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Sensitivity of the jet quenching observables to the temperature dependence of the energy loss
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The quenching of minijets (particles with pT � T , �QCD) in ultrarelativistic heavy-ion collisions has been one
of the main predictions and discoveries at the BNL Relativistic Heavy Ion Collider. We analyze the correlation
between different observables like the nuclear modification factor RAA(pT ), the elliptic flow, and the ratio of
quark to gluon suppressions. We show that the temperature (or entropy density) dependence of the in-medium
energy loss strongly affects the relation among these observables. In particular, the large elliptic flow and the
nearly equal RAA(pT ) of quarks and gluons can be accounted for only if the energy loss occurs mainly around
Tc and the q ↔ g conversion is significant. The use of an equation of state fitted to lattice QCD calculations,
slowing down the cooling as T → Tc, seems to contribute to both the enhancement of v2 and the efficiency of
the conversion mechanism.
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The experiments at the BNL Relativistic Heavy Ion Collider
(RHIC) are dedicated to studying the properties of the matter
at exceedingly high density and temperature. Under such
extreme conditions, the matter was expected to undergo a
deconfinement and chiral phase transition and have quarks and
gluons as degrees of freedom. The theoretical and experimental
efforts have shown that, indeed, a new form of matter has been
created [1]. Such a matter appears as a nearly perfect fluid
with very low viscosity to entropy density [2,3]. It develops
strong collective modes with quarks as degrees of freedom and
hadronizes in a modified way with respect to pp collisions,
at least in the intermediate 2 � pT � 5-GeV region [4,5].
One way to probe the created matter is to exploit the high-
energy jets (pT � T ,�QCD) produced by the hard collisions
at the initial stage. They are internal probes propagating
through the fireball and interacting with the medium, hence
carrying information on its properties, as proposed long ago
in Refs. [6–8]. It has indeed been shown that the matter has a
very high opacity with respect to high-pT partons that traverse
the hot medium in agreement with the expectations about the
energy loss in QCD medium [8–10]. This energy loss can be
quantified by the suppression of observed hadron spectra at
high transverse momenta pT , as well as in the suppression
of back-to-back dihadron correlations with a high-pT trigger,
when compared with pp or dA collisions [1,11]. Both these
phenomena related to the “jet quenching” have been observed
and represent one of the major discoveries of the RHIC
experimental program [1].

However, even if the observation of the jet suppression
cannot be questioned, there are several fundamental questions
that still remain open. There are indeed several models that
depend in a different way on temperature T [12,13] or that do
not depend explicitly on T but on the q̂ transport coefficient
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[14,15]; some others are based on perturbative approach and
others on higher twist expansion [16,17].

Despite differences, all of the approaches seem to be able
to describe the amount of suppression RAA(pT ) observed
experimentally. It is evident that one needs to go one or two
steps further and, fortunately, experimentally, there are already
other observables related to the jet quenching phenomena
available. Interestingly, the present models do not seem to
be able to account for all of them simultaneously. In this
article we focus on two observables beyond the RAA(pT ).
One is the elliptic flow v2(pT ) and the other is the flavor
dependence of the suppression that we mainly discuss in terms
of RAA(q)/RAA(g). The latter can be experimentally inferred
by a systematic comparison of the different suppression for
π , ρ, K , p, and p̄, which are differently related to quark and
gluon suppression.

The purpose of the present article is to show that the jet
quenching mechanism carries much more information than can
be inferred from only the nuclear modification factor RAA(pT )
and even the jet-triggered angular information. We suggest that
the study of the correlation between the elliptic flow v2 and the
flavor dependence of the quenching RAA(q)/RAA(g) is rich in
information on the temperature dependence of the quenching
and on the mechanism of parton flavor conversion.

We point out that a correlation between v2 and
RAA(q)/RAA(g) is sensitive to the temperature (or entropy
density s) dependence of �Eloss and on the density profile
of the bulk. The latter becomes unexpectedly dramatic if an
extreme T , ρ, or s dependence is considered as in the recent
works of J. Liao and E. Shuryak [18] or V. S. Pantuev [19]. This
shows, in general, that once one goes beyond the RAA(pT ) a
more careful treatment of the time evolution of the fireball
becomes mandatory, but also the simultaneous description
of RAA(pT ), v2, and RAA(q)/RAA(g) [or the ratio of the
RAA(pT ) between different hadrons] is nontrivial and more
rich in information. In particular we find that the energy loss
increasing as T → Tc, the q ↔ g in-medium conversion and
the expansion-cooling of the fireball according to a lattice
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QCD EoS all go in the direction of improving the agreement
with the three observables.

The article is organized in five sections. In Sec. I the main
ingredients of the model are presented. In Sec. II the model is
applied to calculate the RAA(pT ) as a function of momentum
and centrality. In Sec. III the elliptic flow and the ratio of quark
to gluon RAA(pT ) are discussed together with their correlation.
In Sec. IV the impact of a realistic EoS is presented. In the last
section we summarize the conclusions from the present study.

I. MODELING THE JET QUENCHING

Our modeling of the jet energy loss is based on the very
widely used adiabaticlike approximation for which the jet
loses energy in a bulk medium that is independently expanding
and cooling. Therefore, the jet energy loss is considered to be
a small perturbation of the bulk dynamics. This essentially has
been the main assumption in the model until now, even if the
higher energy at CERN Large Hadron Collider (LHC) should
make this assumption inadequate owing to the significant
amount of energy that is contained in the high-pT partons
initially produced.

The main components of our model can be easily sketched
in the following way.

A. Initial conditions

The parton distributions are calculated in the next-to-
leading-order perturbative QCD (pQCD) scheme: They are
parametrized by power-law functions as

dNf

d2pT

= Af

(1 + pT /Bf )nf
, (1)

with f = q, q̄, g. The transverse momentum pT is in units
of GeV and the values of the parameters Af , Bf , and nf are
given in Table I and are taken from Ref. [20]. Such a choice
is driven mainly by the intention to make a direct contact and
comparison with the several works discussing jet quenching
with the flavor conversion [20–24].

