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Using the (2 + 1)-dimensional viscous hydrodynamic code VISH2 + 1 [H. Song and U. Heinz, Phys. Lett. B
658, 279 (2008); H. Song and U. Heinz, Phys. Rev. C 77, 064901 (2008); H. Song, Ph. D. thesis, The Ohio State
University, 2009], we present systematic studies of the dependence of pion and proton transverse-momentum
spectra and their elliptic flow in 200A GeV Au + Au collisions on the parameters of the hydrodynamic model
(thermalization time, initial entropy density distribution, decoupling temperature, equation of state, and specific
shear viscosity η/s). We identify a tension between the slope of the proton spectra, which (within hydrodynamic
simulations that assume a constant shear viscosity to entropy density ratio) prefer larger η/s values, and the slope
of the pT dependence of charged hadron elliptic flow, which prefers smaller values of η/s. Changing other model
parameters does not appear to permit dissolution of this tension.
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I. INTRODUCTION

After experiments at the Relativistic Heavy Ion Collider
(RHIC) [1–4] and their theoretical analysis [5–7] established
that the quark-gluon plasma (QGP) created in ultrarelativistic
heavy-ion collisions is strongly coupled and behaves like an
almost ideal fluid (“perfect liquid”) with very small viscosity,
interest in the theoretical and phenomenological determination
of the QGP transport parameters, in particular its specific shear
viscosity η/s (i.e., the ratio between its shear viscosity η and
entropy density s), soared (see Refs. [8,9] for recent reviews).
In principle, it should be possible to extract this quantity from
heavy-ion collision experiments by comparing the measured
hadron spectra and their azimuthal anisotropies (in particular
their elliptic flow) with theoretical simulations of the collision
dynamics which treat the QGP shear viscosity as an adjustable
parameter [10,11]. In practice, this is a complex and difficult
task that requires careful and highly constrained simulations of
all dynamical stages of the collision that sandwich the viscous
hydrodynamic expansion of the QGP between nonequilibrium
phases describing (i) the initial geometry and early evolution
of the fireball before its thermalization and (ii) the final kinetic
hadron rescattering stage after its hadronization [12,13].

The present work is a contribution to help prepare the
path for such a phenomenological extraction of (η/s)QGP.
It employs viscous hydrodynamics to describe the fireball
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evolution, side-stepping the issues related to early and late
nonequilibrium evolution by replacing the output from the
(hypothetical) early nonequilibrium evolution model by initial
conditions for the hydrodynamic stage (to be adjusted post
facto to final hadron spectra and multiplicities in central
collisions [6]), and the late-stage hadronic rescattering and
kinetic freeze-out by a sudden transition from viscous fluid
to free-streaming particles, using the Cooper-Frye algorithm
[14] along a hypersurface of constant temperature Tdec. This
generalizes analogous attempts to describe experimental data
from 200A GeV Au + Au collisions at RHIC with ideal fluid
dynamics [6,15–21] to the case of viscous fluid dynamics.
Related work has already been reported in Refs. [10,22]; what
distinguishes the present study from these earlier articles is
that we use a state-of-the-art equation of state that matches
the latest lattice QCD data [23,24] at high temperatures to
a realistic, chemically nonequilibrated hadron resonance gas
at low temperatures. The construction of this equation of state
(EOS) is described in Ref. [25], except that we here implement
chemical freeze-out of the stable hadron yield ratios at Tchem =
165 MeV by imposing appropriate temperature dependent
nonequilibrium chemical potentials for each hadron species
below Tchem [15,16,19,26,27]. This ensures that the final
hadron yield ratios from our simulations are consistent with
their measured values which indicate chemical equilibrium at
temperature Tchem≈160–170 MeV [3,28,29].

The purpose of this study is not a detailed viscous
hydrodynamic fit to the RHIC data; its goal is rather to build
intuition for systematic trends and parameter dependences that
will be useful in forthcoming more ambitious fit attempts. One
feature that disqualifies the present model study from being
taken too seriously in comparison with the experimental data
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is our assumption of a constant (i.e., temperature independent)
specific entropy η/s. While η/s is probably small in the QGP
phase [10,11,30], possibly close to the Kovtun-Starinets-Son
(KSS) bound ( η

s
)KSS = 1

4π
[31,32], it is expected to increase

dramatically in the late dilute hadronic phase [33,34]. This
can have important consequences for the evolution of flow in
relativistic heavy-ion collisions [35] which will be studied in
a separate article [36].

II. HYDRODYNAMIC EQUATIONS, INITIAL
AND FINAL CONDITIONS

In this work, we use viscous hydrodynamics to simulate the
collision system by solving the second-order Israel-Stewart
equations as described in Ref. [37]. The energy-momentum
tensor of the fluid is decomposed as

T µν = euµuν − (p + �)�µν + πµν, (1)

where e is the local energy density, p is the thermal equilibrium
pressure [given by the equation of state p(e), see below], uµ

is the local flow four-velocity, �µν = gµν−uµuν is the spatial
projector in the local fluid rest frame, � is the bulk viscous
pressure (which we set to zero in this article, assuming that
effects from bulk viscosity can be ignored relative to those
caused by shear viscosity [38]), and πµν is the traceless and
symmetric shear pressure tensor satisfying uµπµν = 0. The
equations of motion are the hydrodynamic equations

dµT µν = 0, (2)

where dµ denotes the covariant derivative in curvilinear
(τ, x, y, η) coordinates (see Refs. [37,39] for details), coupled
to the Israel-Stewart [37,40–42] evolution equations for the
viscous pressure components:

�µα�νβπ̇αβ = −πµν−2ησµν

τπ

− πµν

2

ηT

τπ

dλ

(
τπ

ηT
uλ

)
. (3)

The dot on the left-hand side stands for the local comoving time
derivative D = uµdµ, η is the shear viscosity, σµν = ∇〈µ uν〉
is the velocity shear tensor (see Refs. [37,39] for notation),
and τπ is the microscopic relaxation time that controls the
evolution of πµν (we take τπ = 3 η

sT
[37]).

