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Classical strongly coupled quark-gluon plasma. VI. Shear viscosity and self-diffusion
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We construct the Liouville operator for the SU(2) classical colored Coulomb plasma for arbitrary values of
the Coulomb coupling � = V/K , the ratio of the mean Coulomb to kinetic energy. We show that its resolvent
in the classical colored phase space obeys a hierarchy of equations. We use a free-streaming approximation
to close the hierarchy and derive an integral equation for the time-dependent structure factor. Its reduction
by projection yields hydrodynamical equations in the long-wavelength limit. We discuss the character of the
hydrodynamical modes at strong coupling. The shear viscosity is shown to exhibit a minimum at � ≈ 8 near
the liquid point. This minimum follows from the crossover between the single-particle collisional regime which
drops as 1/�5/2 and the hydrodynamical collisional regime which rises as �1/2. The self-diffusion constant drops
as 1/�3/2 irrespective of the regime. We compare our results to molecular-dynamics simulations of the SU(2)
colored Coulomb plasma. We also discuss the relevance of our results for the quantum and strongly coupled
quark-gluon plasma (sQGP).
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I. INTRODUCTION

High-temperature QCD is expected to asymptote a weakly
coupled Coulomb plasma albeit with still strong infrared
divergences. The latter causes its magnetic sector to be nonper-
turbative at all temperatures. At intermediate temperatures of
relevance to heavy-ion collider experiments, the electric sector
is believed to be strongly coupled.

Recently, Shuryak and Zahed [1] have suggested that certain
aspects of the quak-gluon plasma in range of temperatures
(1 − 3) Tc can be understood by a stronger Coulomb inter-
action causing persistent correlations in singlet and colored
channels. As a result the quark and gluon plasma is more
a liquid than a gas at intermediate temperatures. A liquid
plasma should exhibit shorter mean free paths and stronger
color dissipation, both of which are supported by the current
experiments at RHIC [2].

To help understand transport and dissipation in the strongly
coupled quark-gluon plasma, a classical model of the colored
plasma was suggested in [3]. The model consists of massive
quarks and gluons interacting via classical colored Coulomb
interactions. The color is assumed classical with all equations
of motion following from Poisson brackets. For the SU(2)
version both molecular-dynamics simulations [3] and bulk
thermodynamics [4,5] were recently presented, including
simulations of the energy loss of heavy quarks [6].

This classical model description is based on the quasipar-
ticle behavior of quarks and gluons at temperature near Tc.
Their masses in that region are in the order of 3T [7]. Therefore,
these particles can be treated classically and nonrelativistically,
which makes it possible to ignore color magnetic effects in the
following argument.

In this paper we extend our recent equilibrium analysis
of the static properties of the classical quark-gluon plasma
(cQGP), to transport. In Sec. II we discuss the classical
equations of motion in the SU(2) colored phase space and
derive the pertinent Liouville operator. In Sec. III we show
that the resolvent of the Liouville operator obeys a hierarchy

of equations in the SU(2) phase space. In Sec. IV we
derive an integral equation for the time-dependent structure
factor by introducing a nonlocal self-energy kernel in phase
space. In Sec. V we close the Liouville hierarchy through
a free-streaming approximation on the four-point resolvent
and derive the self-energy kernel in closed form. In Sec. VI
we project the self-energy kernel and the nonstatic structure
factor onto the colorless hydrodynamical phase space. In
Sec. VII we show that the sound and plasmon mode are the
leading hydrodynamical modes in the SU(2) colored Coulomb
plasma. In Sec. VIII we analyze the shear viscosity for the
transverse sound mode for arbitrary values of �. We show
that a minimum forms at � ≈ 5 at the crossover between the
hydrodynamical and single-particle regimes. In Sec. IX we
analyze self-diffusion in phase space, and derive an explicit
expression for the diffusion constant at strong coupling. Our
conclusions and prospects are in Sec. X. In Appendix A we
briefly summarize our variables in the SU(2) phase space. In
Appendix B we detail the projection method for the self-energy
kernel used in the text. In Appendix C we show that the
collisional color contribution to the Liouville operator drops
in the self-energy kernel. In Appendix D some useful aspects
of the hydrodynamical projection method are outlined.

II. COLORED LIOUVILLE OPERATOR

The canonical approach to the colored Coulomb plasma was
discussed in [3]. In brief, the Hamiltonian for a single species
of constituent quarks or gluons in the SU(2) representation is
defined as

H =
N∑
i

p2
i

2mi

+
N∑

i>j=1

Qi · Qj

|r i − rj | . (2.1)

The charge g2/4π has been omitted for simplicity of the
notation flow and will be reinserted in the pertinent physical
quantities by inspection.
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The equations of motion in phase space follows from the
classical Poisson brackets. In particular

d r i

dt
= −{H, r i} = ∂H

∂ pj

∂ r i

∂ rj

= pi

m
. (2.2)

The Newtonian equation of motion is just the colored electric
Lorentz force

d pi

dt
= −{H, pi} = −∂H

∂ rj

∂ pi

∂ pj

= Qa
i Ea

i = Fi (2.3)

with the colored electric field and potentials defined as
(a = 1, 2, 3)

Ea
i = −∇i�

a
i = −∇i

∑
j �=i

Qa
j

|r i − rj | . (2.4)

Our strongly coupled colored plasma is mostly electric
following the original assumptions in [3,8]. The equation of
motion of the color charges is

dQa
i

dt
= −{

H,Qa
i

} = −
∑
j,b

∂H

∂Qb
i

∂Qa
i

∂Qc
j

{
Qb

j ,Q
c
j

}

=
∑
j �=i

QiT
aQj

|r i − rj | (2.5)

for arbitrary color representation. For SU(2) the classical color
charge (2.5) precesses around the net colored potential �

determined by the other particles as defined in (2.4),

d Qi

dt
= (�i × Qi). (2.6)

This equation was initially derived by Wong [9]. Some aspects
of the SU(2) phase space are briefly recalled in Appendix A.

The set (2.2), (2.3), and (2.5) define the canonical evolution
in phase space. The time-dependent phase distribution is
formally given by

f (t, r p Q) =
N∑

i=1

δ[r − r i(t)]δ[ p − pi(t)]δ[ Q − Qi(t)]

≡
∑

i

δ[q − qi(t)]. (2.7)

For simplicity q is generic for r, p, Q. Using the chain rule,
the time-evolution operator on (2.7) obeys

d

dt
= ∂

∂t
+ d r i

dt

∂

∂ r i

+ d pi

dt

∂

∂ pi

+ d Qi

dt

∂

∂ Qi

≡ ∂t + iL.

(2.8)

The last relation defines the Liouville operator

L = L0 + LI + LQ

= −ivi · ∇ri
− i Fi · ∇pi

− i�i · ( Qi × ∇Qi
). (2.9)

The last contribution in (2.9) is genuinely a three-body force
because of the cross product (orbital color operator). It requires
three distinct colors to not vanish. This observation will be
important in simplifying the color dynamics below. Also (2.9)
is Hermitian.