As regards the parton distribution in space coordinates,
it scales with the number of binary nucleon collision Ncoll

according to the standard Glauber model [25,26]. The initial
conditions for the bulk medium are described by the density
profile ρ(�r, z, τ ) that in the longitudinal direction evolves
according to the Bjorken expansion at the velocity of light.
The initial transverse density profile is instead proportional to
the standard Glauber model participant distribution:

ρpart(�b, �r) = tA(�r)[1 − e−σNN tA(�b−�r)]

+ tB(�b − �r)[1 − e−σNN tA(�r)], (2)

TABLE I. Parameters for initial parton minijet distribution given
in Eq. (1) at midrapidity for Au + Au at

√
sNN = 200 A GeV. Taken

from Ref. [20].

Af (GeV) Bf (GeV) nf

g 1440 1.5 8.0
q 670 1.6 7.9
q̄ 190 1.9 8.9

with σNN = 42 mb, �b the impact parameter vector, and tA
the nuclear thickness function normalized to the number of
nucleons and given by

tA(�r) =
∫ +∞

−∞
dzρA(�r, z), (3)

where ρA(�r) is the nuclear density that we have taken to be
a Woods-Saxon (WS) with radius R = 6.38 fm and thickness
a = 0.535 fm. The total number of participants is therefore

Npart(b) =
∫

d2rρpart(b, �r). (4)

Beyond the Glauber density profile we have also considered
a simplified sharp elliptic (SE) shape with the �x and �y axis
adjusted to reproduce the same eccentricity of the Glauber
model at each impact parameter. The SE shape has been used
for the description of the bulk in several jet quenching models
[20–22,27].

B. Bulk density evolution

For the SE shape the density space-time evolution is given
by

ρ(x, y, τ ) = 1

τAT (τ )

dN

dyz

�

(
1 − x2

R2
x(τ )

− y2

R2
y(τ )

)
, (5)

where AT = πR2
xR

2
y is the transverse area of the evolving

fireball and Rx,Ry are the lengths of the two axes of the
ellipse. These can in general evolve according to an expansion
at constant acceleration or constant velocity,

Rx(τ ) = Rxo + vT τ + 1
2 (aT + εa)τ 2,

(6)
Ry(τ ) = Ryo + vT τ + 1

2 (aT − εa)τ 2,

with vT the transverse velocity and aT ± εa the acceleration
that through εa can be taken to be different between the x and y

directions to simulate the anisotropic azimuthal expansion that
reduces the eccentricity with time. We have used a typical value
of aT = 0.08 fm−1 that generates a final radial flow β = 0.4,
with vT = 0, εa = 0.04 fm−1, with a slight dependence on the
impact parameter of the collision. However, the sensitivity of
the jet quenching on these parameters is quite limited.

For the case with the Glauber profile the evolution of the
local density is similarly given by

ρ(x, y, τ ) = 1

τAT (τ )

dN

dy
Peff(x, y, τ ), (7)

where with respect to Eq. (5) the θ function is substituted by
the profile function Peff(x, y, τ ) and AT is now the effective
area given by the space integral of the profile function,

Peff(x, y, τ ) = Npart(x, y, τ )

Npart(0, 0, τ )
,

(8)
AT =

∫∫
dxdyPeff(x, y, τ ),

where Npart(x, y, τ0) is given by the Glauber model while the
time dependence is determined by the expansion in the x-y
plane according to Eq. (6).
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C. Energy loss

The aim of our work is to explore the consequences of
different T dependencies of energy loss on the observables;
hence, we employ various schemes for the energy loss.
However, to make a connection to the large amount of effort
to evaluate gluon radiation in a pQCD frame we will use also
the Gyulassy-Levai-Vitev (GLV) formula at first order in the
opacity expansion [10,27],

�E(ρ, τ, µ)

�τ
= 9π

4
CRα3

s ρ(x, y, τ )τ log

(
2E

µ2τ

)
, (9)

where CR is the Casimir factor equal to 4/3 for quarks and 3 for
gluons, µ = gT is the screening mass with g = 3 in agreement
with lattice QCD (lQCD) results [28] and τ is the time minus
the initial time τi = 0.2 fm. Furthemore, considering massless
partons at midrapidity E = pT . There are corrections to Eq. (9)
coming from higher order that can be approximately accounted
for by a rescaling the Z factor of the energy loss. However,
this is not really relevant for the objectives of the present work
because we renormalize the energy loss to have the observed
amount of suppression RAA(pT ) for central collisions (see next
section). In fact, our purpose is to study how other variables
can change once RAA(pT ) has been fixed to experimental data
for central collisions.

Usually in the GLV, as well as in other approaches, the
temperature evolution of the strong coupling αs is discarded.
We consider the impact of such a dependence to understand
the amount of T dependence that can come simply from
the asymptotic freedom in a pQCD approach. The scale
dependence of the strong coupling can be written as

αs(Q
2) = 4π

β0ln
(−Q2

/
�2

QCD

) , (10)

where β0 = 11 − 2
3Nf and the thermal scale Q2 = 2πT 2,

which makes it possible to get a correct behavior of the
screening mass µ on the energy scale [28].

In Fig. 1 we show using dot-dashed and dashed lines the
temperature dependence of the energy loss for the GLV with
a dependence of the coupling according to Eq. (10) [GLV-
αs(T )] and with a constant coupling αs = 0.27 (GLVc). In
itself the effect of the asymptotic freedom that reduces αs at an
increasing energy scale significantly modifies the temperature
dependence of the energy loss. However, we see that such
effect is not very large once the coupling itself is readjusted to
produce the correct amount of suppression.

In Fig. 1 we have also shown two other opposite cases for
�E/�τ : the thick line that shifts the energy loss to lower
temperature (hence low-density ρ or entropy density s) as
suggested in [18,19] and the thin line that gives a dominance of
quenching at high T , considered here just for comparison with
respect to the opposite case. For both Eloss we have a standard
dependence on the transverse momentum, �E(pT ) ∼ p

γ

T with
γ = 0.6.

