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Hindrance in the fusion of 48Ca + 48Ca
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The coupled-channels technique is applied to analyze recent fusion data for 48Ca + 48Ca. The calculations
include the excitations of the low-lying 2+, 3−, and 5− states in projectile and target, and the influence of mutual
excitations as well as the two-phonon quadrupole excitations is also investigated. The ion-ion potential is obtained
by double-folding the nuclear densities of the reacting nuclei with the M3Y + repulsion effective interaction but
a standard Woods-Saxon potential is also applied. The data exhibit a strong hindrance at low energy compared
to calculations that are based on a standard Woods-Saxon potential but they can be reproduced quite well by
applying the M3Y + repulsion potential with an adjusted radius of the nuclear density. The influence of the
polarization of high-lying states on the extracted radius is discussed.
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I. INTRODUCTION

Heavy-ion fusion reactions are sensitive probes of the
nuclear surface of reacting nuclei. Roughly speaking, the
height of the Coulomb barrier is determined by the radii
and diffuseness of the densities, and the enhancement of
fusion at subbarrier energies is governed by couplings to the
excitation of low-lying surface modes [1]. This picture may not
always succeed in reproducing the measured cross sections. In
practical coupled-channels calculations it is often necessary
to make adjustments, either in the structure input or in the
ion-ion potential. The adjustments may reflect the influence
of high-lying states or other reaction channels that are not
treated explicitly in the calculations. Another complication is
the hindrance of fusion, which occurs at low energies and
very small cross sections [2]. The hindrance can be explained,
for example, by using a shallow potential in the entrance
channel [3] or by modeling the fusion dynamics for touching
and overlapping nuclei [4].

In this work the coupled-channels technique is applied to
analyze the fusion data for 48Ca + 48Ca that were recently
measured down to very small cross sections below 1 µb [5].
An analysis of the data provides the opportunity to investigate
whether the fusion hindrance, which is a well-established phe-
nomenon in extreme subbarrier fusion reactions of medium-
heavy systems with large negative Q values [2], also occurs
in the fusion of calcium isotopes with near-zero Q values.
An indication of a hindrance in the fusion of 48Ca + 48Ca
has already been observed [5] because the low-energy data
could only be reproduced by coupled-channels calculations
that employ a very large diffuseness of the ion-ion potential.
However, the hindrance observed there was not strong enough
to show an S factor maximum in the energy region of the
measurement.

The ion-ion potential and the nuclear couplings that will
be used are derived as in previous work [3] from the
double-folding of the densities of the reacting nuclei and
the M3Y + repulsion effective interaction. Since the low-lying
structure of 48Ca is fairly well established and the influence

of transfer reactions is always suppressed for symmetric
systems, it is expected that this simple picture of fusion
just described would apply to the fusion of 48Ca + 48Ca. On
the other hand, it is well known that the excitation and/or
polarization of high-lying states that are included explicitly
in the coupled-channels calculations can lead to a negative
energy shift of the calculated fusion cross sections [6]. This
is effectively equivalent to increasing the radii of the reacting
nuclei. The radius that is extracted by optimizing the fit to
the fusion data can therefore be too large because it can
be contaminated by the polarization of states which are not
included explicitly in the calculations. It is of interest to see
how the extracted radius depends on the model space of excited
states that are included in the calculations, and how well it
compares to the expected matter radius of 48Ca.

The study of the fusion of different calcium isotopes
started more than twenty years ago with the measurements by
Aljuwair et al. [7] but the cross sections were only measured
down to about 1 mb. The most challenging theoretical issue
at that time was to explain the fusion of 40Ca + 48Ca, which
appeared to be strongly enhanced by couplings to transfer
reactions, in particular to those with positive Q values [8,9].
A strong motivation for reviving the study of the fusion of
calcium isotopes is that, in addition to 48Ca + 48Ca [5], the
fusion of 40Ca + 48Ca has also recently been measured down
to the 1 µb level [10], and a new measurement for 40Ca + 40Ca
is underway [11]. In order to be able to focus on and isolate the
effect of transfer on the fusion of the asymmetric 40Ca + 48Ca
system, it is necessary first to develop a good description of
the fusion of the two symmetric systems, and the present work
is a step in that direction.