Since (2.7) depends implicitly on time, we can write
formally

d

dt
f (t, r p Q) = iLf (t, r p Q) (2.10)

with a solution f (t) = eiLt f (0). The formal relation (2.10)
should be considered with care since the action of the
Liouville operator on the one-body phase-space distribution
(2.7) generates also a two-body phase-space distribution.
Indeed, while L0 is local in phase space

L0

∑
i

δ(q − qi) = −iv · ∇r

∑
i

δ(q − qi)

= L0(q)
∑

i

δ(q − qi) (2.11)

the two other contributions are not. Specifically

LI

∑
m

δ(q − qm)

= i
∑
i �=j

∇ri

Qi · Qj

|r i − rj | · ∇pi

∑
m

δ(q − qm)

= i

∫
dq ′ ∑

i �=j,mn

∇ri

Qi · Qj

|r i − rj | · ∇pi
δ(q − qm)δ(q ′ − qn)

= −
∫

dq ′LI (q, q ′)
∑
mn

δ(q − qm)δ(q ′ − qn) (2.12)

with

LI (q, q ′) = i∇r

Q · Q′

|r − r ′| · (∇p − ∇p′ ). (2.13)

Similarly

LQ

∑
m

δ(q − qm)

= −i
∑

j �=i,m

Qi × Qj

|r i − rj | · ∇Qi
δ(q − qm)

= −i

∫
dq ′ ∑

j �=i,mn

Qi × Qj

|r i − rj | · ∇Qi
δ(q − qm)δ(q ′ − qn)

= −
∫

dq ′LQ(q, q ′)
∑
mn

δ(q − qm)δ(q ′ − qn) (2.14)

with

LQ(q, q ′) = −i
Q × Q′

|r − r ′| · (∇Q − ∇Q′). (2.15)

Clearly (2.14) drops from two-body and symmetric phase-
space distributions. It does not for three-body and higher.

III. LIOUVILLE HIERARCHY

An important correlation function in the analysis of the
colored Coulomb plasma is the time-dependent structure factor
or two-body correlation in the color phase space

S(t − t ′, r − r ′, p p′, Q · Q′) = 〈δf (t, r p Q) δf (t ′, r ′ p′ Q′)〉
(3.1)
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with δf = f − 〈f 〉 the shifted one-body phase-space dis-
tribution. The averaging in (3.1) is carried over the initial
conditions with a fixed number of particles N and average
energy or temperature β = 1/T . Thus 〈f 〉 = nf0(p) which is
the Maxwellian distribution for constituent quarks or gluons.
In equilibrium, the averaging in (3.1) is time and space
translational invariant as well as color-rotational invariant.

Using the ket notation with 1 ≡ q ≡ r p Q

|δf (t, 1)〉 =
∣∣∣∣∑

m

δ[q − qm(t)] −
〈∑

m

δ[q − qm(t)]

〉〉

≡ |δf (t, 1) − 〈f (t, 1)〉〉 (3.2)

with also 2 = q ′, 3 = q ′′, 4 = q ′′′, and so on and the formal
Liouville solution δf (t, 1) = eiLt δf (1), we can write (3.1) as

S(t − t ′, q, q ′) = 〈δf (t, 1)|δf (t ′, 2)〉
= 〈δf (1)|eiL(t ′−t)|δf (2)〉. (3.3)

The bra-ket notation is short for the initial or equilibrium
average. Its Laplace or causal transform reads

S(z, q, q ′) = −i

∫ +∞

−∞
dt θ (t − t ′) eizt S(t − t ′, q, q ′)

= 〈δf (1)| 1

z + L |δf (2)〉 (3.4)

with z = ω + i0. Clearly

zS(z, q, q ′) + 〈δf (1)|L 1

z + L |δf (2)〉 = 〈δf (1)|δf (2)〉.
(3.5)

SinceL† = L is Hermitian and using (2.11), (2.12), and (2.14),
it follows that

〈δf (1)|L = 〈δf (1)|L0(q) −
∫

dq ′′ LI+Q(q, q ′′) 〈δf (1)δf (3)|.
(3.6)

Thus

[z − L0(q)]S(z, q, q ′) −
∫

dq ′′LI+Q(q ′, q ′′)S(z, qq ′′, q ′)

= S0(q, q ′), (3.7)

where we have defined the three-body phase-space resolvent

S(z, qq ′′, q ′) = 〈δf (1)δf (3)| 1

z + L |δf (2)〉. (3.8)

S0(q, q ′) is the static colored structure factor discussed by us
in [10]. Since LI+Q(q ′, q) is odd under the switch q ↔ q ′,
and since S(z, qq ′′, q ′) = S(−z, q, q ′q ′′) owing to the t ↔ t ′
in (3.4), then

[z + L0(q ′)]S(z, q, q ′) −
∫

dq ′′LI+Q(q ′, q ′′)S(z, q, q ′q ′′)

= S0(q, q ′). (3.9)

Equation (3.7) or equivalently (3.9) defines the Liouville
hierarchy, whereby the two-body phase-space distribution ties
to the three-body phase-space distribution and so on. Indeed,

(3.9), for instance, implies

[z + L0(q ′′)]S(z, qq ′, q ′′)

−
∫

dq ′′′LI+Q(q ′′, q ′′′)S(z, qq ′, q ′′q ′′′) = S0(qq ′, q ′′)

(3.10)

with the four-point resolvent function

S(z, qq ′, q ′′q ′′′) = 〈δf (1)δf (2)| 1

z + L |δf (3)δf (4)〉. (3.11)

These are the microscopic kinetic equations for the color
phase-space distributions. They are only useful when closed,
that is by a truncation as we discuss below. These formal
equations were initially discussed in [11–14] in the context
of the one-component Coulomb-Abelian-Coulomb plasma.
We have now generalized them to the multicomponent and
non-Abelian colored Coulomb plasma.

IV. SELF-ENERGY KERNEL

In (3.7) the nonlocal part of the Liouville operator plays
the role of a nonlocal self-energy kernel 	 on the two-body
resolvent. Indeed, we can rewrite (3.7) as

[z − L0(q)]S(z, q, q ′) −
∫

dq ′′	(z, q, q ′′)S(z, q ′′, q ′)

= S0(q, q ′) (4.1)

with the nonlocal self-energy kernel defined formally as∫
dq ′′	(z, q, q ′′) S(z, q ′′, q ′)

=
∫

dq ′′LI+Q(q, q ′′) S(z, qq ′′, q ′) (4.2)

The self-energy kernel 	 can be regarded as the sum of a static
or z-independent contribution 	S and a nonstatic or collisional
contribution 	C ,

	(z, q, q ′′) = 	S(q, q ′′) + 	C(z, q, q ′′). (4.3)

The stationary part 	S satisfies∫
dq ′′	S(q, q ′′) S0(q ′′, q ′)

=
∫

dq ′′LI+Q(q, q ′′) S0(q, q ′, q ′′), (4.4)

which identifies it with the sum of the two- and three-body
part of the Liouville operator LI+Q.

The collisional part 	C is more involved. To unwind it,
we operate with [z + L0(q ′)] on both sides of (4.2), and then
reduce the left-hand-side contribution using (3.9) and the right-
hand-side contribution using (3.10). The outcome reduces to

	C(z, q, q ′′) S0(q ′′, q ′)

= −
∫

dq ′′′ LI+Q(q, q ′′)LI+Q(q ′, q ′′) S(z, qq ′′, q ′q ′′′)

+
∫

dq ′′′ 	(z, q, q ′′) LI+Q(q ′, q ′′) S(z, q ′′, q ′q ′′′)

(4.5)
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after using (4.4). From (4.2) it follows formally that

	(z, q, q ′′) =
∫

dq ′′′ LI+Q(q, q ′′′)

× S−1(z, q ′, q ′′) S(z, qq ′′′, q ′). (4.6)

Inserting (4.6) into the right-hand side of (4.5) and taking the
q ′ integration on both sides yield

nf0(p′′) 	C(z, q, q ′′) = −
∫

dq ′′dq ′′′ LI+Q(q, q ′′)LI+Q

× (q ′, q ′′′) G(z, qq ′′, q ′q ′′′) (4.7)

with G a four-point phase-space correlation function

G(z, qq ′
1, q ′q ′

2) = S(z, qq ′
1, q ′q ′

2) −
∫

dq3dq4S(z, qq ′
1, q3)

× S−1(z, q3, q4)S(z, q4, q ′q ′
2). (4.8)

The collisional character of the self-energy 	C is manifest in
(4.7). The formal relation for the collisional self-energy (4.7)
was initially derived in [13,14] for the one-component and
Abelian-Coulomb plasma. We now have shown that it holds
for any non-Abelian SU(N ) Coulomb plasma.

