briefly outline the ingredients of the Taipei-Argonne πN

model and then describe some relevant features of the DMT
meson-exchange coupled-channels model. For more details,
we refer readers to Refs. [30,53,54].

A. Taipei-Argonne meson-exchange π N model

The Taipei-Argonne model describes the elastic scattering
of pions and nucleons. It is based on a three-dimensional
reduction of the Bethe-Salpeter equation for an effective
Lagrangian involving π , N , �, ρ, and σ fields. Let us consider
the πN scattering,

π (q) + N (p) → π (q ′) + N (p′), (25)

where q, p, q ′, and p′ are the four-momenta of the respective
particles. The total and relative four-momenta are P = p +
q and k = pηπ (s) − qηN (s), respectively, where s = P 2 =
W 2. The dimensionless variables ηπ (s) and ηN (s) represent
a freedom in choosing a three-dimensional reduction and are
constrained by ηN + ηπ = 1.

The Bethe-Salpeter equation for πN scattering takes the
form

TπN = BπN + BπNG0TπN, (26)

where BπN is the sum of all irreducible two-particle Feynman
amplitudes and G0 the free relativistic πN propagator.
Equation (26) can be cast into the form

TπN = B̂πN + B̂πNĜ0TπN, (27)

with

B̂πN = BπN + BπN (G0 − Ĝ0)B̂πN , (28)

where Ĝ0(k; P ) is an appropriate propagator for obtaining
a three-dimensional reduction of Eq. (26). This propagator
is typically chosen to maintain the two-body unitarity by
reproducing the πN elastic cut. However, there is still a wide
range of possible propagators satisfying this constraint. We
chose the Cooper-Jennings propagator [58] because it can
satisfy the soft-pion theorems. It takes the following form in
the c.m. frame:

Ĝ0(k; s) = 1

(2π )3

δ[k0 − η̂(s	k, 	k)]√
s − √

s	k

2
√

s	k√
s + √

s	k
f (s, s	k)

× ηN (s)γ0
√

s + k/ + mN

4EN (	k)Eπ (	k)
, (29)

where EN (	k) and Eπ (	k) are the nucleon and pion energies for
three-momentum 	k;

√
s	k = EN (	k) + Eπ (	k) is the total c.m.

energy, and η̂(s, 	k) = EN (	k) − ηN (s	k)
√

s	k, with ηN (s) = (s +
m2

N − m2
π )/2s. With these relations we obtain the following

πN scattering equation:

t( 	k′, 	k; W ) = v( 	k′, 	k; W ) +
∫

d 	k′′v( 	k′, 	k′′; W )g0

× (	k′′; W )t( 	k′′, 	k; W ), (30)

where t and v are related to T (k′, k; P ) and B(k′, k; P ) by
setting k′

0 = η̂(s 	k′, 	k′) and k0 = η̂(s	k, 	k), while g is obtained
from G with k0 = 0.

The effective Lagrangian involving the π , N , σ , ρ, and
�(1232) fields takes the form

LI = f
(0)
πNN

mπ

N̄γ5γµ	τ · ∂µ 	πN − g(s)
σππmπσ (	π · 	π )

− g(v)
σππ

2mπ

σ (∂µ 	π · ∂µ 	π ) − gσNNN̄σN

− gρNNN̄

{
γµ 	ρµ + κ

ρ

V

4mN

σµν(∂µ 	ρν − ∂ν 	ρµ)

}
· 1

2
	τN

− gρππ 	ρµ · (	π × ∂µ 	π ) − gρππ

4m2
ρ

(δ − 1)(∂µ 	ρν − ∂ν 	ρµ)

· (∂µ 	π × ∂ν 	π ) + gπN�

mπ

�̄µ

[
gµν −

(
Z + 1

2

)
γ µγ ν

]
× 	T�NN · ∂ν 	π, (31)

with �µ the � field operator and 	T�N the isospin transition
operator between nucleon and �. The pseudovector πNN

coupling is dictated by the chiral symmetry.
The driving term BπN in Eq. (26) is approximated by

the tree diagrams of the interaction Lagrangian of Eq. (31),
containing direct and crossed N and � diagrams as well as the
t-channel σ - and ρ-exchange contributions.