We have plotted in Fig. 1 the �Eloss as a function of
the temperature; however, under the hypothesis of local
equilibrium for the bulk this is equivalent to a density or
an entropy-density dependence used by other authors. In
the model implemented, we generally employ the free gas
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Eloss at high T
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FIG. 1. (Color online) Temperature dependence of the energy
loss for a parton at pT = 10 GeV. The dashed and dot-dashed lines
represent the GLV energy loss with constant and T -dependent αs

coupling, respectively (see text). The thick line is the case in which
the energy loss take place only closer to the phase transition, and the
thin line represents an opposite case in which the energy loss takes
place only at high T .

approximation to relate density, temperature, and time. As is
well known, one has

ρ = ζ (3)

π2

(
3

4
dq,q̄ + dg

)
T 3 → 4.2T 3, (11)

where the last expression is obtained with dq,q̄ = 24, dg = 16.
From Eq. (11) with an initial temperature T0 = 340 MeV at
τ0 = 0.6 fm and a transverse area AT ∼ 90 fm2, one has a
dN/dy ∼ 1000 for b = 3 fm corresponding to 0%–10%, in
agreement with standard estimates. Equation (11) allows one
to evaluate the local temperature from the local density given
by Eq. (5) for the SE profile and by Eq. (7) for the Glauber
WS profile. For a one-dimensional (1D) Bjorken expansion
and the SE profile, Eq. (11) gives a direct correlation between
density ρ, temperature T , and time τ ,

T

T0
=

(
ρ

ρ0

)1/3

=
(

τ0

τ

)1/3

, (12)

with T0, ρ0, and τ0 the values at same initial time. By means
of Eq. (12) we can relate the �E/�τ represented by the thick
solid line in Fig. 1 to the delayed energy loss employed by
Pantuev [19]. In particular with our parameters from Eq. (12),
our thick solid line corresponds to a delay of about 1.8 fm
close and even less extreme than the one in Ref. [19]. One can
also notice that for some observables already the less extreme
GLV-αs(T ) can give results similar to the low-T energy loss
(see Figs. 5 and 8).

D. Hadronization

The final step of the model is the hadronization by
independent fragmentation. The parton distribution after the
jet quenching are employed to evaluate the hadron spectrum
by independent jet fragmentation using the Albino-Kramer-
Kniehl (AKK) fragmentation functions DH

f (x,Q2), which
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give the probability that a hadron H is formed from a parton
of flavor f . The final hadronic spectrum is obtained from

dNH

d2pT

=
∫ 1

0
dxx

∑
f

dNf

d2pT

DH
f (x,Q2), (13)

where x = pH
T /p

f

T is the fraction of the f parton carried by
the hadron H and Q = p

f

T /2 is the energy scale. At RHIC
there have been several evidences that while hadronization by
independent fragmentation is able to describe proton-proton
spectra at pT � 2 GeV, in Au + Au collisions there are
nonperturbative effects like quark coalescence that modify
hadronization at least up to pT ∼ 5–6 GeV [4,5]. We do not
include any hadronization by coalescence in the present work;
therefore, all of the following results have to be considered
reliable only for pT � 5 GeV.

II. APPLICATION OF THE MODEL
TO EVALUATE RAA( pT )

The amount of quenching is quantified by comparison of
the inclusive spectra d2NAA/dptdη in ion-ion (AA) collision
to a nucleon-nucleon (pp) reference d2σNN/dptdη via the
nuclear modification factor RAA(pt ),

RAA(pt ) ≡ d2NAA/dptdη

TAAd2σNN/dptdη
, (14)

with TAA the nuclear overlap function that scales up a single
NN cross section to AA according to expected number of
binary NN collisions without modification. Thus, a RAA

smaller (larger) than unity means suppression (enhancement)
owing to medium effect. At RHIC this ratio at large pt >

6 GeV has been measured to be nearly constant around a value
of 0.2 for the most central Au + Au collisions, see Fig. 2 (top).
In our model the RAA(pT ) can be calculated simply from the
ratio of the spectra before and after quenching.

We have applied our modeling of the jet quenching for
Au + Au collisions at 200 AGeV. We use standard initial
conditions that for the most central collision bin, b = 3 fm,
are given by a dN/dy = 1000 and a maximum temperature
of the bulk T0 = 340 MeV at τ0 = 0.6 fm, as usually done to
describe the bulk in hydrodynamics and transport approaches
[29,30]. The results are shown in Fig. 2 and are performed
for the two geometries described previously: WS profile
and SE shape. The GLV formula [Eq. (9)] is used with a
coupling αs = 0.27 but rescaled by a Z = 0.45 factor [31]
that accounts for higher-order effect. Here it has been chosen
to reproduce the data at pT = 6 GeV for the most central
selection 0%–5%. From the WS profile to the SE, one has
to decrease by about 15% the Z normalization factor owing
to lack of surface where the quenching is smaller. However,
both values are well inside the uncertainty in the αs strength
of the in-medium gluon radiation owing to the uncertainty in
the perturbative expansion and in the validity of the expansion
itself. However, as said in the Introduction our purpose is not
to constrain the total amount of quenching owing to gluon
radiation. Our methodology is to fit the RAA(pT ) to fix the

0 2 4 6 8 10 12 14 16 18
pT [GeV]

0

0.2

0.4

0.6

0.8

1

1.2

R
A

A

0-5% Sharp Ellipse

Woods-Saxon
Sharp Ellipse α(T)

Woods-Saxon α(T)

0 2 4 6 8 10 12 14 16 18
pT [GeV]

0

0.2

0.4

0.6

0.8

1

1.2

R
A

A

20-30%
Sharp Ellipse

Woods-Saxon

Sharp Ellipse α(T)

Woods_Saxon α(T)

0 2 4 6 8 10 12 14 16 18
pT [GeV]

0

0.2

0.4

0.6

0.8

1

1.2

R
A

A

30-40%
Sharp Ellipse

Woods-Saxon

Sharp Ellipse α(T)

Woods-Saxon α(T)

FIG. 2. (Color online) Nuclear modification factor as a function of
the transverse momentum pT in Au + Au at 200 A GeV for different
centralities. The circles are the experimental data taken from Ref. [11].
The calculations using the GLV energy loss are shown by the dashed
and solid lines for a SE profile and a WS profile, respectively. The
squares and open circles refer to GLV-αs(T ) for a SE and WS profiles,
respectively.

correct amount of total quenching with the aim of exploring
the effect of different geometries and especially different
temperature (ρ or s) dependencies of the energy loss on other
observables.