Equation (4.7) shows that the connected part of the self-
energy kernel is actually tied to a four-point correlator in the
colored phase space. In terms of (4.7), the original kinetic
equation (3.7) now reads

[z − L0(q)]S(z, q, q ′) −
∫

dq ′′	S(q, q ′′)S(z, q ′′, q ′)

= S0(q, q ′) −
∫

dq ′′ dq1dq2 LI+Q(q, q1)LI+Q(q ′′, q2)

× G(z, qq1, q ′′q2) S(z, q ′′, q ′), (4.9)

which is a Boltzmann-like equation. The key difference is that
it involves correlation functions and the Boltzmann-like kernel
in the right-hand side is not a scattering amplitude but rather a
reduced four-point correlation function. Equation (4.9) reduces
to the Boltzmann equation for weak coupling. An alternative
derivation of (4.9) can be found in Appendix C through a direct
projection of (4.2) in phase space.

V. FREE-STREAMING APPROXIMATION

The formal kinetic equation (4.7) can be closed by approx-
imating the four-point correlation function in the color phase

space by a product of two-point correlation function [14],

G(t, qq1, q ′q2) ≈ [S(t, q, q ′)S(t, q1, q2)

+ S(t, q, q2)S(t, q ′, q1)]. (5.1)

This reduction will be referred to as the free-steaming approx-
imation. Next we substitute the colored Coulomb potentials
in the double Liouville operator LI+Q × LI+Q with a bare
Coulomb V(r − r ′, Q · Q′) = Q · Q′/|r − r ′|,
LI+Q(q, q1) = i∇rV(r − r1, Q · Q1) · (∇p − ∇p1 )

− i
[

Q × ∇QV(r − r1, Q · Q1) · ∇Q

+ Q1 × ∇Q1 V(r − r1, Q · Q1) · ∇Q1

]
(5.2)

times a dressed colored Coulomb potential cD defined in [10]

LR
I+Q(q, q1) = −i

1

β
∇rcD(r − r1, Q · Q1) · (∇p − ∇p1 )

+ i
1

β

[
Q × ∇QcD(r − r1, Q · Q1) · ∇Q

+ Q1 × ∇Q1 cD(r − r1, Q · Q1) · ∇Q1

]
.

(5.3)

This bare-dressed or half renormalization was initially sug-
gested [15] in the context of the one-component Coulomb
plasma to overcome the shortcomings of a full or dressed-
dressed renormalization initially suggested in [13,14]. The
latter was shown to upset the initial conditions. Thus

LI+Q(q, q1)LI+Q(q ′, q2) → 1
2

[
LI+Q(q, q1)LR

I+Q(q ′, q2)

+LR
I+Q(q, q1)LI+Q(q ′, q2)

]
.

(5.4)

Combining (5.1) and (5.4) in (4.7) yields

n f0( p′) 	C(t, q, q ′)

≈ −1

2

∫
dq1 dq2

[
LI+Q(q, q1)LR

I+Q(q ′, q2)S(t, q, q ′)

× S(t, q1, q2) + LI+Q(q, q1)LR
I+Q(q ′, q2)S(t, q, q2)

× S(t, q ′, q1) + (q1 ↔ q2, q ↔ q ′)
]
. (5.5)

This is the half-dressed but free-streaming approximation
for the connected part of the self-energy for the colored
Coulomb plasma. Translational invariance in space and ro-
tational invariance in color space allows a further reduction of
(5.5) by Fourier and Legendre transforms, respectively. Indeed,
Eq. (5.5) yields

n f0( p′) 	C(t, q, q ′) ≈ −1

2

∫
dq1 dq2

[
LI (q, q1)LR

I (q ′, q2)S(t, q, q ′)S(t, q1, q2)

+LI (q, q1)LR
I (q ′, q2)S(t, q, q2)S(t, q ′, q1) + (q1 ↔ q2, q ↔ q ′)

]
= − 1

2β

∫
dq1 dq2 [∇rcD(r − r1, Q · Q1) · ∇p∇r ′V(r ′ − r2, Q′ · Q2) · ∇p′S(t, q, q ′)S(t, q1, q2)

+∇rcD(r − r1, Q · Q1) · ∇p∇r ′V(r ′ − r2, Q′ · Q2) · ∇p′S(t, q, q2)S(t, q ′, q1) + (q1 ↔ q2, q ↔ q ′)],
(5.6)

where we note that the colored part of the Liouville operator dropped from the collision kernel in the free-
streaming approximation as we detail in Appendix C. Both sides of (5.6) can be now Legendre transformed in color
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to give
n f0( p′)

∑
l

	Cl(t, r r ′, p p′)
2l + 1

4π
Pl( Q · Q′)

≈ − 1

2β

∫
d r1d p1d r2d p2

∑
l

2l + 1

4π

(
l + 1

2l + 1
Pl+1( Q · Q′) + l

2l + 1
Pl−1( Q · Q′)

)

×
(

∇rcD1(r − r1) · ∇p∇r ′
1

|r ′ − r2| · ∇p′Sl(t, r r ′, p p′)S1(t, r1r2, p1 p2)

+∇rcDl(r − r1) · ∇p∇r ′
1

|r ′ − r2| · ∇p′S1(t, r r2, p p2)Sl(t, r ′r1, p′ p1)

+∇r ′cDl(r ′ − r2) · ∇p′∇r

1

|r − r1| · ∇pSl(t, r r2, p p2)S1(t, r ′r1, p′ p1)

+∇r ′cD1(r ′ − r2) · ∇p′∇r

1

|r − r1| · ∇pSl(t, r r ′, p p′)S1(t, r1r2, p1 p2)

)
. (5.7)

Thus

n f0( p′) 	Cl(t, r r ′, p p′) ≈ − 1

2β

∫
d r1d p1d r2d p2

[
∇rcD1(r − r1) · ∇p∇r ′

1

|r ′ − r2| · ∇p′

×
(

l

2l + 1
Sl−1(t, r r ′, p p′)S1(t, r1r2, p1 p2) + l + 1

2l + 1
Sl+1(t, r r ′, p p′)S1(t, r1r2, p1 p2)

)

+∇rcD1(r − r1) · ∇p∇r ′
1

|r ′ − r2| · ∇p′

×
(

l

2l + 1
S1(t, r r2, p p2)Sl−1(t, r ′r1, p′ p1) + l + 1

2l + 1
S1(t, r r2, p p2)Sl+1(t, r ′r1, p′ p1)

)

+∇r ′cDl(r ′ − r2) · ∇p′∇r

1

|r − r1| · ∇p

×
(

l

2l + 1
Sl−1(t, r r2, p p2)S1(t, r ′r1, p′ p1) + l + 1

2l + 1
Sl+1(t, r r2, p p2)S1(t, r ′r1, p′ p1)

)

+∇r ′cD1(r ′ − r2) · ∇p′∇r

1

|r − r1| · ∇p

×
(

l

2l + 1
Sl−1(t, r r ′, p p′)S1(t, r1r2, p1 p2) + l + 1

2l + 1
Sl+1(t, r r ′, p p′)S1(t, r1r2, p1 p2)