Furthermore, the driving term v(	k, 	k′; W ) of Eq. (30) is
regularized by covariant form factors associated with each leg
α of the vertices,

Fα

(
p2

α

) =
[

n�4
α

n�4
α + (

m2
α − p2

α

)2

]n

, (32)

with pα the four-momentum and mα the mass of particle α.
n = 10 was used in Ref. [54].
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As in Refs. [59,60], the P11 phase shift is constrained by
imposing the nucleon pole condition. This treatment leads
to a proper renormalization of both nucleon mass and πNN

coupling constant. It also yields the necessary cancellation
between the repulsive nucleon pole contribution and the
attractive background, such that a reasonable fit to the πN

phase shifts in the P11 channel can be achieved.
The parameters which were allowed to vary in the fitting

procedure are products gσNNg(s)
σππ , gσNNg(v)

σππ , and gρNNgρππ ,
as well as δ for the t-channel σ and ρ exchanges, m

(0)
� , g

(0)
πN�,

and Z for the � mechanism, and the cutoff parameters �α of
the form factors given in Eq. (32). The experimental πN phase
shifts were well described up to pion laboratory energies of
400 MeV. The resulting parameters and predicted phase shifts
can be found in Ref. [53].

B. DMT meson-exchange model including ηN
channel and higher resonances

As the energy gets higher, channels like σN , ηN , π�,
and ρN , as well as nonresonant continuum of ππN states
become increasingly important, and at the same time more
and more nucleon resonances appear as intermediate states. For
simplicity, we only include the ηN channel, while enlarging the
Hilbert space to accommodate as many resonances as would
be required by the data. We assume that each contributing
bare resonance R acquires a width by coupling to πN and ηN

channels.
The full t matrix can then be written as a system of coupled

equations,

tij (W ) = vij (W ) +
∑

k

vik(W )gk(W )tkj (W ), (33)

with i and j denoting the π and η channels and W the total
c.m. energy. The potential vij is the sum of nonresonant (vB

ij )
and bare resonance (vR

ij ) terms,

vij (W ) = vB
ij (W ) + vR

ij (W ). (34)

The nonresonant term vB
ππ for the πN elastic channel is taken

as obtained in Sec. III A. In the channels involving η, the

potential vB
iη is assumed to vanish because of the small ηNN

coupling [61].
The bare resonance contribution arises from excitation and

decay of the resonance R. The matrix elements of the potential
vR

ij (W ) can be symbolically expressed by

vR
ij (q, q ′; W ) = fi(�̃i, q; W )g(0,R)

i g
(0,R)
j fj (�̃j , q

′; W )

W − M
(0)
R + i

2�2π
R (W )

,

(35)

where M
(0)
R denotes the mass of bare resonance R; q and q ′

are the pion (or η) momenta in the initial and final states; and
g

(0,R)
i/j denotes the resonance vertex couplings. �̃i stands for a

triple of cutoffs (�N,�R,�π ) defined in Eq. (32). In Eq. (35),
we have included a phenomenological term �2π

R (W ) in the
resonance propagator to account for the ππN decay channel.
Therefore, our “bare” resonance propagator already contains
a phenomenological “dressing” effect owing to the coupling
to the ππN channel. With this prescription we assume that
any further nonresonant coupling to the ππN channel can be
neglected. Following Refs. [62,63] we parametrize the two-
pion width by

�2π
R (W ) = �

2π(0)
R

(
q2π

q0

)2�+4 (
X2

R + q2
0

X2
R + q2

2π

)�+2

, (36)

where � is the pion orbital momentum, q2π = q2π (W ) the
momentum of the compound two-pion system, and �

2π(0)
R and

q0 the two-pion width and two-pion momentum at resonance
position, respectively. �

2π(0)
R and XR are considered as free

parameters. Therefore, each resonance is generally described
by six free parameters: the bare mass M

(0)
R , decay width �

2π(0)
R ,

two bare coupling constants g
(0,R)
i and g

(0,R)
j , and two cutoff

parameters �R and XR .
The generalization of the coupled-channel model to the case

of N resonances with the same quantum numbers is then given
by

vR
ij (q, q ′; W ) =

N∑
n=1

v
Rn

ij (q, q ′; W ). (37)

FIG. 1. (Color online) The pole positions for the S waves in the complex energy plane. The (red) stars show the results found by analytic
continuation; the (green) solid circles and the (blue) open circles are determined by the SP and the RM, respectively. The rectangular regions
show the range of the pole positions listed by the Particle Data Group (PDG08) [13]. The sizes of the (red) stars are proportional to |rp|/�p

and therefore a measure for the strength of the resonance poles in the πN channel.
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The solutions of the coupled-channel equations of Eq. (33),
with potentials given in Eqs. (34)–(36), were fitted to the
experimental πN phase shifts and inelasticities by variation of
the bare resonance parameters. The fit gave good agreement
with the data for all channels up to the F waves and energies
below 2 GeV [55], except for the partial wave F17 [30]. The
predictions of the DMT model for the resonance parameters
are presented in the next section.

IV. RESULTS AND DISCUSSION

In this section we present the nucleon resonance properties
as derived from the DMT model in the elastic πN channel.
The listed resonances fulfill the following criteria: (i) The
pole position is restricted by Mp � 2 GeV and �p � 0.4 GeV,
(ii) the residue is larger than about 1 MeV, and (iii) the
branching ratio for the one-pion channel is limited by
2|rp|/�p � 10%. Furthermore, the pole position obtained
by the RM has to be stable over a range of derivatives
(N values). In our previous work [30], we have also listed
pole parameters for resonances with pole positions outside of
the preceding restrictions. Most of these pole positions have
large imaginary parts and, therefore, the RM does not converge
to the analytically determined values in an acceptable way.
However, if this method—based on data at physical energies—
fails to predict the pole positions, it is also doubtful whether
the analytic continuation of the model leads to physically
significant pole positions. We may therefore assume that pole
parameters outside of the discussed restrictions are not strongly
supported by experimental data.

In the following tables and figures, we compare the exact
resonance properties, as obtained by analytic continuation
of the DMT model to the pole position, with (i) the results
obtained by the SP and the RM as well as (ii) the values listed
by PDG.

A. S waves

As reported in Ref. [54], we need four S11 resonances to
fit the πN scattering amplitude in this channel, instead of
only three resonances listed by PDG [13]. The additional
resonance S11(1880) was found to play an important role
in pion photoproduction as well [54], but was not seen in
both the πN → ηN reaction and recent measurements of η

photoproduction from the proton [64,65]. However, in the
analysis of Saghai et al. [66] on η photoproduction a new
S11 state of mass M = 1707 MeV and width � = 222 MeV
was needed to get good agreement with the data.

In our analysis we find three poles below 2 GeV (see
Fig. 1, left panel and Table I). The exact pole positions are
shown by asterisks with a size indicating the relative strength,
proportional to |rp|/�p. Furthermore, the ranges of the PDG
pole values are displayed by open boxes. The first resonance
S11(1535)∗∗∗∗ is found by both SP and RM. The second state,
the S11(1650)∗∗∗∗ is somewhat better described by RM. The
third S11 state is very weakly excited by πN scattering and not
seen by SP, whereas RM finds a nearby state. In our analysis
and many others as well, the S11 is the most problematic partial
wave owing to the inelastic η threshold and two overlapping
resonances with large residues. Whereas the real part of the
pole positions, the pole mass Mp of the four-star resonances are
exactly found, the widths �p are considerably underpredicted
by RM. The situation is even worse for the moduli of the