The equations are solved numerically in the two transverse
spatial directions and time, using the (2 + 1)-dimensional
hydrodynamic code VISH2+1 [13,43,44], assuming boost-
invariant longitudinal expansion along the beam direction. The
net baryon density and heat conductivity are set to zero.

To initialize the hydrodynamic evolution we must specify
the starting time τ0 at which the system is sufficiently close
to local thermal equilibrium for viscous hydrodynamics to be
applicable, initial energy density and velocity profiles, and the
initial viscous pressure tensor πµν . We here consider τ0 as a
tunable parameter and vary it between 0.2 and 0.8 fm/c in order
to study how it affects the final hadron spectra and elliptic flow.

For the initial energy density profile we study both Glauber
[44–47] and color glass condensate (CGC-fKLN) initializa-
tions [48–51] in the optical limit (i.e., without accounting
for event-by-event fluctuations [52–57]). Figure 1 shows a
comparison of typical initial energy density profiles generated

FIG. 1. (Color online) A comparison of initial energy density
profiles at τ0 = 0.4 fm/c for “central” (b = 2.33 fm, bottom) and
“peripheral” (b = 7.5 fm, top) Au + Au collisions from the Glauber
and CGC-fKLN models. Shown are cuts along the x axis (right panels)
and y axis (left panels). The two profiles are normalized to the same
total entropy at b = 2.33 fm, using the EOS s95p-PCE to convert
energy to entropy density.

from Glauber and CGC initializations. In the Glauber model
we assume a mixture of 85% wounded nucleon and 15% binary
collision contributions to the entropy production [58]. For the
CGC model we assume that the energy density is proportional
to the produced gluon energy density distribution, computed
with the publicly available fKLN code [59]. In central Au + Au
collisions, both profiles are normalized to the same total
entropy (adjusted to reproduce the total final charged hadron
multiplicity dNch/dy in these collisions) and converted to
energy density using the equation of state s95p-PCE (see next
section). With this normalization, both initializations correctly
describe the centrality dependence of dNch/dy for ideal fluid
dynamics (i.e., for isentropic expansion).

In the viscous case, viscous heating produces additional
entropy, resulting in larger final multiplicities which we must
correct for by renormalizing the initial entropy density profile
in such a way that the final multiplicity is held fixed. We
perform this renormalization for the 5% most central Au + Au
collisions (i.e., at b = 2.33 fm) and then keep the resulting
normalization constant fixed for noncentral collisions, i.e., we
again assume that the models produce the correct dependence
of initial entropy production on collision geometry. It is known,
however, that the fractional increase of the final entropy over
its initial value due to viscous heating depends on the size of
the collision fireball [37] and is therefore expected to be larger
in peripheral than central Au + Au collisions. For the results
presented in this article, we have checked that the centrality
dependence of viscous entropy production is sufficiently weak
so that it does not strongly modify the centrality dependence
of dNch/dy.

Figure 1 shows that the energy density profile from the CGC
initialization has a steeper surface gradient than the Glauber
profile. This leads to larger radial acceleration (i.e., radial
flow develops more quickly) and is also in part responsible
for the larger spatial eccentricity of the CGC profiles at
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nonzero impact parameters when compared to the Glauber
eccentricities [58,60].

The shear viscous pressure tensor πµν is initialized with its
Navier-Stokes value πµν = 2ησ

µν

0 , where σ
µν

0 is the velocity
shear tensor at time τ0, calculated from the initial Bjorken
velocity profile, uµ = (uτ , ux, uy, uη) = (1, 0, 0, 0).

For the medium’s viscous properties the shear viscosity
η/s is the key parameter. According to perturbative and lattice
QCD, the temperature dependence of η/s is weak over the
range explored in heavy-ion collisions at RHIC energies. This
suggests use of a constant ratio η/s. In this work, the value
of η/s is tuned from 0.08 to 0.24 in order to study the effects
of shear viscosity on the hadron spectra and elliptic flow. The
influence of a temperature-dependent η/s will be explored in
a forthcoming article [36].

Final-state hadron spectra are calculated from the hydrody-
namics output via the Cooper-Frye procedure [14]

E
d3Ni

d3p
= gi

(2π )3

∫
�

p · d3σ (x)fi(x, p), (4)

where � is the freeze-out surface with normal vector d3σµ(x).
We take for � an isothermal surface; calculations for different
freeze-out temperatures are presented in Sec. IV B. After
computing the spectra of all hadronic resonances included in
EOS s95p-PCE from Eq. (4), we use the resonance decay
program [61,62] from the AZHYDRO package1 to let the
unstable resonances decay. The pion and proton spectra shown
in this work include all decay products from strong decays.

The distribution function on the freeze-out surface can be
decomposed as f = feq + δf into a local equilibrium part

feq(p, x) = 1

ep·u(x)/T (x) ± 1
(5)

and a (small) deviation δf from local equilibrium due to shear
viscous effects for which we make the quadratic ansatz [63,64]
(for other possibilities see Ref. [65]) using

δf (x, p) = feq(p, x)[1∓feq(p, x)]
pµpνπµν(x)

2T 2(x)[e(x)+p(x)]
(6)

[the upper (lower) sign is for fermions (bosons)] for all particle
species. δf is proportional to the shear viscous pressure tensor
πµν(x) on the freeze-out surface and increases (in our case)
quadratically with the particle momentum.