In Fig. 2 we can see that once the amount of quench-
ing is fixed for the most central collisions, the de-
pendence on both pT and centrality are correctly pre-
dicted with a GLV formula for quenching. Of course,
such a result has been obtained with other models
of gluon radiation like Baier-Dokshitzer-Mueller-Peigne-
Schiff, Armesto-Salgado Wiedemann, Arnold-Moore-Yaffe,
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Djordjevic-Gyulassy-Levai-Vitev [12–15]. Our purpose here
was simply to show that our model is also able to reproduce
the RAA(pT ), which can be considered as the minimum
requirement. However, our result shows also that at the level of
RAA(pT ) both a realistic density profile like the WS or the SE
profile can describe the data reasonably well. We have seen that
the main reason behind the similar final result between the two
different geometries, WS and SE, relies on the compensation
between two effects. In fact, for SE one has a nonrealistic
uniform density; however, the minijets are also distributed
uniformly. So the uniform density profile on the one hand
overestimates the amount of quenching close to the surface but
on the other underestimates the one in the core of the fireball. In
addition, in such a modeling the fact that minijets are uniformly
distributed overestimates the amount of minijets leaving the
fireball nearly unquenched. Even if one could suspect that a
balance among these effects should not a priori hold at all
centralities, our results show that the breaking of such a can-
cellation effects is small. Therefore by mean of the RAA(pT )
even the SE simplified modeling cannot be discarded. The
same conclusion can be drawn looking also at the RAA at pT >

6 GeV as a function of centrality shown in Fig. 3. However, as
expected, we see that surface effects leading to less suppression
for a WS geometry are more important for a smaller Npart.

Furthermore, if we consider a GLV formalism with a
running coupling constant αs(T ), GLV-αs(T ), the RAA(pT )
is well reproduced at same level of quality. Hence, looking at
RAA(pT ), one is not able to clearly discriminate the geometry
or the temperature dependence of the quenching, even if one
looks at the evolution with centrality. Therefore, in agreement
with Refs. [32,33], we find that RAA(pT ) carries only a weak
information on the jet quenching process, apart, of course, from
the total amount of quenching, which in itself is of fundamental
importance and has led to a first estimate of the average initial
gluon density.

In the next section we investigate both the elliptic flow at
high pt and the flavor dependence of the quenching. In fact,
both observables are still hardly accounted for quantitatevely
by the present models.
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FIG. 3. (Color online) Nuclear modification factor as a function
of the number of participants in Au + Au at 200 A GeV for two
density profiles of the bulk matter: Glauber from WS nuclei profile
(solid line) and SE shape (dashed line).

III. ANGULAR AND FLAVOR DEPENDENCE
OF THE QUENCHING

The first analysis of jet suppression has shown that it
is very difficult to have an agreement between models and
experiments for the dependence of the RAA on the azimuthal
angle φ with respect to the reaction plane in noncentral
collisions [33]. Such a dependence arises from the “almond”
(elliptic) shape of the overlap region of two colliding nuclei.
In particular, for large pt > 6 GeV, where hard processes
dominate [11], partons penetrating the fireball in different
directions lose different amounts of energy according to their
varying paths that on average are larger in the out-of-plane
direction. A measure of this effect is provided by the second
Fourier coefficient of the distribution, namely, the elliptic flow:

v2(pT ) ≡
∫ 2π

0 dφ cos(2φ)[d2N/dptdφ]∫ 2π

0 dφ[d2N/dptdφ]
. (15)

Unexpectedly, measured v2(pT ) happened to be consid-
erably larger than what jet quenching models predicted. It
was noted in Ref. [34] that for very strong quenching only
jets emitted from the surface of the almond shape can be
observed and the data for v2(pT ) are very close to such a
limiting case. However, generally, three other assumptions are
made, namely, (i) quenching is proportional to matter density;
(ii) colliding nuclei were approximated by homogeneous
sharp-edged spheres; (iii) only the net rate of energy loss
is considered discarding the emission-absorption processes
that generally can lead to an enhancement of the collective
flows [13]. Studies by Drees et al. [35] relaxed the second
assumption, with realistic nuclear shapes, which only made
contradiction with data even stronger. A result that is confirmed
also by the present work.

We mainly explore the effect of the first assumption by
exploring the four different kinds of energy loss shown in
Fig. 1. In Fig. 4, we show the resulting v2 for pions in Au + Au
at

√
sNN = 200 GeV and an impact pararameter b = 7.5 fm

corresponding to a minimum bias condition for which the
experimental value of elliptic flow is about 0.11 [36], as
shown in the figure by hatched area. Such data correspond
to the integrated value for pT > 6 GeV.1 We can see that
even if the amount of total quenching has been fixed to the
experimental value of RAA(pT ), the amount of elliptic flow is
still strongly dependent on the temperature dependence of the
�Eloss. Specifically, from the thin to the thick solid line, we see
that v2 increases if the Eloss is stronger as T → Tc (thick solid
line in Fig. 1), which means later in the evolution of the QGP,
except for the surface. In Fig. 5 the same quantity is plotted for
the case of a bulk density given by the SE. Again we find that in
agreement with other calculations [18,19], the elliptic flow is
significantly larger if most of the energy loss takes place closer
to Tc (thick solid line). If instead the energy loss take place
mainly at high temperature and/or density (thin solid line) the
v2 is essentially vanishing. The dashed line is the result with
the GLVc that represents a case in which the energy loss is

1We do not show the experimental data vs pT owing to the present
controversial issues related with their measurement.
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FIG. 4. (Color online) Elliptic flow for the pions coming from
quark and gluon fragmentation for the different T dependence of the
energy loss, as shown in Fig. 1. The density profile of the bulk is
given by the Glauber model (see Sec. II).

essentially proportional to the density. The dot-dashed line
is the GLV-αs(T ) that reweighs the temperature dependence
through the coupling αs(T ), giving an estimate of the effect of
asymptotic freedom. Such an effect is not negligible and for
the SE geometry it seems to give already a v2 very close to the
much more extreme case represented by the thick solid line,
that is, quenching dominated by the region close to Tc.