FIG. 2. (Color online) The pole positions for the P waves in the complex energy plane. The notation is the same as in Fig. 1.
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residues, which show a very bad convergence with order
N . Of course, the problem has been known before. A large
variation among different partial-wave analyses can be found
in the literature, which reflects itself in the large error bars
of the PDG pole parameters for the S11(1535) resonance. The
problem can be quantitatively expressed by the closeness of
nearby singularities, with distances obtained from the central
values of the PDG listing. Seen from the pole position of the
S11(1535), the nearest singularities are the η threshold and the
S11(1650) pole at distances of 89 and 145 MeV, respectively.
However, the S11(1535) pole lies 85 MeV away from the real
axis. As a consequence, the Taylor expansion of the regular
function T reg in Eq. (11) comes close to its convergence circle
if we extrapolate to the real axis. Therefore, the analytical
continuation into the complex plane is strongly recommended
instead of the extrapolation. Nevertheless, if the extrapolation
fails, also the exact pole parameters of a model have to be
taken with a grain of salt.

For the isospin 3/2 states we obtain three poles in agreement
with PDG. The first one, S31(1620)∗∗∗∗, is nicely described
by SP and perfectly described by RM. The position of the
second pole, S31(1900)∗∗, is similarly well seen by both SP
and RM. However, the modulus of the residue is strongly
underestimated.

B. P waves

For the P -wave resonances we show our results in Fig. 2
and Table II. In the P11 partial wave the DMT predicts two
poles well inside the PDG boxes. However, the second pole
lies near the lower edge of the box. The resonance parameters
of the Roper or P11(1440)∗∗∗∗ are nicely reproduced by both SP
and RM. The P11(1710)∗∗∗∗ has a very weak signal in the πN

channel. Although the RM yields a considerable improvement

over the SP, it misses the exact pole position and the phase of
the residue.

In the P13 partial wave we only find one pole below 2 GeV,
while PDG lists two states, the P13(1720)∗∗∗∗ with a large
error bar for the imaginary part and the P13(1900)∗∗, however,
with no pole position given. Our results for the P13(1720) lie
close to the PDG values, with the imaginary part near to the
lower limit of the PDG error bar. The RM reproduces the pole
parameters of the P13(1720)∗∗∗∗ quite well.

In the isospin-3/2 partial wave, we find the pole of the
P31(1910)∗∗∗∗ slightly outside the PDG box. All the pole
parameters are well described by RM.

The � resonance, P33(1232)∗∗∗∗, has, of course, the largest
strength of all the poles found by our analysis. The analytic
pole values are well described by the SP and RM techniques;
they also agree with the PDG listing. Owing to numerical
instabilities in the region of the first resonance, the RM fails
for higher-order derivatives, and therefore this method cannot
much improve on the SP result. As a result, the RM values
differ slightly from the parameters obtained by analytical
continuation. Another weakly excited P33 state is found at
higher energy, which can be related to the state P33(1600)∗∗∗
of PDG. The pole parameters of this second state converge
well within RM. The third PDG resonance shown in Fig. 2,
P33(1920)∗∗∗, appears at an energy above 2 GeV in the DMT
model.

C. D waves

In Fig. 3 and Table III we display the poles of D-wave
resonances. PDG lists three J = 3/2 states with isospin 1/2,
D13(1520)∗∗∗∗, D13(1700)∗∗∗, and D13(2080)∗∗, and the DMT
agrees very well within the reported ranges. Except for the
residue of the D13(2080), we find a perfect convergence of the

FIG. 3. (Color online) The pole positions for the D waves in the complex energy plane. The notation is the same as in Fig. 1.
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FIG. 4. (Color online) The pole positions for the F waves in the complex energy plane. The notation is the same as in Fig. 1.

RM for the pole positions and residues. The D13(1700) is a par-
ticular case, for which the SP cannot find the pole, whereas the
higher-order derivatives of the RM yield very precise results.