III. EQUATION OF STATE

To solve Eqs. (2) and (3) one has to know the equation of
state p(e) (EOS) of the medium. In this work we compare three
different equations of state to study how the EOS affects the
hadron spectra and elliptic flow. Two of them, SM-EOS Q [44]
and EOS L [37], are well known in the literature; the former
implements a (slightly smoothed) first-order phase transition
between an ideal massless parton gas and a hadron resonance

1AZHYDRO is available at the URL [http://www.physics.ohio-
state.edu/˜froderma/].

gas (HRG), and the second is a rough attempt to match lattice
QCD (LQCD) data [66] above Tc to the HRG in a smooth
crossover transition, as seen in LQCD (see also Ref. [67]). In
both cases, the system is assumed to be in chemical equilibrium
all the way down to kinetic freeze-out at temperature Tdec.

Our third equation of state, s95p-PCE, also interpolates
between the HRG at low temperature and the lattice EOS
at high temperatures, but the matching procedure is more
sophisticated than the one used to construct EOS L, and the
lattice EOS is based on the recent results by the hotQCD
collaboration [23,24]. Furthermore, below Tchem = 165 MeV,
the EOS is that of a chemically frozen HRG. The matching
procedure using a chemically equilibrated HRG is explained
in detail in Ref. [25]. The procedure for the chemically frozen
HRG is identical since the chemical freeze-out temperature is
below the temperature where the interpolated EOS deviates
from the HRG EOS.

However, the version of s95p-PCE used here deviates
slightly from the s95p-PCE-v1 EOS shown in Appendix C
of Ref. [25]. First, we have chosen Tchem = 165 MeV for
the chemical freeze-out temperature, as fitted to experimental
data using thermal models [3,28,29], and we have considered
as stable particles those with a half-life larger than 40 fm/c

instead of 10 fm/c. Second, our s95p-PCE corresponds to a
historically slightly earlier stage of the parametrization of the
EOS than the final version published in Ref. [25]: The fit to the
lattice data was done without the T = 630 MeV data point.
This causes at most 0.4% difference between this version and
the final version of the EOS. We have checked that such a
small difference does not cause observable consequences in
the fluid-dynamical evolution.2

We have built the EOS of the chemically frozen hadron
gas using the standard procedure in the literature: Below Tchem

the ratios of stable hadron yields are fixed to their chemical
equilibrium values at Tchem by finite nonequilibrium chemical
potentials µi(T ) [15,16,19,26,27]. It is worth noting that the
ratios of individual particle densities are not conserved. What
is conserved are the ratios of the total densities of stable
particles, n̄i , where total density means the sum of the actual
density of species i and the additional density of the same
species that would arise if all unstable resonances in the system
were allowed to immediately and irreversibly decay. The rapid
processes that form and decay resonances through strong
interactions are still in equilibrium, and thus the resonance
populations are in equilibrium with the populations of their
daughter particles (see Refs. [15,26] for a detailed discussion).
Thus the chemically frozen system is in a state of partial
chemical equilibrium (PCE).

In practice the chemically frozen EOS is evaluated
assuming that the evolution is isentropic and the ratios
n̄i/s stay constant. Strictly speaking this is not the case in
viscous hydrodynamics since dissipation causes an increase in
entropy. However, we have checked that in our calculations the
viscous entropy production from fluid cells with temperatures
below Tchem = 165 MeV is small (see also the right panel of

2For a discussion of the uncertainties in parametrizing the lattice
data and its effect on fluid dynamics see Ref. [25].
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FIG. 2. (Color online) The three equations of state, s95p-PCE,
SM-EOS Q, and EOS L, used in this article. The lower panel shows
the squared speed of sound c2

s = ∂p

∂e
as a function of energy density

e, whereas p(e) is shown in the upper panel.

Fig. 8 in Ref. [37]) and our EOS is a good approximation of
the physical EOS.

An analytic parametrization of s95p-PCE is given in
Appendix; the EOS can be obtained in a tabulated form at
Ref. [68], where the particles included in the hadron resonance
gas are also listed. (We included all resonances listed in
the summary of the 2004 edition of the Review of Particle
Physics [69] up to 2 GeV mass. Note that our s95p-PCE is
called s95p-PCE165-v0 at Ref. [68] to differentiate it from
other versions of the parametrization.)

The three equations of state are compared in Fig. 2. The
upper panel shows the pressure and the lower panel the
squared speed of sound as a function of e. The spike in
c2
s (e) at e ∼ 0.5 GeV/fm3 results from the sudden breaking

of chemical equilibrium at Tchem = 165 MeV. It has negligible
consequences for the expansion dynamics. Figure 2 shows
that s95p-PCE is a much softer EOS than SM-EOS Q in the
QGP phase above Tc but much harder in the phase transition
region around Tc. Contrary to SM-EOS Q and EOS L, the
rapid crossover transition between quarks and hadrons that
is realized by nature does not have a well-defined “softest
point” [70] which would cause the fireball to spend an extended
time period in the critical region. Instead, the speed of sound
never drops much below its value in the HRG, causing the
fireball to cool rapidly through the phase transition [71].