The correlation between the temperature dependence of
�E and the amount of elliptic flow developed is clear. In fact,
at variance with RAA(pT ) the v2 has a longer formation time
because the minijets have to explore the shape of the fireball.
For example, if one considers the extreme case of a very strong
quenching that takes place on distances much lower than the
fireball size, then there would be no elliptic flow (like in the
Eloss at high T case).
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FIG. 5. (Color online) Elliptic flow for the pions coming from
quark and gluon fragmentation for the different T dependence of the
energy loss, as shown in Fig. 1. The bulk density profile is a sharp
uniform elliptic shape.

It seems to be quite likely that experiments are telling us
that quenching is likely to be not proportional to the matter
entropy density or temperature, but a decreasing function
of it. This is what is essentially discussed in Refs. [18,19],
where, however, it was implicitely assumed that the amount
of quenching of quarks and gluons is equal among them
and to the hadronic one. Here we relax such assumptions,
showing that the temperature (or entropy density) dependence
of �Eloss modifies not only the v2 but also the relative amount
of quenching of quarks and gluons. This does not meant to be
just a more detailed calculation but is indeed related to another
puzzle of the jet quenching phenomena observed more recently
in the experimental study of the chemistry of the minijet
suppression [37,38]. We discuss it in the next subsection.

A. Quark-to-gluon modification factor

The QCD owing to its SU(3) Lie algebra gives a factor
CR = 9/4 larger for the energy loss of gluons with respect
to that of quarks. For this reason, sometimes it is implicitly
assumed that the ratio between the suppression of the gluons
RAA(g) and the suppression of quarks RAA(q) is such that
RAA(q)/RAA(g) = 9/4. From this expectation one would
think that the (anti-)protons are more suppressed with respect
to pions because they come more from gluon fragmentation
than from quark fragmentation with respect to pions. The data
at RHIC, however, have shown that also for such an observable
there is no agreement with the data. In fact, even outside the
region where coalescence should be dominant [4,5] the protons
and the antiprotons appear to be less suppressed than the pions
and ρ0 [37,38]. Again we can see that going beyond the simple
amount of quenching given by RAA(pT ) neither the azimuthal
dependence nor the flavor dependence of the quenching appear
to be in agreement with the data. We call these open issues the
“azimuthal” and the “flavor” puzzles, respectively. We show
that even if RAA for central collisions is fixed to be ∼0.2, the
RAA(q)/RAA(g) is affected by the temperature dependence of
�Eloss.

In Fig. 6 we show the ratio of the RAA(q)/RAA(g) for the
WS geometry and the four different temperature dependencies
of the energy loss �Eloss as in Fig. 1. We can see that
the standard GLVc energy loss does not give the expected
ratio 9/4 for RAA(q)/RAA(g) but a lower value around 1.8,
which represents already a non-negligible deviation from
2.25. We can, however, see that if the energy loss would be
strongly T -dependent and dominated by the T � Tc region
RAA(q)/RAA(g) can increase up to about 2.3 while, oppositely,
if it is dominated by the high-temperature region (thin solid
line) the RAA(q)/RAA(g) can become as small as 1.5. However,
our study of the elliptic flow, as well as previous studies,
show that an energy loss that increase with T would generate
a tiny v2 very far from the observations. Such an effect is
totally discarded in Refs. [18,19], which neglect the different
quenching of quarks and gluons. In other words, while the
indication of a �E(T ) increasing as T → Tc is confirmed
also by our model to reproduce experimental data for v2,
we notice this would lead to a larger RAA(q)/RAA(g) ratio,
increasing the disagreement with the RAA(pT ) observed for
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FIG. 6. (Color online) Ratio of quark to gluon RAA for the
different T dependence of the energy loss, as shown in Fig. 1. The
short-dashed line corresponds to the 9/4 value. The density profile
of the bulk is that given by the Glauber model. The shaded area
shows approximatively the value expected for the ratio according
to the experimental observations and using the AKK fragmentation
function.

the various hadrons like p, p̄, π that show the RAA of baryons
less suppressed respect to the pionic one. The shaded area in
Figs. 6 and in 7 approximately shows the expected value for the
ratio RAA(q)/RAA(g) that can be inferred from the statistical
and systematic uncertainties in the experimental data for RAA

of various hadrons. However, though significant uncertainties
come from the fragmentation functions, our estimate is done
using the AKK parametrization.

In this respect we notice also another potential problem
that can arise for simplified fireball modeling when extreme
�E(T ) are considered and more exclusive observables are
investigated. More explicitly, we refer to the SE fireball that
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FIG. 7. (Color online) Ratio of quark to gluon RAA for the
different T dependence of the energy loss as shown in Fig. 1. The
short-dashed line corresponds to the 9/4 value. The density profile of
the bulk is that of a SE shape. The shaded area is as in Fig. 6.

neglects the surface of the fireball. In Fig. 7 we show that
the results have an opposite pattern for the SE geometry
with respect to the realistic WS one. The standard GLV
energy loss gives approximately the expected ratio of 9/4
for RAA(q)/RAA(g). This probably led to the association of
the 9/4 factor on Eloss to that on RAA(q)/RAA(g). However,
this ratio is more sensitive to the temperature dependence of
the energy loss in a way that is exactly opposed to what we
have seen for the WS geometry. For this kind of geometry
(SE), if the energy loss is stronger at high temperature, the
RAA(q)/RAA(g) can result to be almost 5 (thin solid line);
however, if the enery loss is stronger closer to Tc the RAA

would be just slightly above 1 (thick solid line). This means
that the ratio tends to decrease from 5 to 1 if the energy loss is
dominated by the high temperatures (T → 2Tc) or by the low
ones (T ∼ Tc).