)]
(5.8)

with Sl−1 ≡ 0 by definition. In the colored Coulomb plasma the collisional contributions diagonalize in the color projected
channels labeled by l, with l = 0 being the density channel, l = 1 the plasmon channel, and so on. In momentum space (5.8)
reads

n f0( p′) 	Cl(t, k, p p′) = − 1

2β

∫
d p1d p2

∫
d l

(2π )3

[
l · ∇p l · ∇p′cD1(l)Vl

×
(

l

2l + 1
Sl−1(t, k − l, p p′)S1(t, l, p1 p2) + l + 1

2l + 1
Sl+1(t, k − l, p p′)S1(t, l, p1 p2)

)
+ l · ∇p(k − l) · ∇p′cDl(l)Vk−l

×
(

l

2l + 1
S1(t, k − l, p p2)Sl−1(t, l, p′ p1) + l + 1

2l + 1
S1(t, k − l, p p2)S1+1(t, l, p′ p1)

)
+ (k − l) · ∇p l · ∇p′cDl(l)Vk−l

×
(

l

2l + 1
Sl−1(t, l, p p2)Sl(t, k − l, p′ p1) + l + 1

2l + 1
Sl+1(t, l, p p2)S1(t, k − l, p′ p1)

)
+ l · ∇p l · ∇p′cD1(l)Vl

×
(

l

2l + 1
Sl−1(t, k − l, p p′)S1(t, l, p1 p2) + l + 1

2l + 1
Sl+1(t, k − l, p p′)S1(t, l, p1 p2)

)]
(5.9)

with Vl = 4π/l2. We note that for l = 0 which is the colorless density channel (5.9) involves only S1 which is the time-dependent
charged form factor due to the Coulomb interactions.
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VI. HYDRODYNAMICAL PROJECTION

In terms of (5.9), (4.2), and

	l(zk, p p1) = (	0l + 	Il + 	Ql + 	Cl)(zk, p p1), (6.1)

the Fourier and Legendre transform of the kinetic equa-
tion (3.7) now reads

zSl(zk, p p′) −
∫

d p1	l(zk, p p1)Sl(zk, p1 p′)

= S0l(k, p p′) (6.2)

with 	0l = L0 and 	Sl = L(I+Q)l . Specifically

	0l(zk, p p1) = k · vδ( p − p1),

	Il(zk, p p1) = −n f0(p)
k · p
m

cDl(k), (6.3)

	Ql(zk, p p1) = 0,

and 	Cl is defined in (5.9). See also Appendix B for
an alternative but equivalent derivation using the operator
projection method.

Equation (6.2) is the key kinetic equation for the colored
Coulomb plasma. It still contains considerable information in
phase space. A special limit of the classical phase space is
the long wavelength or hydrodynamical limit. In this limit,
only a few moments of the phase-space fluctuations δf

or equivalently their correlations in S ≈ 〈δf δf 〉 will be of
interest. In particular,

n(t, r) =
∫

d pd Q δf (t, r, p, Q),

p(t, r) =
∫

d pd Q p δf (t, r, p, Q), (6.4)

e(t, r) =
∫

d pd Q
p2

2m
δf (t, r, p, Q),

the local particle density, three-momentum, and energy
(kinetic). The hydrodynamical sector described by the
macrovariables (6.4) is colorless. An interesting macrovariable
which carries charge representation of SU(2) would be

nl(t, r) = 1

2l + 1

∑
m

∫
d rd Q Ym

l ( Q) δf (t, r, p, Q) (6.5)

which reduces to the l color density with l = 0 being the
particle density, l = 1 the charged color monopole density,
l = 2 the charged color quadrupole density, and so on. Because
of color rotational invariance in the SU(2) colored Coulomb
plasma, the constitutive equations for (6.5) which amount to
charge conservation hold for each l.

To project (6.2) onto the hydrodynamical part of the
phase space characterized by (6.5) and (6.4), we define the
hydrodynamical projectors

PH =
5∑

i=1

|i〉〈i|, QH = 1H − PH , (6.6)

with 1 = density, 2, 4, 5 = momentum, and 3 = energy as
detailed in Appendix D. When the l = 0 particle density is
retained in (6.6) the projection is on the colorless sector of

the phase space. When the l = 1 charged monopole density
is retained in (6.6) the projection is on the plasmon channel,
and so on. Most of the discussion to follow will focus on
projecting on the canonical hydrodynamical phase space (6.4)
with l = 0 or singlet representation. The inclusion of the l �= 0
representations of SU(2) is straightforward.

Formally (6.1) can be viewed as a p × p1 matrix in
momentum space

[z − 	l(zk)] Sl(zk) = S0l(k). (6.7)

The projection of the matrix equation (6.7) follows the same
procedure as in Appendix B. The result is

[z − PH	l(zk)PH − PH
l(zk)PH ]PH Sl(zk)PH

= PH S0l(k)PH (6.8)

with


l = 	l(zk)QH [z − QH 	H (zk)QH ]−1QH	l(zk). (6.9)

If we define the hydrodynamical matrix elements

Glij (zk) = 〈i|Sl(zk)|j 〉,
	lij (zk) = 〈i|	l(zk)|j 〉,

(6.10)

lij (zk) = 〈i|
l(zk)|j 〉,

G0lij (zk) = 〈i|S0l(k)|j 〉,
then (6.8) reads

[zδii ′ − �lij (zk)] Glj i ′ (zk) = G0lii ′ (k) (6.11)

with �l = 	l + 
l . Equation (6.11) takes the form of a disper-
sion for each color partial wave l with the projection operator
(6.6) set by the pertinent density (6.5). The contribution 	l to
�l will be referred to as direct while the contribution 
l will
be referred to as indirect.

VII. HYDRODYNAMICAL MODES

The zeros of (6.11) are the hydrodynamical modes originat-
ing from the Liouville equation for the time-dependent struc-
ture factor. The equation is closed under the free-streaming
approximation with half-renormalized vertices as we detailed
above.

We start by analyzing the two transverse modes with i = T

in (6.10) and (6.11). We note with [16] that GlT i = 0 whenever
T �= i. The hydrodynamical projection (see Appendix D)
causes the integrand to be odd whatever l. The two independent
transverse modes in (6.11) decouple from the longitudinal
i = L, the (kinetic) energy i = E, and particle density i = N

modes for all color projections. Thus

GlT (zk) = 1

z − �lT (zk)
, (7.1)

with �lT = 〈T |�l|T 〉 and GlT = 〈T |Gl|T 〉. The hydropro-
jected time-dependent l structure factor for fixed frequency
z = ω + i0, wave number k develops two transverse poles

zl(k) = �lT (zk) ≈ O(k2). (7.2)

The last estimate follows from O(3) momentum symmetry
under statistical averaging whatever the color projection. We
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identify the transverse poles in (7.2) with two shear modes of
consititutive dispersion

ω + i
ηl

mn
k2 + O(k3) = 0 (7.3)

with ηl the shear viscosity for the lth color representation. Un-
like conventional plasmas, the classical SU(2) color Coulomb
plasma admits an infinite hierarchy of shear modes for each
representation l.

The remaining three hydrodynamical modes L,E,N are
more involved as they mix in (6.11) and under general
symmetry consideration. Indeed current conservation ties the
L mode to the N mode, for instance. Most of the symmetry
arguments regarding the generic nature of �l in [16] carry
to our case for each color representation. Thus, for the three
remaining nontransverse modes (6.11) reads in matrix form

⎛
⎜⎝

GlNN GlNL GlNE

GlLN GlLL GlLE

GlEN GlEL GlEE

⎞
⎟⎠=

⎛
⎜⎝

z −�lNL 0

−�lLN z − �lLL −�lLE

0 −�lEL z − �lEE

⎞
⎟⎠

−1

×

⎛
⎜⎝

1 + n hl 0 0

0 1 0

0 0 1

⎞
⎟⎠ . (7.4)

The three remaining hydrodynamical modes are the zeros of
the determinant


l =

∣∣∣∣∣∣∣
z −�lNL(zk) 0

−�lLN(zk) z − �lLL(zk) −�lLE(zk)

0 −�lEL(zk) z − �lEE(zk)

∣∣∣∣∣∣∣ = 0.