TABLE I. Pole positions Wp = Mp − 1
2 i�p and absolute values

of the residues |rp| at the pole, all in MeV, as well as the phases θp

of the residues for S-wave resonances. The first lines give the exact
pole positions and residues as obtained by analytic continuation of
the DMT model, the second and third lines show the values obtained
by the SP and the RM(N ), with N being the largest value for stable
derivatives. The star classification and the numerical values of the
PDG are listed in the last line.

N∗ ReWp −ImWp |rp| θp (deg)

S11(1535) 1499 39 14 −45
SP 1499 26 7 −47
RM(1) 1499 26 7 −47
**** 1510 ± 20 85 ± 40 96 ± 63 15 ± 45
S11(1650) 1631 60 35 −83
SP 1642 49 22 −74
RM(6) 1631 52 28 −119
**** 1655 ± 15 83 ± 8 55 ± 15 −75 ± 25
S11(1880) 1733 90 16 −29
SP – – – –
RM(6) 1806 83 10 −172
New
S31(1620) 1598 74 23 −98
SP 1598 69 23 −99
RM(6) 1598 75 24 −100
**** 1600 ± 10 59 ± 2 16 ± 3 −110 ± 20
S31(1900) 1774 36 3.8 −181
SP 1775 18 1.0 −166
RM(5) 1777 28 1 −157
* 1870 ± 40 90 ± 25 10 ± 3 −20 ± 40

For the D15 partial wave we find a rather simple contour
with only one resonance, D15(1675)∗∗∗∗, below 2 GeV. There
is perfect agreement among the exact DMT values, the SP and
RM extrapolations, as well as the PDG listings.

TABLE II. Pole positions and residues for P -wave resonances.
For further notation, see Table I.

N∗ ReWp −ImWp |rp| θp (deg)

P11(1440) 1371 95 50 −79
SP 1366 90 48 −87
RM(5) 1371 95 50 −78
**** 1365 ± 15 95 ± 15 46 ± 10 −100 ± 35
P11(1710) 1746 184 11 −54
SP 1721 92 5 −164
RM(6) 1756 150 11 −49
*** 1720 ± 50 115 ± 75 10 ± 4 −175 ± 35
P13(1720) 1693 136 20 −43
SP 1683 118 15 −64
RM(4) 1695 133 19 −34
**** 1675 ± 15 98 ± 40 13 ± 7 −139 ± 51
P31(1910) 1900 87 13 −116
SP 1896 68 7 −118
RM(6) 1901 87 10 −113
**** 1880 ± 30 100 ± 20 20 ± 4 −90 ± 30
P33(1232) 1212 49 49 −42
SP 1218 44 41 −35
RM(2) 1218 45 41 −35
**** 1210 ± 1 50 ± 1 53 ± 2 −47 ± 1
P33(1600) 1544 95 14 −111
SP 1509 99 25 −197
RM(5) 1546 80 11 −116
*** 1600 ± 100 150 ± 50 17 ± 4 −150 ± 30
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TABLE III. Pole positions and residues for D-wave resonances.
For further notation, see Table I.

N∗ ReWp −ImWp |rp| θp (deg)

D13(1520) 1515 60 40 −7
SP 1516 61 40 −6
RM(5) 1516 60 40 −5
**** 1510 ± 5 55 ± 5 35 ± 3 −10 ± 4
D13(1700) 1718 48 2.8 −91
SP – – – –
RM(7) 1718 49 2.9 −91
*** 1680 ± 50 50 ± 25 6 ± 3 0 ± 50
D13(2080) 1854 108 16 −97
SP 1834 108 14 −134
RM(6) 1858 105 9 −83
** 1950 ± 170 100 ± 40 27 ± 22 ∼ 0
D15(1675) 1657 66 24 −22
SP 1657 66 24 −23
RM(6) 1657 67 25 −22
**** 1660 ± 5 68 ± 6 29 ± 6 −30 ± 10
D33(1700) 1604 71 9.4 −63
SP 1609 67 9.5 −52
RM (6) 1604 71 9.9 −63
**** 1650 ± 30 100 ± 20 13 ± 3 −20 ± 25
D35(1930) 1989 140 18 −78
SP 1992 136 19 −75
RM(5) 1989 140 18 −78
*** 1900 ± 50 133 ± 48 18 ± 6 −20 ± 40

For the isospin-3/2 D-wave resonances, PDG reports
only one four-star resonance, the D33(1700)∗∗∗∗. Our analytic
results are well reproduced by SP and perfectly by RM. A
similar agreement is also found for the D35(1930)∗∗∗. Both
resonances are located very close to the PDG boxes.