IV. SPECTRA AND ELLIPTIC FLOW

In this section, we discuss the dependence of the transverse-
momentum spectra in central 200A GeV Au + Au collisions

(0–5% centrality, b = 2.33 fm) and the elliptic flow v2(pT ) in
semiperipheral collisions (20–30% centrality, b = 7.5 fm) for
pions, protons, and (for v2) all charged hadrons on the EOS and
various input parameters discussed in Secs. II and III. We have
also checked that everything we say below about the central
collision spectra also applies, at the same level of precision, to
the φ-averaged spectra in semiperipheral collisions.

Since the amount of viscous heating depends on the input
parameters, for each case we retune the normalization of the
initial energy density profile in central collisions so the same
final π+ multiplicity density dNπ+/dy is obtained. Its value is
adjusted by eye such that an optimal fit to the measured pion
spectrum is obtained in the low-pT region, pT < 1.5 GeV/c.
As there are slight discrepancies between the published
data from the STAR and PHENIX Collaborations, and these
experiments give their results in different centrality bins, we
have decided to concentrate on PHENIX results [72–74] when
comparing the theoretical curves with experimental data. Since
we do not attempt to fit these data but use the comparison
only to illustrate trends, this procedure is acceptable. A future
serious dynamical model fit to the data will require proper
accounting for systematic uncertainties and discrepancies
among the different experiments.

Since viscous heating effects are relatively more important
in peripheral than in central collisions, our renormalization to
constant multiplicities at b = 2.33 fm leads to slightly different
pion multiplicities at larger impact parameters. For a given
EOS, ensuring the same final pion multiplicity is equivalent
to ensuring the same final total multiplicity. For different
equations of state (see Sec. IV D) identical pion multiplicities
correspond to slightly different total multiplicities.

In the following we show hadron spectra and elliptic flow
up to transverse momenta of 3 GeV/c. We emphasize that
this is for illustrative purposes only and does not imply that
we believe hydrodynamics to provide a valid description up
to such large pT . When comparing model results with exper-
imental data, we judge the quality of agreement by focusing
on the region pT < 1.5 GeV/c for pions and pT < 2.5 GeV/c

for protons (which is where we believe hydrodynamics is a
reliable approach [75]). Specifically for pions, if the calculated
spectra drop off more steeply than the measured ones above
pT = 1.5 GeV/c, we discount this discrepancy, noting that this
is the region where the experimental spectra begin to change
from an exponential to a power-law shape due to the onset of
hard physics.

A. η/s dependence at fixed τ0 = 0.4 fm/c and T dec = 140 MeV

Transverse-momentum spectra of pions and protons in the
most central Au + Au collision are shown in Fig. 3 and in
the upper left panel of Fig. 4. The spectra include all strong
resonance decays. Here we hold initial and final conditions
fixed (except for a renormalization of the initial peak energy
density to ensure the same final multiplicity in all calculations)
and vary the specific shear viscosity η/s (see figure captions for
details). One sees that under these conditions larger η/s values
result in flatter spectra; the effect is particularly strong for
protons at low pT . The main reason is that larger shear viscosity
leads to larger radial flow, due to a positive contribution from
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FIG. 3. (Color online) Pion spectra for 200A GeV Au + Au
collisions at 0–5% centrality from VISH2+1 compared with PHENIX
data [72]. Results for two different constant values of η/s (0.08 and
0.24) are shown; strong resonance decays are included. Solid and
dashed lines show the spectra calculated from the full distribution
function f = feq + δf (“with δf ”) and from the equilibrium part
only (“without δf ”). The hydrodynamic evolution starts at τ0 =
0.4 fm/c with an initial CGC energy density profile and ends at
Tdec = 140 MeV. The EOS is s95p-PCE.

πµν to the effective transverse pressure gradients at early times
[39,76,77].

Figure 3 identifies, however, a second contribution to the
viscous hardening of the spectra: For η/s = 0.16 and 0.24 and
evolution with s95p-PCE, we find that the viscous correction
due to the nonequilibrium deviation δf of the distribution
function on the freeze-out surface, Eq. (6), is positive for
pT >∼ 0.5–1 GeV/c,3 thus adding to the hardening of the
spectra from radial flow.4 This is the same sign for δf as
found in Ref. [78] (for a different EOS) but opposite to what
had been found earlier with VISH2+1 for smaller values of η/s

using SM-EOS Q (i.e., a first order phase transition) [44]. (For
η/s = 0.08 Fig. 3 shows a negative δf correction for pions at
large pT of the same sign but much smaller magnitude than
found earlier [44] with Glauber initial conditions and SM-EOS
Q). Our finding confirms the fragility of the sign of δf that
was already discussed in Ref. [44].5

3The Landau matching conditions require the δf correction to
integrate to zero when summing over all momenta, so a positive
δf contribution at high pT implies a negative δf contribution at low
and/or intermediate pT . In Ref. [44] we found that it typically changes
sign twice.

4We checked that for all equations of state studied here that the sign
of δf at high pT does not depend on whether we use CGC or Glauber
initial conditions.

5For EOS L and SM-EOS Q and η/s > 0.08, we find a negative sign
of the δf contribution to both pion and proton spectra at high pT , while
the corresponding contribution is positive in the case of s95p-PCE.
The negative sign appears to be correlated with the use of an EOS
with a “softest point.” From ideal fluid dynamic simulations with such
first-order or almost-first-order phase transitions we know that the
rapid change of c2

s in the transition region generates strong structures

We note in passing that the positive δf at large pT found
here with s95p-PCE is found to be largest in near-central
collisions (b ≈ 0) where it can even lead to a positive δf

correction to the differential elliptic flow v2(pT ). At larger b,
the δf contribution to v2(pT ) remains negative here (see right
panels of Fig. 4), as has been consistently observed in other
work [10,43,44,78,79].