It is instructive to explain the origin of such a strong
effect of the density profile, but before we note that such an
unexpected strong effect shows up only when extreme �E(T )
are considered. In fact, the standard GLVc Eloss is modified
by about a 15% moving from a WS-Glauber to a simple SE
profile.

To understand the mechanism behind the determination of
the ratio RAA(q)/RAA(g), we discuss an oversimplified case
in which all quarks lose the same amount of energy and all
gluons lose their energy according to �Eg = 9/4�Eq . For
such a simple case the spectra after quenching are shifted by
a quantity equal to the lost energy. Quarks that finally emerge
with an energy Ef = pT are those which before quenching
had an energy Ei = pT + �E. So RAA for quarks is equal
to the ratio between the parton distributions in momentum-
space without quenching f (pT ) and the quenched one given
by f (pT + η�E), where f (pT ) = dN/d2pT dy is given by
Eq. (1), η = 1 for quarks and η = 9/4 for gluons. Therefore,
the RAA is

RAA(pT ) = f (pT + η�E)

f (pT )
, (16)

and the ratio between quark and gluon nuclear modification
factors is

RAA(q)

RAA(g)
= fq(pT + �E)

fq(pT )

fg(pT )

fg(pT + (9/4)�E)
. (17)

Of course, there is no reason why this ratio must be 9/4 and
we can also see that even without the 9/4 factor there can
be a RAA(q)/RAA(g) that is not one. In Fig. 8 is shown the
dependence of the ratio on �E for partons with pT = 10 GeV
and we can see that RAA(q)/RAA(g) quickly increases with
�E even if the ratio of the quark-to-gluon energy loss is
9/4. The ratio is about 4 for a �E ∼ 2 GeV/fm. We see that
this observation is fundamental to understanding the relation
between �Eloss and the ratio RAA(q)/RAA(g). In this very
simplified model, the RAA(q)/RAA(g) would be very large
for an average energy loss 〈�Eq〉 = 4 GeV typical of central
collisions where RAA(pT ) ∼ 0.2. From Fig. 8 we can see that
this would give a RAA(q)/RAA(g) ∼ 8.

One can move toward a minimal realistic model distinguish-
ing among partons two classes of particles: those that undergo
a large quenching and those that lose no energy, or better, a
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small amount of energy, usually associated with the minijets
generated at the surface. Let us consider a case in which 50%
partons lose an energy �Eq = 1 GeV = 4/9�Eg , while the
other 50% lose the energy �Eq indicated in Fig. 8. In such
a case the evolution of RAA(q)/RAA(g) is very different with
respect to the first case as shown by the much milder increase
of the dashed line that reaches a maximum of about 2.6 and
even decrease for a �Eq > 2 GeV.

This clearly indicates that because of the rapidly falling dis-
tribution with pT , the determination of the ratio is dominated
by those partons that suffer less energy loss. If, for example,
50% of the particles do not lose energy, then whatever the
energy loss of the other partons is, the RAA(q)/RAA(g) will
be equal to one. This is shown by the thin solid line in Fig. 8.
Indeed, already if only 10% of partons do not lose energy,
the ratio stays below 9/4 regardless of the Eloss of the other
90% of particles and even decreases if those particles lose
a large amount of energy, bringing the value again closer to
one. This is shown by the dot-dashed line in Fig. 8, where
one can realize the huge impact of the particles that do not
lose energy comparing thick solid and dot-dashed lines, which
differ only by the fact that 10% of the particles do not lose
energy. Finally, with the dotted line in Fig. 8, we show a
system in which most of the particles undergo a quenching
with �Eq = 2.5 GeV = 4/9�Eg . This is closer to a case in
which most of the particles undergo a similar strong quenching.
In summary, we can say that the RAA(q)/RAA(g) is not really
directly linked to the relative amount of quark and gluon energy
loss because it is largely affected by the way the energy loss is
distributed among partons. In particular, once there are minijets
that do not suffer energy loss, the ratio RAA(q)/RAA(g) gets
closer to one, because it is more affected by these minijets.
Hence, a careful treatment of the corona effect also would
much likely give a significant contribution to the determination
of the RAA(q)/RAA(g).

On the basis of the preceding discussion, it is possible
to understand the dependence of RAA(q)/RAA(g) on the
temperature dependence �E(T ), seen in Figs. 6 and 7 and its

opposite behavior between the WS and SE geometries for the
density profile. In the case of energy loss at low temperature
with a SE profile, the quenching happens at the end of the
lifetime of the fireball because there is a direct relation between
time and temperature [see Eq. (12)]. Therefore, in the case of
the energy loss increasing as T → Tc many particles escape
without losing energy in the SE profile. Only the particles in
the inner part of the fireball are quenched. This means that we
are closer to the schematic case described by the thin solid line
for large �E in Fig. 8. Most particles do not lose energy, the
rest lose a large amount of energy, and in fact RAA(q)/RAA(g)
is close to one (see Fig. 7).

Instead, if the quenching is larger at high temperature, all
particles lose energy early and, except for those very close
to the surface, most of particles �E � 2.5 GeV. In this case,
there are essentially no particles that do not lose energy. So we
are closer to the case described by the dotted line for which
RAA(q)/RAA(g) is about 5, compared to thin solid line of
Fig. 7.