The nuclear structure properties of 48Ca are discussed
in the next section and Sec. III describes the construction
of the ion-ion potential. The coupled-channels technique is
summarized in Sec. IV together with an analysis of the data
that is based on Woods-Saxon potentials. The analysis based on
the M3Y + repulsion potential is presented in Sec. V. Finally,
the conclusions are given in Sec. VI.
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TABLE I. Nuclear structure input for 48Ca. Values marked with
* are from Ref. [12]. The B(Eλ) values are from Ref. [14]. They
are consistent with the Coulomb excitation parameters (βR)C/

√
4π ,

except for the 3− state where Ref. [12] uses a larger value, B(E3) =
6.8 W.u. The lower part of the table shows the three transitions that
determine the effective two-phonon quadrupole state. Its excitation
energy and couplings to the 2+

1 state are shown in the last line.

Iπ Ex (MeV) B(Eλ) (W.u.) (βR)C√
4π

(fm) (βR)N√
4π

(fm)

2+
1 3.832 1.71(9) 0.126* 0.190*

3− 4.507 5.0(8) 0.250* 0.190*

5− 5.146 0.049* 0.038*

0+
2 → 2+

1 4.283 10.1(6) [0.098]

4+ → 2+
1 4.503 0.261(6) [0.025]

2+
2 → 2+

1 5.311 9(9) [0.111]
Eff 2PH 4.849 4.7(29) 0.15 0.15

II. NUCLEAR STRUCTURE INPUT

The nuclear structure input to the coupled-channels cal-
culations is shown in Table I. The elastic channel and the
one-phonon excitations of the low-lying 2+, 3−, and 5−
states in projectile and target results in a total of seven
channels.. The coupling strengths for the excitation of these
states are taken from Ref. [12] where they were calibrated
by analyzing the elastic and inelastic scattering of 16O on
calcium isotopes [13]. It should be noted that the Coulomb and
nuclear coupling strengths, expressed in Table I by the values
of βR/

√
4π , are different. The Coulomb couplings are in most

cases consistent with the currently adopted electromagnetic
transition probabilities or B values [14] that are quoted in the
third column of Table I.

Also shown in Table I are the 0+, 2+, and 4+ members of
two-phonon quadrupole excitation. The adopted B(E2) values
[14] shown in the third column of the lower part of Table I
can be combined into an effective two-phonon excitation. For
example, the effective B(E2) value for the two- to one-phonon
transition is given by the sum,

B(E2, 2ph → 1ph) =
∑

I=0,2,4

〈2020|I0〉2 B(E2, I → 2), (1)

and the two-phonon excitation energy is obtained as the
weighted average of the individual two-phonon excitations
energies [15]. The parameters obtained for the effective
two-phonon quadrupole excitation are shown in the last line
of Table I. Including the effective two-phonon quadrupole
excitations in the coupled-channels calculations, in addition
to the seven channels just mentioned, leads to a total of
nine channels. Unfortunately, nothing is known about the
two-phonon excitations of the 3− and 5− states so they will be
ignored.

To get a feeling for the influence of higher-order excitations
on the calculated fusion cross sections one can also include all
of the 15 mutual excitations channels that are generated from
the 6 one-phonon excitations presented in Table I. Together

with the basic 9 channels already mentioned, that sums up
to a total of 24 channels. This will be referred to as the full
calculation and the results will be compared to the fusion data
and to calculations that include the 9 channels just described,
as well as the no-coupling limit, in which case there is only a
single channel.