The time-integrated effect of the shear viscous pressure on
the radial flow and the “instantaneous” effect of the viscous
correction δf to the distribution function on the freeze-out
surface together give the total shear viscous correction to the
hadron spectra. For η/s = 0.08 we see in Fig. 3 that with
s95p-PCE the δf correction to the pion spectrum is almost
negligible, but the upper left panel in Fig. 4 shows that the
pion and proton spectra are still flatter than for the ideal fluid,
reflecting the larger radial flow caused by the shear viscous
increase of the transverse pressure gradients [44]. Thus both
the effect of viscosity on radial flow and δf contribute to the
flattening of the hadron spectra.

Comparing with the experimental data we find that both
pion and proton spectra favor a relatively large shear viscosity,
η/s = 0.16 ∼ 0.24. We caution that this conclusion is based
on calculations done with constant (i.e., temperature indepen-
dent) η/s and may be subject to revision once one properly
accounts for the increase of η/s in the dilute late hadronic
stage.

Proceeding to the elliptic flow, we start with a discussion of
the charged hadron v2 in the lower left panel of Fig. 4. Here,
larger shear viscosity values are seen to lead to a stronger
suppression of elliptic flow. The right panels in Fig. 4 show
that this suppression is again the consequence of two additive
effects: shear viscosity reduces the buildup of anisotropic
collective flow, reflected in the equilibrium part feq of the
distribution function on the freeze-out surface (dotted lines
in Fig. 4), but the viscous correction δf causes an additional
suppression of v2. For T -independent η/s, both suppression
effects increase monotonically with shear viscosity; however,
the increase of the δf correction with rising η/s is weaker
than that of the viscous suppression of the collective flow
anisotropy. The stronger suppression of v2 for larger η/s is
thus mostly due to the viscous suppression of anisotropic flow.

Since elliptic flow data for identified pions and protons
in the particular centrality bin shown in Fig. 4 are not yet
available, we compare in the lower left panel with experimental
data for unidentified charged hadrons. This plot suggests that,
even for CGC initial conditions which produce more eccentric
fireballs than the Glauber model [10,58], the v2 data suggest
a smaller value for η/s, η/s = 0.08–0.16, than obtained from
the pT spectra for central collisions.

This tension between the slope of the pT spectra (which
tends to favor larger η/s values) and the pT dependence of v2

in the radial velocity profile in fireball regions that are close to the
critical temperature [46] and that these structures partially survive
until the matter has reached decoupling. We suspect that velocity
gradients associated with these structures play an important role in
generating for EOS L and SM-EOS Q a negative δf contribution to
the spectra at high pT .
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FIG. 4. (Color online) (Upper left panel) Transverse-momentum spectra dN/(dyd2pT ) for pions and protons from VISH2+1 for the 5%
most central Au + Au collisions (b = 2.33 fm) compared with experimental data from the PHENIX Collaboration [72]. (Lower left panel)
Differential elliptic flow v2(pT ) for charged hadrons from Au + Au collisions at 20–30% centrality (b = 7.5 fm) compared with PHENIX
data [73]. (Right panels) v2(pT ) for pions (top) and protons (bottom). In these panels we compare the elliptic flow computed from the full
distribution function f = feq + δf (dashed, dot-dashed, and double-dot-dashed lines) with the contribution from the equilibrium part only
(dotted lines, “without δf ”). Lines with different symbols show calculations for different constant values of the specific shear viscosity η/s,
ranging from 0 (ideal hydro, solid lines) to 0.24 as indicated. All strong resonance decays are included; charged hadrons comprise π±, K±, p,
p, �±, �

∓
, �−, �

+
, �−, and �

+
. The EOS and initial and final conditions are the same as in Fig. 3.

(which favors smaller values) is generic and, as far as we were
able to ascertain, cannot be resolved with purely hydrodynamic
calculations that assume constant η/s. A possible solution of
this problem will likely involve accounting for temperature
dependence of η/s and/or the transition to a microscopic
kinetic description for the late hadronic stage.

B. T dec dependence at fixed τ0 = 0.4 fm/c and η/s = 0.16

In Fig. 5 we explore the sensitivity of spectra and elliptic
flow on the value of the decoupling temperature, holding
all other parameters fixed. For the constant η/s we select
η/s = 0.16 as a compromise between the values preferred
by the proton spectra and charged hadron v2, respectively, in
Fig. 4.

The left upper panel shows that lower freeze-out temper-
atures lead to flatter proton spectra. This is a consequence
of additional radial flow built up during the extra time
the fireball needs to cool down to lower Tdec. As is well
known [80,81], the heavier protons receive a larger push to
higher pT from radial flow than the lighter pions. Indeed,
Fig. 4 shows that the pion spectra become steeper as Tdec

is lowered [82]. Since pions are almost massless on the
scale of measured transverse momenta, the inverse slope of
their pT spectrum can be approximated by the relativistic

blueshift formula [80,81] Tslope = Tdec

√
1+〈v⊥〉
1−〈v⊥〉 , where 〈v⊥〉

is the average radial flow at Tdec. For pions, the steepening
effects on their spectrum from decreasing Tdec overwhelm the
flattening effects resulting from the associated increase of 〈v⊥〉,
causing a net softening of the pion spectra for lower freeze-out
temperatures.