In the case of WS geometry, in general, there is no direct
relation between time and temperature because on the surface
one will have already at early times a low temperature.
Therefore, in this case an energy loss dominated by high
temperatures means that the quenching is large only on the
inner part of the fireball while particles in the surface lose a
small amount of energy. We are close to the case described
by the dot-dashed line in Fig. 8, and the RAA(q)/RAA(g) is
in fact about 1.5. It is difficult to reach one because owing to
the density profile anyway all the particles lose at least some
finite energy. Instead, if the quenching takes place mainly
at low temperature (T → Tc), this means that energy loss is
strong in a layer on the surface of the fireball, and because
all particles must go through this layer at some time, all of
them lose a large amount of energy. We understand that this is
very different, essentially the opposite, with respect to the SE
case. In the latter case a �E(T ) with a maximum at T → Tc

means that most of the particles escape owing to the direct
time-temperature relation that is not dependent on space. For
WS-Glauber profile, such a case means just the opposite; that
is, all the particles lose a similar amount of energy. This is
essentially the reason underlying the opposite trend seen in
Figs. 6 and 7. We finally notice that the importance of such
details emerges only if extreme energy losses in T -dependence
are considered.

The conclusion of this study is twofold:

(i) If one tries to reproduce the large value of elliptic flow
using a type of energy loss that increases with decreas-
ing temperature, there is a simultaneous increase of
the RAA(q)/RAA(g) enhancing the discrepancy with
respect to the observed “flavor” dependence of the
suppression that seems to prefer a ratio close to or even
smaller than one [37].

(ii) When peculiar energy dependencies are considered,
the specific density-temperature profile can become
very important for a quantitative evaluation of the
observables.

These results lead us to make two important observations:
(i) The SE profile is able to describe the observed RAA(pT ),
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but it is inadequate to reproduce the ratio RAA(q)/RAA(g), and
furthermore, it cannot be used even for a qualitative analysis of
this ratio because it gives opposite results to the more realistic
WS profile. (ii) In Figs. 4 and 5 we show that an enhancement
of the energy loss near Tc increases the elliptic flow toward
an agreement with the experimental data. However, such a
�E(T ) is associated with an enhancement of RAA(q)/RAA(g),
in apparent disagreement with the data [38].

IV. CORRELATION BETWEEN RAA(q)/RAA(g)
AND ELLIPTIC FLOW

To solve what we have called the flavor puzzle, inelastic
collisions that cause a change of the flavor have been invoked
[20–23]. Such a process would in the end produce a net
conversion of quarks into gluons, hence, a decrease of gluon
suppression with respect to the direct suppression and an
increase of the quark one [20]. In Ref. [20] the conversion
rate of a quark jet to a gluon jet and vice versa owing to
two-body scatterings has been calculated. An enhancement
factor Kc = 4–6 that accounts for nonperturbative effect is
needed to produce a nearly equal suppression of quarks
and gluons. This is not an unreasonable enhancement factor
considering that at our energy a K ∼ 4 is necessary also to have
the right minijet initial distributions in pp if one starts from a
simple second-order pQCD calculation. We have included the
flavor conversion mechanism in our code in a fashion similar
to Ref. [20]. To check our code and to have a direct link to
the previous calculations of Fries, Ko, and Liu, we have used
the same density profile (i.e., a SE profile), same conversion
rate, and �Eloss derived by them at leading order in the pQCD
expansion.

In Fig. 9 we show RAA(q)/RAA(g) for different values
of Kc. Notice that with the �Eloss of Ref. [20] the ratio
RAA(q)/RAA(g) without conversion is again different and
moreover quite larger than 9/4. However, a Kc ∼ 4–6 is able
to reduce that ratio by about a factor of three, making it close
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FIG. 9. (Color online) Ratio of quark to gluon in Au + Au
collisions (b = 7 fm) for the energy loss derived in Ref. [20] with
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to unity. After this test we have fixed Kc = 6 and performed
the calculation with the four different energy losses, as shown
in Fig. 1. In Fig. 10 we show directly the [RAA(q)/RAA(g), v2]
plot. This plot manifests a clear but nontrivial correlation
between RAA(q)/RAA(g) and the v2. The upper symbols are the
results without the jet flavor conversion and we can see that
such a correlation drives the data far from the experimental
observed values of a v2 ∼ 0.1 and an RAA(q)/RAA(g) � 1
[to account for the RAA(p + p̄) > RAA(π+ + π−) with AKK
fragmentation function]. The lower symbols correspond to the
results including the rate of inelastic collisions and we can see
that this process allows to get closer to the experimental region
because they change the RAA(q)/RAA(g) without modifying
the elliptic flow of pions. Figure 10 essentially demonstrates
that if one tries to reproduce simultaneously the RAA(pT ) and
v2 and RAA(q)/RAA(g), a �E(T ) increasing as T → Tc is
needed but also that in such a case a flavor-conversion process
becomes even more necessary.

However, at this point a quantitative study should be
performed, employing a more accurate dynamics for the
bulk evolution given by hydrodynamics or partonic transport
theory that includes three-body radiative processes [39,40].
In fact, especially if more peculiar energy loss dependence
has to be investigated, it is important to have a quite realistic
density and energy-density profile, as we have discussed
earlier. Furthermore, fluctuations in the energy loss [10,41],
the gain-loss processes [13], and the elastic energy loss [42,43]
should be included because they can give correction to both
RAA(pT ) and v2.