III. THE ION-ION POTENTIAL

The parameters of the Woods-Saxon (WS) potentials that
will be used in this work,

UWS(r) = −V0

1 + exp[(r − R0)/a]
, (2)

are those proposed in Ref. [16], Eqs. (III.2.40–45). The
parameters for the system 48Ca + 48Ca are a = 0.662 fm for
the diffuseness and V0 = 64.10 MeV for the depth of the
potential. We refer to this potential as the “standard” WS
potential because its diffuseness is consistent with the analysis
of elastic scattering data [16]. The radius R0, on the other hand,
will be treated as a free parameter and it will be adjusted to
optimize the fit to the data in the coupled-channels calculations
that are discussed in the next section.

There is an interesting point concerning the isospin depen-
dence of the nuclear potential proposed in Ref. [16]. It enters
through the average nuclear surface tension γ of the reacting
nuclei,

γ = 0.95

(
1 − 1.8

Na − Za

Aa

Nb − Zb

Ab

)
MeV fm−2, (3)

according to Ref. [16], Eq. (III.2.30). The correction factor
in Eq. (3), which depends on neutron excess, is equal to one
in reactions that involve 40Ca. In the case of 48Ca + 48Ca,
the correction factor reduces the surface tension by 5%; this
correction is included in the value of the depth parameter V0

used here.
The M3Y + repulsion potential is calculated using the

double-folding technique described in Ref. [3]. It is based
on the Reid parametrization of the M3Y effective nucleon-
nulceon interaction [17]. The spherical nuclear densities are
parametrized by

ρ(r) = 1

2

ρ0 exp(R/a)

cosh(r/a) + cosh(R/a)
, (4)

where R and a are the radius and diffuseness parameters,
respectively, and ρ0 is a normalization constant. It is seen that
the density, Eq. (4), approaches the Fermi function density
ρ0/{1 + exp[(r − R)/a]} for R/a � 1. The parametrization
given by Eq. (4) is used here because it has some very useful
analytic properties as discussed in the Appendix of Ref. [18].
For example, the Fourier transform has an analytic form, which
simplifies the calculation of the double-folding potential in
Fourier space from the expression [3],

U (r) = 1

2π2

∫
k2dk ρ(k) ρ(k) vnn(k) j0(kr), (5)

where vnn(k) is the Fourier transform of the effective nucleon-
nucleon interaction, and j0(x) = sin(x)/x is a spherical Bessel
function. Another advantage of the parametrization given by
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Eq. (4) is that the mean-square radius is given by the simple
expression

〈r2〉 = 3
5

[
R2 + 7

3 (aπ )2
]
. (6)

The repulsive part of the M3Y + repulsion potential is
determined by two parameters, namely, the strength vr of the
contact effective interaction,

vrep
nn (r) = vr δ(r), (7)

that generates it, and the diffuseness ar of the densities that
are applied in the double-folding calculation [3]. The radius
parameter R of the densities, on the other hand, is kept the
same as in the calculation of the direct and the exchange
parts of the M3Y double-folding potential. The diffuseness
of the density that is used in calculating the direct and the
exchange parts of the M3Y potential is kept fixed with the value
a = 0.54 fm.

The two parameters ar and vr of the repulsive part of the
potential are constrained so that total nuclear potential energy,
UN (r), for completely overlapping nuclei is consistent with
the equation of state. That leads to the relation [3]

UN (r = 0) ≈ Ap

9
K, (8)

where Ap is the mass number of the smaller nucleus and K is
the nuclear incompressibility. For 48Ca + 48Ca the value K =
223.7 MeV predicted by the Thomas-Fermi model of Myers
and Świątecki [19] will be used. Thus there are essentially
only two free parameters of the M3Y + repulsion interaction,
namely, the radius R and the diffuseness parameter ar . They
will be adjusted to optimize the fit to the fusion data. The
strength vr of the repulsive interaction, on the other hand,
is constrained for given values of R and ar by the nuclear
incompressibility according to Eq. (8).