From the lower left panel of Fig. 5 one sees that lower
decoupling temperatures lead to larger elliptic flow v2(pT )
for charged hadrons. To fully understand this systematics it is
worth comparing charged hadrons to the pT spectra and v2(pT )
of pions (upper left and right panels, respectively) which
dominate the charged hadron yield. The observed tendency
reflects a combination of three effects:

(i) Since the pT spectrum of pions (which dominate the
charged hadrons) gets steeper, even the same hydro-
dynamic momentum anisotropy would lead to a larger
slope of v2(pT ), to compensate for the lower yield at
high pT .

(ii) Since the fireball has not lost all of its eccentricity by
the time the QGP converts to hadrons [44], additional
momentum anisotropy is generated during the hadronic
stage. Lower decoupling temperatures give the system
time to develop more momentum anisotropy, leading to
a larger v2. If the pT spectrum stays unchanged or gets
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FIG. 5. (Color online) Similar to Fig. 4 but for fixed η/s = 0.16 and varying decoupling temperature Tdec ranging from 100 to 160 MeV as
indicated.

steeper (as is the case for pions in Fig. 5), a larger v2

must lead to a larger v2(pT ). The combination of effects
(i) and (ii) is seen in the dotted lines in the upper right
panel, which reflect the hydrodynamic flow anisotropy
at decoupling, undistorted by viscous corrections δf

to the local equilibrium distributions at freeze-out. The
effect (ii) decreases with increasing η/s in the hadronic
phase (not shown here), so the combined effect may be
weaker than seen in Fig. 5 if viscous hydrodynamics
is replaced by a microscopic hadron cascade such as
UrQMD in the hadronic phase.

(iii) The (negative) viscous corrections from δf to v2 are
smaller at lower temperatures, due to the general
decrease of the viscous pressure components [44].
This contributes the largest fraction of the observed
increase of v2(pT ) with decreasing Tdec, especially at
large pT .

Combining the information from the two left panels in
Fig. 5 we conclude that both the proton spectra in central
collisions and charged hadron v2(pT ) in peripheral collisions
favor decoupling temperatures near the lower end of the
window studied here (i.e., Tdec = 100 MeV works better than
Tdec = 140 MeV). The pion spectra are affected by variations
of Tdec mostly at pT >∼1–1.5 GeV/c where they fall increasingly
below the experimental data as we lower Tdec. However, this is
also the region where the hydrodynamic description of the pion
spectra is known to begin to break down [75], due to the gradual
transition from soft to hard physics which causes the pion
spectrum to change from an exponential to a power-law shape.

Focusing therefore on the region pT <1.5(2.5) GeV/c for pions
(protons), we conclude that a purely hydrodynamic description
of the experimental data favors freeze-out temperatures near
100 MeV.

The right panels of Fig. 5 show how Tdec affects the elliptic
flow of different identified hadrons. Charged hadrons mostly
reflect the behavior of the dominating pions whose v2(pT )
increases with decreasing freeze-out temperature. But protons
behave differently: At low pT <1 GeV, their elliptic flow
decreases with decreasing decoupling temperature, while at
high pT it increases with decreasing Tdec. The latter feature
reflects the increasing hydrodynamic momentum anisotropy
and decreasing magnitude of the δf correction, just like it
is reflected in the pion and charged hadron v2. The decrease
of proton v2 at low pT , on the other hand, is a consequence
of having larger radial flow at lower Tdec which pushes the
protons to larger pT . So rather than thinking of this effect as
a decrease of proton v2 at fixed pT , we should think of it as
shifting the elliptic flow to larger pT .

C. τ0 dependence at fixed η/s = 0.16 and T dec = 140 MeV

The upper left panel of Fig. 6 shows that the pion and
proton spectra react similarly to a change of the starting time
τ0 of the hydrodynamic evolution: Smaller τ0 values lead to
more high-pT particles, reflecting more radial flow. Starting
hydrodynamics earlier allows it to generate radial flow earlier,
and even though this also causes the fireball to cool down to
Tdec sooner and freeze out earlier, the net effect is still a slight
increase of the average radial flow at freeze-out.
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FIG. 6. (Color online) Similar to Fig. 4 but for fixed η/s = 0.16 and varying starting time τ0 for the hydrodynamic evolution, ranging from
0.2 to 0.8 fm/c as indicated.

For soft momenta pT <1.5 GeV/c, the effect of τ0 on v2(pT )
is negligible. This is true even for protons, showing that the
increase of radial flow with decreasing τ0 is a small effect and
not enough to visibly push the proton v2 to larger pT . At higher
pT , the dependence of the charged hadron, pion and proton v2

on τ0 is nonmonotonic. The right panels of Fig. 6 show that
this nonmonotonic behavior is the result of two counteracting
tendencies which both depend on τ0 monotonically: (i) The
elliptic flow computed from the local equilibrium part feq of
the distribution function at freeze-out increases monotonically
with increasing τ0, reflecting the longer total fireball lifetime
(and thus the longer time available to build up momentum
anisotropy) when the hydrodynamic evolution starts later.
(ii) The v2 suppression resulting from the viscous correction
δf at freeze-out also increases monotonically with increasing
τ0. We don’t have a complete understanding of why starting
(and thus also ending) the hydrodynamics later leads to a
larger δf on the decoupling surface; we suspect that since
the hydrodynamical flow would eventually settle into a three-
dimensional spherically symmetric Hubble flow with no shear
stress, starting earlier leads to a stronger transverse flow, and
thus to a flow profile which is closer to a spherically symmetric
flow at the time of decoupling.