D. F waves

Figure 4 and Table IV display the F -wave resonances.
The F15(1680)∗∗∗∗ is the most important resonance in the
third resonance region. The exact DMT pole parameters are
perfectly described by SP and RM. We also find a second
F15 state with a small residue |rp| ∼ 1 GeV. Because of its
location close to the real axis, this state is also well described
by SP and RM. In its vicinity, PDG reports the F15(2000)∗∗
resonance, however, with no pole parameters given. In the
F17 partial wave we cannot find a resonance by our analysis,
whereas PDG lists a F17(1990)∗∗. Our result is based on the
fact that the inclusion of a bare resonance in this partial wave
does not significantly improve the χ2 fit to the data. A similar
conclusion was obtained in Refs. [11,12].

For the isospin-3/2 resonances, we find two poles
corresponding to the states F35(1905)∗∗∗∗ and F37(1950)∗∗∗∗
reported by PDG. The pole parameters of the DMT are nicely
described by SP and RM for both these resonances. However,
our pole positions lie significantly above the PDG bounds for
the imaginary values. This disagreement is not too surprising,
because the uncertainty of a pole position rises with the
distance from the real axis. In conclusion, RM converges
well for the F -wave amplitudes, and all pole positions and

TABLE IV. Pole positions and residues for F -wave resonances.
For further notation, see Table I.

N∗ ReWp −ImWp |rp| θp (deg)

F15(1680) 1664 57 38 −26
SP 1663 57 38 −28
RM(6) 1664 58 39 −26
**** 1672 ± 8 61 ± 6 38 ± 3 −23 ± 7
F15(2000) 1919 26 1.0 15
SP 1931 31 1.3 89
RM(4) 1919 27 1.1 15
** 1807 54.5 60 −67
F17(1990) – – – –
SP – – – –
RM – – – –
** 1900 ± 30 260 ± 60 9 ± 3 −60 ± 30
F35(1905) 1760 100 10 −66
SP 1771 96 11 −47
RM(5) 1759 101 10 −66
**** 1830 ± 5 140 ± 10 25 ± 8 −50 ± 20
F37(1950) 1858 104 43 −48
SP 1860 101 44 −45
RM(5) 1859 104 44 −47
**** 1880 ± 10 140 ± 10 50 ± 7 −33 ± 8

residues are obtained in full agreement with the results of the
analytical continuation.

V. SUMMARY AND CONCLUSION

Within our previously developed DMT dynamical model,
we have investigated the pole structure of the pion-nucleon
T matrix for all S, P , D, and F partial waves in the energy
range up to the c.m. energy W = 2.0 GeV. For this purpose, the
solutions of our coupled integral equations were (i) analytically
continued to unphysical energies in the range 0 > ImW �
−200 MeV, (ii) mapped by contour plots, and (iii) searched for
poles in the regions of interest. The resulting pole positions and
residues were compared to approximate solutions as obtained
by the SP, based on the first derivative of the amplitude at
physical energies, and the recently developed RM, based on
higher derivatives.

The number and positions of the DMT poles, as found by
a newly developed analytic continuation method, are in good
agreement with the current results of PDG [13], all except
for the S11 partial waves. In particular for the S11(1535)∗∗∗∗
and S11(1650)∗∗∗∗ resonances, the DMT model yields much
smaller widths and residues than listed by PDG. Furthermore,
the model predicts an additional S11(1880) resonance.