(7.5)

(7.5) admits infinitly many solutions zl(k). We seek the
hydrodynamical solutions as analytical solutions in k for small
k, i.e., z(k) = ∑

n zlnk
n for each SU(2) color representation l.

In leading order, we have


l ≈ zl0

(
z2
l0 − k2T

m
S−1

0l (k ≈ 0)

)
≈ 0 (7.6)

after using the symmetry properties of �l as in [16] for each l.
We have also made use of the generalized Ornstein-Zernicke
equations for each l representation [10]. In Fig. 1 we show
the molecular-dynamics simulation results for four typical
structure factors [10],

S0l(k) =
(

4π

2l + 1

) 〈∣∣∣∣∣
∑
jm

eik·xj (0) Ym
l ( Qi)

∣∣∣∣∣
2〉

(7.7)

for l = 0, 1, 2, 3. We have made use of the dimensionless
wave number q = k aWS with aWS is the Wigner-Seitz radius.
In Fig. 2 we show the analytical result for S01 which we
will use for the numerical estimates below. We note that the
l = 1 structure factor which amounts to the monopole structure

FIG. 1. (Color online) S0l(q) from SU(2) molecular dynamics.
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.

FIG. 2. S01(q) for different � [10].

factor vanishes at k = 0. All other l’s are finite at k = 0 with
l = 0 corresponding to the density structure factor.

Equation (7.6) displays three hydrodynamical zeros as
k → 0 for each l representation. One is massless and we
identify it with the diffusive heat mode. The molecular-
dynamics simulations of the structure factors in Fig. 1 imply
that all l �= 0 channels are sound dominated with two massless
modes, while the l = 1 is plasmon dominated with two massive
longitudinal plasmon states. Thus

zl± = ±ω2
pδl1 (7.8)

with ωp = kD

√
T/m the plasmon frequency. The relevance of

this channel to the energy loss has been discussed in [17].
We used S01(k ≈ 0) ≈ k2/k2

D with k2
D the squared Debye

momentum. All even l �= 1 are contaminated by the sound
modes. The SU(2) classical and colored Coulomb plasma
supports plasmon oscillations even at strong coupling. These
modes are important in the attenuation of soft monopole color
oscillations.

VIII. SHEAR VISCOSITY

The transport parameters associated to the SU(2) classical
and colored Coulomb plasma follows from the hydrodynam-
ical projection and expansion discussed above. This includes
the heat diffusion coefficient, the transverse shear viscosity,
and the longitudinal plasmon frequency and damping param-
eters. In this section we discuss explicitly the shear viscosity
coefficient for the SU(2) colored Coulomb plasma.

Throughout, we define λ = 4
3π (3�)3/2, the bare Coulomb

interaction V̄l = k2
0/l2 in units of the Wigner-Seitz radius

k−1
0 = aWS. While varying the Coulomb coupling

� = g2

4π
β

C2

aWS
(8.1)

all length scales will be measured in aWS = (4πn/3)−1/3,
all times in the inverse plasmon frequency 1/ωp with ω2

p =
κ2

D/mβ = ng2C2/m. All units of mass will be measured in
m. The Debye momentum is κ2

D = g2nβC2 and the plasma

density is n. For instance, the shear viscosity will be expressed
in fixed dimensionless units of η0 = nmωpa2

WS.
The transverse shear viscosity follows from (7.1) with 	l

contributing to the direct or hydrodynamical part, and 
l

contributing to the indirect or single-particle part. For l = 0
η

η0
= ηdir

η0
+ ηind

η0
, (8.2)

respectively. The direct or hydrodynamical contribution is
likely to be dominant at strong coupling, while the indirect
or single-particle contribution is likely to take over at weak
coupling. We now proceed to show that.

The indirect contribution to the viscosity follows from the
contribution outside the hydrodynamical subspace throughQH

and lumps the single-particle phase contributions. It involves
the inversion of QH	C0QH in (B13) with

ηind = lim
k→0

mn

k2

|〈t |	0|t l〉|2

〈t l|i	0|t l〉

= lim
k→0

mn

k2

|〈t |(	00 + 	C0)|t l〉|2

〈t l|i	C0|t l〉 . (8.3)

In short we expand 	C0 in terms of generalized Hermite
polynomials, with the first term identified with the stress tensor
due to the projection operator (D3). The inversion follows by
means of the first Sonine polynomial expansion. Explicitly

η∗
ind = ηind

η0
= nm lim

k→0

1

k2

|〈t |	00 + 	C0(k, 0)|lt〉|2

〈lt |i	C0(k, 0)|lt〉
= (1 + λI2)2

λI3
(8.4)

with

I2 = 1

60π2

1

(3�)1/2

∫ ∞

0
dq{2[S01(q)2 − 1] + [1 − S01(q)]},

I3 = 1

10π3/2

1

3�

∫ ∞

0
dq q[1 − S01(q)], (8.5)

with the dimensionless wave number q = kaWS.
We recall that S01 is the monopole structure factor discussed

in [10] both analytically and numerically. In Fig. 2 we show the
behavior of the static monopole structure factor from [10] for
different Coulomb couplings. The larger � is the stronger the
first peak, and the oscillations. These features characterize the
onset of the crystalline structure in the SU(2) colored Coulomb
plasma. A good fit to Fig. 2 follows from the following
parametrization:

1 + C0e
−q/C1 sin [(q − C2)/C3] (8.6)

with four parameters C0,1,2,3. The fit following from (8.6)
extends to q ≈ 100 within 10−5 accuracy, thanks to the
exponent.

The direct contribution to the shear viscosity follows from
similar arguments. From (7.1) and (7.3), we have in the zero-
momentum limit

ηdir = lim
k→0

mn

k2
〈t |i	0|t〉 = lim

k→0

mn

k2
〈t |i	C0(0, 0)|t〉 (8.7)

with 	0 = 	00 + 	I0 + 	C0 as defined in (6.3) and
(5.9). Only those nonvanishing contributions after the
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hydrodynamical projection were retained in the second equal-
ities in (8.3) as we detail in Appendix D. A rerun of the
arguments yields

η∗
dir = ηdir

η0
= λ

ωp

κ3
D

lim
k→0

1

k2

∫
d l

(2π )3

∫ ∞

0
dtn(ε · l)2

× [cD1(l)Gn1(k − l, t)Gn1(l, t)V̄l

− cD0(l)Gn1(k − l, t)Gn1(l, t)V̄k−l ]. (8.8)

The projected nonstatic structure factor is

Gn1(l, t) = 1

n

∫
d p d p′ S1(l, t ; p p′) = Gn1(l, t) S01(l) (8.9)

with the normalizationGn1(l, 0) = 1. As in the one-component
Coulomb plasma studied in [18] we will approximate the
dynamical part by its intermediate time behavior where the
motion is free. This consists in solving (4.1) with no self-
energy kernel or 	 = 0,

Gn1(l, t) ≈ e−(lt)2/2mβ S01(l). (8.10)

Thus inserting (8.10) and performing the integrations with
k → 0 yield the direct contribution to the shear viscosity

η∗
dir = ηdir

η0
=

√
3

45π1/2
�

1
2 . (8.11)

The full shear viscosity result is then

η∗ = η

η0
= ηdir

η0
+ ηind

η0
=

√
3

45π1/2
�

1
2 + (1 + λI2)2

λI3
(8.12)

after inserting (8.4) and (8.11) in (8.2). The result (8.12) for the
shear viscosity of the transverse sound mode is analogous to
the result for the sound velocity in the one-component plasma
derived initially in [15] with two differences: (i) the SU(2)
Casimir in �; (ii) the occurrence of S01 instead of S00. Since
S01 is plasmon dominated at low momentum, we conclude
that the shear viscosity is dominated by rescattering against
the SU(2) plasmon modes in the cQGP.