D. EOS dependence at fixed τ0 = 0.4 fm/c, η/s = 0.16, and
T dec = 140 MeV

In Fig. 7 we study the sensitivity of hadron spectra and
elliptic flow on the equation of state, holding all other hydro-
dynamic parameters fixed (except for the normalization of the

initial energy density profile which is again adjusted to ensure
constant final multiplicity in central Au + Au collisions). We
first note that, due to the different chemical composition at
hadron freeze-out, the proton yields for EOS L and SM-EOS
Q are below those of s95p-PCE if we hold the pion mulitiplicity
fixed: In s95p-PCE we prohibit protons from annihilating on
antibaryons while such annihilation processes are allowed
in the other two equations of state which assume hadrons
in chemical equilibrium. To explore flow effects we should
concentrate on the shape (i.e., inverse slopes) of the pion
and proton spectra. We see that EOS L produces the flattest
spectra, followed by SM-EOS Q, whereas the spectra from
s95p-PCE are steepest. Since all three curves correspond to the
same (constant) freeze-out temperature Tdec = 140 MeV, these
differences can only arise from different amounts of radial
flow or different δf corrections (i.e., different viscous pressure
components πµν) along the freeze-out surface. To separate
these two effects we plotted the spectra calculated without
the δf correction and found the same hierarchy. We conclude
that, for fixed freeze-out temperature, s95p-PCE produces the
weakest radial flow averaged over the freeze-out surface and
EOS L generates the strongest flow, with SM-EOS Q falling
in between.

The reasons for s95p-PCE generating less radial flow than
the other two equations of state are complex and subtle. The
differences in speed of sound during the evolution largely
cancel out (see Ref. [25]). The key difference is that, at a fixed
freeze-out temperature, the chemically frozen HRG embodied
in s95p-PCE has a considerably larger energy density (edec =
0.301 GeV/fm3 at Tdec = 140 MeV) than the chemically
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FIG. 7. (Color online) Similar to Fig. 4 but for fixed η/s = 0.16 and different equations of state (SM-EOS Q, EOS L, and s95p-PCE) as
indicated. Since SM-EOS Q and EOS L have different chemical composition than s95p-PCE at Tdec = 140 MeV, they yield fewer protons than
s95p-PCE when normalized to the same pion yield.

equilibrated HRG used in EOS L and SM-EOS Q (which has
edec = 0.143 GeV/fm3 at the same temperature) [15], due to
the larger-than-equilibrium abundances of baryon-antibaryon
pairs and mesons that are prohibited from annihilating as the
system cools below Tchem. So with s95p-PCE the fireball
reaches the freeze-out point earlier, and it has a smaller
freeze-out radius. It is this latter feature which causes the
average radial flow along the freeze-out surface to be smaller
for s95p-PCE than for the other two EOS: when plotting the
radial velocity profiles along the decoupling surface, we found
that all profiles are approximately linear functions of the radial
distance r from the center (qualitatively similar to the profiles
shown in Fig. 4 of Ref. [83]) and that the profile for s95p-PCE
has the largest slope. However, the average radial flow is
smallest because for s95p-PCE the average over the freeze-out
surface is truncated at a smaller maximal r value.

The charged hadron, pion and proton elliptic flows v2(pT )
show quite large sensitivity to the EOS, especially at high pT .
(We repeat that the hydrodynamic spectra should probably not
be trusted beyond pT ∼ 2–2.5 GeV/c, but plotting them out
to 3 GeV/c makes it easier to see what is going on in the
calculation.) But we see that most of this sensitivity comes in
through the δf correction at freeze-out which is particularly
large for SM-EOS Q. The reason for this is that the first-order
phase transition leads to large velocity gradients at the QGP-to-
mixed-phase and mixed-phase-to-HRG interfaces [46] which
are largely but not completely washed out by viscous effects
[44] and leave traces on the decoupling surface. δf effects
are weaker with the smoother EOS L than with SM-EOS

Q even though EOS L generates on average more radial
flow.

To discuss the contribution from collective flow
anisotropies to pion and proton v2(pT ) we focus on the dotted
lines in the right panels of Fig. 7. We see that, while s95p-PCE
creates less radial flow, it generates a larger flow anisotropy (we
checked this by direct computation), resulting in larger v2(pT )
for both pions and protons than with the other two equations
of state. For EOS Q it was found in Refs. [15,16,19] that if the
kinetic freeze-out temperature Tdec is adjusted to reproduce the
pT spectra, the correct implementation of chemical freeze-out
at Tchem in the HRG phase increases the mass splitting between
v2(pT ) of pions and protons at low pT . On the other hand, if
the freeze-out temperature is kept constant, the mass splitting
at low pT decreases [15]. Since we have kept the freeze-
out temperature fixed in our calculations, we see a similar
phenomenon here: The elliptic flow mass splitting between
pions and protons is weaker for the chemically frozen s95p-
PCE than for the chemically equilibrated EOS L and SM-EOS
Q. This is a consequence of the weaker radial flow generated by
s95p-PCE.

E. Dependence on the shape of the initial energy
density profile (CGC vs. Glauber)

We close with a discussion of the influence of the shape
of the initial energy density profile on the hadron spectra
and elliptic flow, using the Glauber and CGC-fKLN models
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FIG. 8. (Color online) Similar to Fig. 4 but for fixed η/s = 0.16 and different initial energy density profiles (Glauber vs. CGC) as indicated.
The elliptic flow from an initial CGC density profile is larger than for the Glauber initialization, due its larger initial eccentricity.

as examples. For an illustration of these profiles see
Fig. 1.