V. IMPACT OF THE EQUATION OF STATE

As a last point, we explored the impact of the EoS
on the observables and especially the correlation between
RAA(q)/RAA(g) and v2(pT ). This has to be taken as a first
explorative study.
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We notice that even if the free gas approximation is a
quite reasonable approximation for describing the relation
between density and temperature for most of the evolution
of the expanding QGP, it is not true close to Tc, where the
relation between temperature and density is strongly modified
by the crossover phase transition. One generally thinks that for
the description of the high-pT particles this can be discarded
in the first approximation. However, once it is opened the way
to the possibility of a quenching that is not proportional to the
density but is stronger close to the phase transition, we will
show that one should more carefully look into the problem.
In fact, if quenching would be dominated by the T → Tc

region, the time spent in this region by the fireball can be
strongly modified if a realistic EoS is considered. In fact, for
a simple 1 + 1D expansion, the relation between temperature
and density is modified from Eq. (12) to

T

T0
=

(
ρ

ρ0

)β(T )

=
(

τ0

τ

)β(T )

, (18)

where β(T ) is a temperature-dependent coefficient that can be
obtained from a fit to lQCD data [44]. We have found

β(T ) = 1

3
− a

(
Tc

T

)n

, T � Tc, (19)

with a = 0.15 and n = 1.89, and of course for T � Tc one
gets β ∼ 1/3. The parameters have been calculated from a
fit to the lQCD data of Ref. [44] on the energy density and
pressure. We see that close to Tc the β coefficient is quite
small, which means that even if the density goes down as τ−1,
the temperature stays nearly constant, as one can expect in
a first-order or strong crossover phase transition. This means
that the system spends more time close to Tc with the simple
picture given by Eq. (12) usually assumed.

To estimate the impact of this correction, we have per-
formed a simulation for the �Eloss(T ) behavior represented
by the thick solid line in Fig. 1, which is similar to the
delayed energy loss proposed by Pantuev [19] as a solution
for the observed large elliptic flow. We consider only this case
because it is, of course, the one that is much more affected by
the modification implied by Eq. (18). Instead, for the opposite
case of an Eloss dominated by the high T the effect is vanishing.
We have again taken care to regulate the total energy loss to
have the correct amount of RAA(pT ).

The results are given by open symbols in Fig. 10. The
open square is the result without the inclusion of the flavor
conversion mechanism and shows a further increase of both
v2 and RAA(q)/RAA(g), in line with the previously seen
correlation. The enhancement of the v2 in itself is attributable
to the fact that with an EoS the system spends more time close
to Tc; therefore, to have the same amount of suppression, most
of the energy loss occurs later. However, more interestingly, the
inclusion of the q ↔ g conversion results in greater efficiency
than in the previous case, generating a strong decrease in
RAA(q)/RAA(g) while keeping the same v2. The stronger effect
of flavor conversion is again attributable to the longer lifetime.
The final result is a combination that moves the final value of
both v2 and RAA(q)/RAA(g) much closer to the experimental
ones [36] shown by the shaded area in Fig. 10. We also notice

that a RAA(q)/RAA(g) < 1 is obtained, while generally it is
believed that flavor conversion by inelastic collisions can give
at most RAA(q)/RAA(g) = 1 [37].

This last result about the impact of a realistic EoS deserves
a more careful treatment, again employing a more realistic
description of the bulk. Indeed, a full description of the dy-
namics related to the crossover region should include also the
gradual change from a quark-gluon plasma to a hadronic gas.
However, this would be outside our goal for the present work.

VI. CONCLUSIONS

In the present work we have considered different
temperature dependencies of the energy loss, tuning always
the parameters to reproduce the experimentally RAA(pT )
suppressions of pions. We have shown that even if the
RAA(pT ) is fixed, different �E(T ) generate very different
values for both the v2 and the RAA(q)/RAA(g). Indeed,
both quantities are quite puzzling because standard jet
quenching models are not able to reproduce any of them.
We referred to this as the azimuthal and flavor puzzle. We
have found, however, that there is a correlation between
these two observables that is determined by the temperature
(or density) dependence of the quenching. In agreement
with Refs. [18,19], we have found that if the quenching is
dominant closer to Tc, the v2 is enhanced getting closer to
the data. However, while in Refs. [18,19] it is discarded
as a separate treatment of quark and gluons, their Eloss

leads to a quite large ratio RAA(q)/RAA(g), which would be
incompatible with the observed systematics of RAA(p + p̄) >

RAA(π+ + π−) ∼ RAA(ρ0). It appears that while the v2 would
suggest a �E(T ) that increases toward Tc, the RAA(q)/RAA(g)
would become too large even if we do not yet have a direct
measurement of RAA(q)/RAA(g) and we impinge on the
uncertainties coming from the fragmentation functions.

In this context we have also noticed an unexpected strong
dependence on the density profile of the fireball that emerges
for extreme choices of �E(T ), while the dependence is milder
but not negligible for more standard energy loss like the GLV
one. This puts a warning for further studies: Once going
beyond the simple RAA(pT ) factor, one has to rely on a realistic
dynamical evolution of the bulk matter like those supplied by
hydrodynamics and/or parton cascades [39].

It seems that the only way to get closer to the observed
values for RAA(pT ), v2, and RAA(q)/RAA(g) solving both the
azimuthal and flavor puzzles, is to have both �E(T ) increasing
close to Tc and a flavor-conversion mechanism. Finally, we
point out that while generally the free gas approximation is
quite reasonable to describe the expansion of the QGP fireball,
this is no longer true if the energy loss occurs dominantly close
to Tc. In such a case it has a significant impact to take into
account the strong deviation from the free gas approximation
occurring in the crossover region and leading to a slowing
down of the cooling close to Tc. This increases further the time
spent around Tc, which enhances both v2 and the efficiency
of the q ↔ g in medium conversion, moving the values of
[RAA(q)/RAA(g), v2] close to the observed ones.

It is of course important to study how the longer life-
time and higher temperatures reached at LHC energies
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affect the observed correlations. Furthermore, in Ref. [24]
it has been pointed out that a better probe of the flavor-
conversion mechanism is supplied by a high pT strangeness
enhancement. It remains to be studied if such an en-
hancement is affected by the T dependence of the energy
loss.

In summary, we have pointed out the impact of peculiar T

dependencies of the Eloss on both v2 and RAA(q)/RAA(g) and

their correlation. Moreover, we have noticed the relevance
that the EoS may have in case of Eloss dominated by the
T → Tc region. In any case, our study, although already
revealing several interesting indications, is mainly explorative.
A more quantitative analysis should be performed with more
sophisticated models that include the energy loss fluctuations,
realistic gain and loss processes, elastic energy loss, and a
more accurate description of the bulk.
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