Using the fitted monopole structure factor (8.6) in (8.5)
we can numerically assess (8.4) for different values of �.
Combining this result for the indirect viscosity together with
(8.11) for the direct viscosity yield the colorless or sound
viscosity η∗. The values of η∗ are displayed in Table I and
shown in Fig. 3 (solid line). The SU(2) molecular-dynamics
simulations in [3], which are parametrized as

η∗
MD 
 0.001� + 0.242

�0.3
+ 0.072

�2
, (8.13)

are also displayed in Table I and shown in Fig. 3 (dotted
line) for comparison. The sound viscosity dips at about � ≈ 8
in our analytical estimate. To understand the origin of the
minimum, we display in Fig. 4 the scaling with � of the direct
or hydrodynamical and the indirect part of the shear viscosity.
The direct contribution to the viscosity grows like �1/2; the
indirect contribution drops like 1/�5/2. The latter dominates at
weak coupling, while the former dominates at strong coupling.
This is indeed expected, since the direct part is the contribution
from the hydrodynamical part of the phase space, while the
indirect part is the contribution from the nonhydrodynamical or
single-particle part of phase space. The crossing is at � ≈ 4.

TABLE I. Reduced shear viscosity. See the text.

� 2 4 6 8 10 12 14 16 18

η∗
QGP 0.286 0.092 0.067 0.066 0.070 0.076 0.081 0.087 0.092

ηMD 0.217 0.168 0.168 0.139 0.132 0.127 0.124 0.122 0.120

The reduced sound viscosity η∗ is dimensionless. To restore
dimensionality and compare with expectations for an SU(2)
colored Coulomb plasma, we first note that the particle density
is about 3 × 0.244 T 3 = 0.732 T 3. There are three physical
gluons, each carrying blackbody density. The corresponding
Wigner-Seitz radius is then aWS = (3/4πn)1/3 ≈ 0.688/T .
The Coulomb coupling is � ≈ 1.453 (g2Nc/4π ). Since the
plasmon frequency is ω2

p = κ2
D/mβ = ng2Nc/m, we get

ω2
p 
 3.066 T 2(g2Nc/4π ) with m 
 3T . The unit of viscosity

η0 = nmωpa2
WS translates to 1.822 T 3(g2Nc/4π )1/2. In these

units, the viscosity for the SU(2) cQGP dips at about 0.066
which is η∗

QGP ≈ 0.066 η0 ≈ 0.120 T 3 (g2Nc/4π )1/2. Since
the entropy in our case is σ = 6 (4π2/90)T 3, we have for the
SU(2) ratio η/σ |SU (2) = 0.046 (g2Nc/4π )1/2. The minimum
in the viscosity occurs at � = 1.453 (g2Nc/4π ) ≈ 8, so that
(g2Nc/4π )1/2 ≈ 2.347. Thus, our shear viscosity to entropy
ratio is η/σ |SU(2) 
 0.107. A rerun of these estimates for
SU(3) yields η/σ |SU(3) 
 0.078 which is lower than the bound
η/σ = 1/4π 
 0.0795 suggested from holography.

Here we assumed on phenomenological grounds that m ≈
3T in the region (1 − 3)Tc as motivated by lattice simulations
[7].

FIG. 3. The direct and indirect part of the viscosity.
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FIG. 4. (Color online) The best fit of the direct and indirect part of the viscosity.

Finally, we show the dimensionless shear viscosity η∗ at
low � (solid line) in Fig. 5(a) and large � (dotted line) in
Fig. 5(b) assessed using the weak-coupling structure factor
S(k) = k2/(k2 + k2

D). The discrepancy is noticeable for � near
the liquid point. The large discrepancy for small values of
� reflects on the fact that the integrals in (8.5) are infrared
sensitive. The sensitivity is tamed by our analytical structure
factor and the simulations. We recall that in weak coupling,
the Landau viscosity ηL is [19]

ηL

η0
= 5

√
3π

18

1

�5/2

1

ln(rD/r0)
, (8.14)

which follows from a mean-field analysis of the kinetic
equation with the plasma dielectric constant set to 1. The
logarithmic dependence in (8.14) reflects on the infrared
and ultraviolet sensitivity of the mean-field approximation.
Typically rD = 1/kD and r0 = (g2C2/4π )β which are the
Debye length and the distance of closest approach. Thus

ηL

η0
≈ 5

√
3π

27

1

�5/2

1

ln(1/�)
(8.15)

or ηL/η0 ≈ 0.6/[�5/2ln(1/�)], which is overall consistent
with our analysis.

The Landau or mean-field result is smaller for the viscosity
than the result from perturbative QCD. Indeed, the unscaled

Landau viscosity (8.15) reads

ηL

η0
≈ 5

12
√

π

√
m

(αsC2)2β5/2

1

ln(1/αs)
(8.16)

after restoring the viscosity unit η0 = nmωpa2
WS and using

ln(rD/r0) ≈ 3ln(1/αs)/2 with αs = g2/4π . It is amusing to
note that if we set m ≈ gT and C2 = Nc = 3 in (8.16) we
obtain

ηL ≈ 5
√

2

108π1/4

T 3

α
7/4
s ln(1/αs)

≈ 0.05
T 3

α
7/4
s ln(1/αs)

, (8.17)

which is to be compared with the QCD weak-coupling result
[20,21]

ηQCD ≈ T 3

α2
s ln(1/αs)

. (8.18)

IX. DIFFUSION CONSTANT

The calculation of the diffusion constant in the SU(2)
plasma is similar to that of the shear viscosity. The governing
equation is again (3.7) with 	 and S replaced by 	s , Ss . The
label is short for a single particle. The difference between S
and Ss is the substitution of (2.7) by

fs(r p Qt) =
√

Nδ[r − r1(t)]δ[ p − p1(t)]δ[ Q − Q1(t)].

(9.1)

FIG. 5. Comparison with weak coupling. See the text.
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The diffusion constant follows from the velocity autocorrelator

VD(t) = 1
3 〈V (t) · V (0)〉 (9.2)

through

D =
∫ ∞

0
dtVD(t). (9.3)

Solving (3.7) using the method of one Sonine polynomial
approximation as in [18] yields the Langevin-type equation

dVD(t)

dt
= −

∫ t

0
dt ′M(t ′)VD(t − t ′) (9.4)

with the memory kernel tied to 	S
C0,

n f0( p′) 	S
Cl(t, k, p p′)

= − 1

β

∫
d p1d p2

∫
d l

(2π )3
l · ∇p l · ∇p′cD1(l)Vl

×
(

l

2l + 1
SS

l−1(t, k − l, p p′) S1(t, l, p1 p2)

+ l + 1

2l + 1
SS

l+1(t, k − l, p p′) S1(t, l, p1 p2)

)
(9.5)

and

n f0( p′) 	S
C0(t, k = 0, p p′)

= − 1

β

∫
d p1d p2

∫
d l

(2π )3
l · ∇p l · ∇p′cD1(l)

×VlSS
1 (t, l, p p′) S1(t, l, p1 p2), (9.6)

therefore

M(t) = β

3m

∫
d p d p′ p · p′	S

C0(t, k = 0, p p′)f0( p′) (9.7)

which clearly projects out the singlet color contribution. If
we introduce the dimensionless diffusion constant, D∗ =
D/wpa2

WS, then (9.3) together with (9.4) yield

1

D
= mβ

∫ ∞

0
dt M(t) → 1

D∗

= 3�

∫ ∞

0
wpdt

M(t)

w2
p

= 3�

∫ ∞

0
dτ M̄(τ ). (9.8)

Using similar steps as for the derivation of the viscosity, we
can unwind the self-energy kernel 	s in (9.8) to give

1

D∗ = −�

∫
d l

(2π )3

∫ ∞

0
dτ l2cD1(l)VlGS

n1(l, t)Gn1(l, t),

(9.9)

where we have used the same the half-renormalization method
discussed above for the viscosity. The color integrations are
done by Legendre transforms. Here again, we separate the
time-dependent structure factors as Gn1(l, t) = S01(l)Ḡn1(l, t)
and SS

01(l, t) = Ḡn1(l, t) in the free-particle approximation.
Thus

1

D∗ = �3/2

(
1

3π

) 1
2
∫ ∞

0
dq q[1 − S01(q)]. (9.10)

TABLE II. Diffusion constant. See the text.