The CGC profile is characterized by slightly steeper
normalized energy density gradients than the Glauber profile.
According to the Euler equation for ideal fluids

u̇ν = c2
s

1 + c2
s

∇νe

e
(7)

this leads to larger radial acceleration. Indeed, the upper
left panel of Fig. 8 exhibits slightly flatter pion and proton
spectra for CGC-initialized simulations than for Glauber initial
conditions.

The elliptic flow coefficients for charged hadrons, pions,
and protons are all significantly larger for the CGC-initialized
runs than for Glauber initial conditions. This is a direct
consequence of the well-known larger eccentricity of the
CGC density profiles [10,50,58,60] which drives a larger
momentum anisotropy. The effect is qualitatively similar for
all hadron species. The small amount of added radial flow
from the CGC initialization that we see in the spectra has
very little influence on the pT dependence of the proton
v2 when compared to the much larger effects coming from
the larger source eccentricity. The suppression of v2 by
viscous δf corrections at freeze-out is similar for CGC and
Glauber initial conditions, being slightly larger in the CGC
case. This is presumably caused by the slightly larger flow
velocities (and flow velicity gradients) generated by the CGC
profile.

V. CONCLUSIONS

We have performed a systematic study of the dependence
of the pion and proton transverse momentum spectra and
their pT -dependent elliptic flow on the thermalization time
τ0, initial energy density profile, equation of state, freeze-
out temperature, and specific shear viscosity in (2 + 1)-
dimensional viscous hydrodynamic simulations. Assuming a
temperature-independent shear viscosity to entropy ratio and
CGC initial conditions for the energy density profile, we find
that the proton pT spectra measured in 200A GeV central
Au + Au collisions at RHIC favor η/s values between 2 and
3 times the KSS bound ( η

s
)KSS = 1

4π
while the pT slope

of the charged hadron elliptic flow prefers smaller values
between 1 and 2 times the KSS bound. This tension cannot be
resolved by different choices for the other paramaters whose
variation we studied. Of course, the η/s values extracted from a
comparison with simulations using the less eccentric Glauber
model for the initial energy density profile are smaller, but
the comparison with the experimental data gets worse (the
proton spectra come out steeper) and tension between the
η/s values preferred by spectra and v2 gets stronger. Lower
freeze-out temperatures improve the agreement with the data,
in particular with the heavy-particle (proton) spectra. We
saw very little sensitivity to the choice of the termalization
time τ0, but for larger values of τ0 we did not allow for the
evolution of pre-equilibrium radial and elliptic flow, contrary
to what is expected to happen in reality. The main reason for
not doing so was that, at this point, we have no theoretical
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control over this pre-equilibrium flow, and we did not want
to clutter our study by introducing still further parameters.
If there is a tendency worth mentioning in the context of
varying τ0 it is that smaller τ0 values lead to somewhat larger
radial flow which helps with the description of heavy hadron
spectra. This may, however, also be achievable by starting
hydrodynamics later, but with nonzero initial transverse flow
[21,84,85].

The main objective of this study was to gain an intuitive un-
derstanding what reasonable changes in the key parameters of
a viscous hydrodynamic simulation will do to the final hadron
spectra and elliptic flow. By also keeping an eye on the avail-
able experimental data we come to the conclusion that a purely
hydrodynamic description of the experimental spectra will
probably not work, at least not with temperature-independent
η/s. Realistic variations of η/s with temperature are the sub-
ject of a separate study [36]. Based on that study combined with
the one presented here we believe that giving up on a (viscous)
hydrodynamic description of the hadron resonance gas stage
and replacing it with a more reliable microscopic approach is

unavoidable for a quantitative description of the experimental
data.
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APPENDIX: ANALYTIC PARAMETRIZATION OF EOS
s95p-PCE [68]

We used the following analytic parametrization for the
equation of state s95p-PCE (energy density e and pressure
p in GeV/fm3, entropy density s in fm−3, temperature T

in GeV):

1. Pressure

p(e) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0.3299[exp(0.4346e) − 1] : e < e1

1.024 × 10−7 exp(6.041e) + 0.007273 + 0.14578e : e1 < e < e2

0.30195 exp(0.31308e) − 0.256232 : e2 < e < e3

0.332e − 0.3223e0.4585 − 0.003906e exp(−0.05697e) + 0.1167e−1.233 + 0.1436e exp(−0.9131e) : e3 < e < e4

0.3327e − 0.3223e0.4585 − 0.003906e exp(−0.05697e) : e > e4

(A1)

where e1 = 0.5028563305441270 GeV/fm3, e2 = 1.62 GeV/fm3, e3 = 1.86 GeV/fm3, and e4 =
9.9878355786273545 GeV/fm3.

2. Entropy density

s
4
3 (e) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

12.2304e1.16849 : e < e1

11.9279e1.15635 : e1 < e < e2

0.0580578 + 11.833e1.16187 : e2 < e < e3

18.202e − 62.021814 − 4.85479 exp(−2.72407 × 10−11e4.54886)

+65.1272e−0.128012 exp(−0.00369624e1.18735) − 4.75253e−1.18423

}
: e3 < e < e4

18.202e − 63.0218 − 4.85479 exp(−2.72407 × 10−11e4.54886)

+65.1272e−0.128012 exp(−0.00369624e1.18735)

}
: e > e4

(A2)

where e1 = 0.1270769021427449 GeV/fm3, e2 = 0.4467079524674040 GeV/fm3, e3 = 1.9402832534193788 GeV/fm3, and
e4 = 3.7292474570977285 GeV/fm3.

3. Temperature

T (e) =
{

0.203054e0.30679 : e < 0.5143939846236409 GeV/fm3

(e + p)/s : e > 0.5143939846236409 GeV/fm3
(A3)
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