Let us now turn to the main issue of our work: How well
can we determine a given pole structure by our knowledge of
the experimental data, that is, on the basis of the scattering
amplitudes for physical energies? For that purpose we use
our DMT amplitudes at physical energies as interpolating
functions for the single-energy partial-wave amplitudes that
were obtained from the experimental data. These numerically
differentiable functions serve as input for the SP and RM
techniques. The approximate pole positions and residues are
then compared to the exact predictions of DMT, as determined
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by analytic continuation of the integral equations. The results
for the partial waves are summarized as follows.

A. S waves

The pole structure of the resonance S11(1535)∗∗∗∗ is the
most problematic feature of our findings. Although the RM
reproduces the real parts of the pole positions (Mp), it
underpredicts the widths (�p) and the moduli of the residues
(|rp|). However, problems with this resonance appear also
in many other analyses. This is clearly visible in the large
uncertainties of the respective PDG values. The reason for the
failure is twofold: (i) The two four-star resonances overlap
substantially and (ii) the η threshold lies close to the first
resonance. The RM is based on the convergence of the Laurent
series about the pole position to extrapolate from the pole to the
data on the real axis and vice versa. However, the extrapolation
from the S11(1535) pole to the real axis involves energies close
to the convergence circle, which is determined by the distance
between pole and the η threshold. Even worse, the input for
the RM are data taken at Mp ≈ 1500 MeV, only 25 MeV above
the η threshold. This threshold enters in two ways: (i) The
inelasticity lowers both the pion-nucleon branching ratio and
the pole residue by about 50% and (ii) the η yields about half
of the total width. Both effects are strongly energy dependent
near the η threshold and contrary to the assumption of RM,
the regular part of the Laurent expansion changes rapidly
as a function of energy because of the nearby η cusp. As a
consequence, there is no convergence of the RM if applied to
the S11(1535). Already the second derivative of the amplitude
yields numerical noise with regard to the pole properties. By
comparison with the first resonance, the S11(1650)∗∗∗∗ state is
much better described by RM, although the values for the width
and the residue are not fully satisfactory, possibly because
of the mixing with the problematic S11(1535)∗∗∗∗ resonance.
In the isospin 3/2 channel, the S31(1620)∗∗∗∗ is perfectly
described, whereas the RM result for the S31(1900)∗∗ differs
in some respects from the exact solution. Of course, this weak
two-star resonance is more difficult to find, and also the PDG
lists large error bars for the pole parameters.

B. P waves

For most of the P -wave resonances, RM converges well
and yields rather precise pole parameters in the range of

four to six differentiations. Only the P11(1710)∗∗∗ results are
somewhat problematic, which is also reflected by large error
bars given by PDG. A minor irregularity is observed for the
P33(1232)∗∗∗∗. Because of some numerical instability, the RM
does not converge, and therefore the SP results cannot be
improved.

C. D and F waves

Already the SP yields quite reasonable values in most
cases, and after four to seven differentiations RM converges
to the exact values of the pole parameters. In general,
these resonances are pretty isolated and threshold effects are
suppressed for the higher partial waves. An interesting case
is the D13(1700)∗∗∗, which is not seen by SP but correctly
described by RM. Furthermore, the resonance F17(1990)∗∗
listed by PDG with a width of 260 MeV is not found by the
DMT fit to the data.

We conclude that the RM is a reliable method of extracting
the pole structure from single-channel data. In the absence of
full experimental knowledge about all of the channels, this
method can be sequentially applied to determine the pole
structure relevant for the experimentally known channels of a
multichannel system. However, the method loses its predictive
power in regions of nearby thresholds and strongly overlapping
resonances. In such cases, only an analytic continuation of the
model can fully determine the structure of the singularities.
Of course, such a model must describe the experimental
multichannel amplitudes by a “global fit” over a large energy
range. However, the RM is also useful when it falls short
because such failure signals a complicated singularity structure
of the scattering amplitude.
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