� 2 4 6 8 10 12 14 16 18

D∗
QGP 0.410 0.115 0.055 0.034 0.024 0.017 0.014 0.012 0.010

D∗
MD 0.230 0.132 0.095 0.076 0.063 0.055 0.048 0.044 0.040

The results following from (9.10) are displayed in Table II
and in Fig. 6 (solid line) from weak to strong coupling. For
comparison, we also show the diffusion constant measured
using molecular-dynamics simulations with an SU(2) colored
Coulomb plasma [3]. The molecular-dynamics simulations are
fitted to

D∗ 
 0.4

�0.8
. (9.11)

For comparison, we also show the diffusion constant (9.10)
assessed using the weak coupling or Debye structure factor
S(k) = k2/(k2 + k2

D) in Fig. 6 (dotted line). The discrepancy
between the analytical results at small � are similar to the
ones we noted above for the shear viscosity. In our correctly
resummed structure factor of Fig. 2, the infrared behavior of the
cQGP is controlled in contrast to the simple Debye structure
factor.

Finally, a comparison of (9.10) to (8.5) shows that 1/D∗ ≈
1/λI3 which is seen to grow like �3/2. Thus D∗ drops like
1/�3/2, which is close to the numerically generated result
fitted in Fig. 7(a). The weak-coupling self-diffusion coefficient
scales as 1/�5/2 as shown in Fig. 7(b). More importantly, the
diffusion constant in the SU(2) colored Coulomb plasma is
caused solely by the nonhydrodynamical modes or single-
particle collisions in our analysis. It does not survive at strong
coupling where most of the losses are caused by the collective
sound and/or plasmon modes. This result is in contrast with the
shear viscosity we discussed above, where the hydrodynamical
modes level it off at large �.

The current analysis gives an analytical understanding to
the numerical results of [3]. It is true that the nonrelativistic
and classical description followed here yields particle number
conservation, unlike the relativistic and quantum description.
However, we think that our diffusion analysis sheds some

FIG. 6. Diffusion constant (solid and dotted lines) versus
molecular-dynamics simulations (dashed line). See the text.
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FIG. 7. (Color online) Fit to the diffusion constant. See the text.

light on the diffusion of conserved charges in QCD at strong
coupling, e.g, fermion number, isospin number, etc.

X. CONCLUSIONS

We have provided a general framework for discussing
nonperturbative many-body dynamics in the colored SU(2)
Coulomb plasma introduced in [1]. The framework extends
the analysis developed intially for one-component Abelian
plasmas to the non-Abelian case. In the latter, the Liouville
operator is supplemented by a color precessing contribution
that contributes to the connected part of the self-energy kernel.

The many-body content of the SU(2) colored Coulomb
plasma are best captured by the Liouville equation in phase
space in the form of an eigenvaluelike equation. Standard
projected perturbation theory, such as analysis around the static
phase-space distributions yield a resummed self-energy kernel
in closed form. Translational space invariance and rigid color
rotational invariance in phase space simplifies the nature of the
kernel.

In the hydrodynamical limit, the phase-space projected
equations for the time-dependent and resummed structure fac-
tor displays both transverse and longitudinal hydrodynamical
modes. The shear viscosity and longitudinal diffusion constant
are expressed explicitly in terms of the resummed self-energy
kernel. The latter is directly tied with the interacting part of the
Liouville operator in color space. We have shown that in the
free-streaming approximation and half-renormalized Liouville
operators, the transport parameters are finite.

We have explicitly derived the shear viscosity and lon-
gitudinal diffusion constant of the SU(2) colored Coulomb
plasma in terms of the monopole static structure factor and the
for all values of the classical Coulomb parameter � = V/K ,
the ratio of the potential to kinetic energy per particle. The
results compare fairly with molecular-dynamics simulations
for SU(2).

The longitudinal diffusion constant is found to drop from
weak to strong coupling like 1/�3/2. The shear viscosity is
found to reach a minimum for � of about 8. The large increase
at weak coupling is the result of the large mean free paths
and is encoded in the direct or driving part of the connected
self-energy. The minimum at intermediate � is tied to the

onset of hydrodynamics which reflects on the liquid nature of
the colored Coulomb plasma in this regime.

At larger values of � an SU(2) crystal forms as reported
in [1]. Our current analysis should be able to account for the
emergence of elasticities with, in particular, an elastic shear
mode. This point will be pursued in a future investigation.
The many-body analysis presented in this work treats the
color degrees of freedom as massive constituents with a finite
mass and a classical SU(2) color charge. The dynamical
analysis is fully nonclassical. In a way, quantum mechanics
is assumed to generate the constituent degrees of freedom
with their assigned parameters. While this picture is supported
by perturbation theory at very weak coupling, its justification
at strong coupling is by no means established.
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APPENDIX A: SU(2) COLOR PHASE SPACE

A useful parametrization of the SU(2) color phase space is
through the canonical variables Q1, π1 [22,23]

Q1 = cos φ1

√
J 2 − π2

1 ,
(A1)

Q2 = sin φ1

√
J 2 − π2

1 , Q3 = π1

with Q2 being a constraint variable fixed by J 2 or the quadratic
Casimir with q2 = ∑N2

c −1
α QαQα . The conjugate set Q1, π1

obeys standard Poisson bracket. The associated phase-space
measure is

dQ = cRdπ1dφ1JdJδ(J 2 − q2), (A2)

where cR is a representation-dependent constant. A simpler
parametrization of the phase space is to use

dQ = sin θdθdφ (A3)

with the normalizations
∫

dQ = 4π ,
∑

α QαQα = 1 and∫
dQ Q · Q = 4π . The SU(2) Casimir is then restored by

inspection.
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APPENDIX B: PROJECTION METHOD

If we define the phase-space density, δf m
l (k p, t),

δf m
l (k p, t) =

N∑
i=1

e−ik·ri (t)δ[ p − pi(t)]Y
m
l ( Qi)

− nf0( p)δl0δm0δk0Y
0
0 , (B1)

we can construct structure factor Sl(t, k, p p′) for the lth partial
wave

4π

2l + 1

∑
m

[
δf m

l
∗(k p, t)

∣∣δf m
l (k p′, 0)

]

≡ 4π

2l + 1

∑
m

N∑
i,j

{
e−ik·(ri (t)−rj (t))δ[ p − pi(t)]δ( p′ − pj )

×Ym
l

∗( Qi)Y
m
l ( Qj )

} − n2f0( p)f0( p′)

≡ Sl(t, k, p p′). (B2)

Here a scalar product (A|B) is defined as 〈A∗B〉eq. We follow
[16,24,25] and recast the formal Liouville equation (3.4) in the
form of a formal eigenvaluelike equation in phase space,

Sl(kz; p p′) = [
δf m

l
∗(k p)|(z − L)−1|δf m

l (k′ p′)
]
. (B3)

The color charge effect by partial waves is represented as l, m

in Eq. (B3). If we introduce the projection operator

P = 4π
∑
l,m,k

∫
d p1d p2

∣∣δf m
l (k, p1)

〉
S−1

0l (k, p1, p2)

× 〈
δf m

l
∗(k, p2)

∣∣ = 1 − Q, (B4)

we can check that this projection operator satisfies P2 = P

P2 = 4π
∑
l,m,k

∑
l′,m′,k′

∫
d p1d p2d p′

1d p′
2

∣∣δf m
l (k, p1)

)
× S−1

0l (k, p1, p2)4π
(
δf m

l
∗(k, p2)

∣∣δf m′
l′ (k, p′

1)
)

× S−1
0l (k, p1

′, p2
′)
(
δf m′

l′
∗
(k, p2

′)
∣∣ = P (B5)

because of the translational invariance in space and the
rotational invariance in color space,

4π
(
δf m

l
∗(k, p2)

∣∣δf m′
l′ (k, p′

1)
) ≡ δk2k′δll′δmm′S0l(k, p2, p1

′).
(B6)

The off-diagonal elements vanish in the equilibrium averaging
due to phase incoherence. Therefore, the projection operator
in Eq. (B5) satisfies also Q2 = Q and PQ = QP = 0. If
we define |Fm

l (k p; z)) as |Fm
l (k p; z)) = (z − L)−1|δf m

l (k p))
from Eq. (B3), we have

P(z − L)
∣∣Fm

l (k p; z)
) = P

∣∣δf m
l (k p)

)
. (B7)

P in Eq. (B5) is the operator which projects phase-
space function of a multiparticle state with lth par-
tial wave into a single-particle state of the same par-
tial wave, |δf m′

l′ (k p)), P|gm′
l′ (k p)) = |δf m′

l′ (k p)). Therefore
Q|δf m

l (k p)) = (1 − P)|δf m
l (k p)) = 0. With these in mind,

we can modify the above equation further using P + Q = I ,

(Pz − PLP − PLQ)
∣∣Fm

l (k p; z)
) = P

∣∣δf m
l (k p)

)
,

(Qz − QLP − QLQ)
∣∣Fm

l (k p; z)
) = 0. (B8)

From these equations, we can extract

zP
∣∣Fm

l (k p; z)
) − PLP

∣∣Fm
l (k p; z)

) − PLQ(z − QLQ)−1

×QLP
∣∣Fm

l (k p; z)
) = P

∣∣δf m
l (k p)

)
. (B9)

By multiplying (δf (k p)| we finally obtain

zSl(kz; p p′) −
∫

d p1d	l(kz; p p1)Sl(kz; p1 p′)

= Sl(k0; p p′), (B10)

where the memory function, or the evolution operator
	l(kz; p p1), is

	l(kz; p p′) = 4π

2l + 1

∑
m

∫
d p1

(
δf m

l
∗(k, p)

∣∣L
+�

∣∣δf m
l (k, p1)

)
S−1

0l (k, p1, p′) (B11)

with

� = PLQ(z − QLQ)−1QLP. (B12)

Since the Liouville operatorL can be split intoL0 + LI + LQ,
Eq. (2.9), the evolution operator can also be split into four
terms; the free-streaming term (	0

l ), the self-consistent term
(	s

l ), the color charge term (	Q), and the nonlocal collision
term (	c),

	0l(kz; p p′) = k · p
m

δ( p − p′),

	Il(kz; p p′) = −n
k · p
m

f0( p)cDl(k),

	Ql(kz; p p′) = 0,

	Cl(kz; p p′) = 1

nf0( p)

4π

2l + 1

∑
m

(
δf m

l
∗(k p)

∣∣
×LQ(z − QLQ)−1QL

∣∣δf m
l (k p′)

)
. (B13)

APPENDIX C: COLLISIONAL COLOR CONTRIBUTION

In this appendix we detail the calculation that leads to
a zero contribution from the colored Liouville operator in
the collisional part of the self-energy in the free-streaming
approximation. A typical contribution to (5.2) and (5.5) is

LQ(q, q1) LR
Q(q ′, q2) S(t, q, q2) S(t, q ′, q1)

= 1

β

[
V (r − r1) Q × Q1 · (∇Q − ∇Q1 )

]
× [

c′
D(r ′ − r2, Q′ · Q2) Q′ × Q2 · (∇Q′ − ∇Q2 )

]
× S(t, q, q2) S(t, q ′, q1). (C1)

which can be reduced to

LQ(q, q1) LR
Q(q ′, q2) S(t, q, q2) S(t, q ′, q1)

= − 1

β
V (r − r1) c′

D(r ′ − r2, Q′ · Q2)

× [S′( Q · Q2)S′( Q′ · Q1)( Q1 × Q2) · Q ( Q1 × Q2) · Q′
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× S′′( Q · Q2)S( Q′ · Q1)( Q1 × Q2) · Q ( Q × Q′) · Q2

× S( Q · Q2)S′′( Q′ · Q1)( Q × Q′) · Q1 ( Q1 × Q2) · Q′

× S′( Q · Q2)S′( Q′ · Q1)( Q × Q′) · Q1 ( Q × Q′) · Q2].
(C2)

The derivatives on cD and S are on their color argument.
We note that (C2) contributes to the collisional part of the
self-energy in (B6) after the integration over Q1 and Q2, which
is then zero. This is expected. Indeed, the colored Liouville
operator is a three-body force that requires three distinct
color charges to not vanish. While (C2) contributes to the
unintegrated collisional operator, it does not in the integrated
one, which is the self-energy on the two-point function. It
does contribute in the Liouville hierarchy in the three-body
structure factors and higher.

APPENDIX D: HYDRODYNAMICAL SUBSPACE

The projection method onto the hydrodynamical subspace
has been discussed by many [11,12,16]. This consists in dialing
the projector in (6.2) onto the hydrodynamical modes. We
choose Hermite polynomials as a basis set with the Maxwell-
Boltzmann distribution f0( p) as a Gaussian weight function.
The Hermite polynomials are the generalized ones in three
dimensions [26]. Specifically,

H1(n)( p) = 1, H2(l)( p) = pz, H3(ε)( p) = 1√
6

(p2 − 3),

H4(t1)( p) = px, H5(t2)( p) = py. (D1)

These polynomials are orthonormal for the inner product

〈m|n〉 =
∫

d p amHm( p)anHn( p)nf0( p) = δmn,

〈m|F (k, t)|n〉 =
∫

d p d p′amHm( p)F (k, t ; p p′)an

×Hn( p′)nf0( p′). (D2)

Here am and an set the normalizations. We chose the
longitudinal momentum direction along k in Fourier space,
〈l| = amk̂ · p. The transverse directional is chosen orthogonal
to k, 〈t | = a′

mε · p with a unit vector satisfying ε2 = 1 and
ε · k̂ = 0.

The hydrodynamical projection operators PH restricted to
the five states (D1) are

PH =
5∑
i

|i〉〈i|, QH = 1 − PH = 1 −
5∑
i

|i〉〈i|. (D3)

While in general these five states are enough to characterize
the hydrodynamical modes in the SU(2) phase space, we need
additional states to work out the shear viscosity as it involves
in general correlations in the stress tensor through the Kubo
relation [27]. For that we need additionally

H6( p) = pxpy, H7( p) = pxpz, H8( p) = pypz. (D4)

With the definition of Gij (kz) = 〈i|S(kz; p p′)[nf0( p)]−1|j 〉
we can rewrite (6.2) as(

z −
∑

k

〈i|�(kz; p p′)|k〉
)

Gkj (kz) = Gij (k0), (D5)

where i, j are short for n (density), ε (energy), l (longitudinal
momentum), and t (transverse momentum).
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