Some of the entrance channel potentials that are used in this
work are illustrated in Fig. 1. The height of the Coulomb barrier
is essentially the same for all four potentials but the thickness
of the barrier is very different. The (blue) dashed curve is
the entrance channel potential for the Woods-Saxon potential.
It has the minimum pocket energy Vmin = 23.09 MeV and
the height of the Coulomb barrier is VCB = 51.63 MeV. The
latter potential was determined by optimizing the fit to the
fusion data with center-of-mass energy larger than 50 MeV.
This energy cut was chosen because the fusion hindrance
phenomenon sets in below 50 MeV, as we shall see in the next
section.

The upper two curves in Fig. 1 are the M3Y + repulsion
entrance channel potentials that are obtained in Sec. V. They
were determined by optimizing the fit to the fusion data in
coupled-channels calculations that include the 24 channels
described in Sec. II. There are two solutions, the M3Y + rep-1
and M3Y + rep-2 potentials, both of which are discussed
in detail in Sec. V. These potentials are shallower than the
standard Woods-Saxon potential, which is a characteristic
feature of the M3Y + repulsion potentials that have been
extracted from fusion data [3].

Finally, the entrance channel potential for the pure
M3Y(+exchange) potential is also shown. It is unrealistic
because it is deeper than the ground-state energy of the
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FIG. 1. (Color online) Entrance channel potentials for 48Ca +
48Ca obtained from the Woods-Saxon (WS, with R0 = 8.562 fm)
and the pure M3Y (M3Y-1) potentials. The two upper curves are
the shallow M3Y + repulsion potentials determined in Sec. V. The
energy of the ground state of the compound nucleus 96Zr is also
indicated.

compound nucleus 96Zr, which is indicated by the thick
horizontal line.

IV. COUPLED-CHANNELS CALCULATIONS

The coupled-channels calculations are performed in the
rotating-frame approximation, and the fusion cross sections are
determined by imposing ingoing-wave boundary conditions at
the position of the minimum of the pocket in the entrance
potential. This procedure is commonly used and is described,
for example, in Refs. [3,20]. In the present work no imaginary
potential will be applied. The fusion cross section will
therefore vanish when the center-of-mass energies are lower
than the minimum energy of the pocket in the entrance channel
potential.

The nuclear potential enters the coupled equations both
directly by determining the entrance channel potential and
indirectly by determining the nuclear couplings to first and
second order in the deformation amplitudes through the first
and second derivatives of the nuclear potential (see Ref. [20]
for details). There are, in principle, couplings of even higher
order and to higher-lying states [21] but they will be ignored
in the present study, partly because they are poorly known
and partly because they are not expected to play a large role
in the fusion of the not-so-heavy system 48Ca + 48Ca. This
expectation is based on the experience gained in Ref. [15].
However, the polarization of high-lying states [6] that are not
included in the calculations could distort the analysis.

The fusion data for 48Ca + 48Ca [5] are compared in
Fig. 2 to two coupled-channels calculations that are based
on standard Woods-Saxon potentials [16] with the diffuseness
a = 0.662 fm and depth V0 = 64.10 MeV. All 24 channels
described in Sec. II were included in the calculations. It is
seen that the data are hindered at low energies and the energy
dependence is much steeper than predicted by the calculations.
The dashed curve in Fig. 2 is the best fit to all data points; it
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FIG. 2. (Color online) Fusion cross sections for 48Ca + 48Ca. The
error bars reflect the statistical uncertainties. The curves are coupled-
channels calculations with 24 channels that use Woods-Saxon (WS)
potentials with two different radii.

is achieved with radius R0 = 8.495 fm but the fit is very poor
with an average χ2 per data point of χ2/N = 7.9, including
the statistical uncertainties and a systematic error of 7%.

The solid curve in Fig. 2 is based on the slightly larger
radius, R0 = 8.562 fm. It provides a better account of the data
near and above the the Coulomb barrier, as discussed in the
following. The associated entrance channel potential is the
(blue) dashed curve shown in Fig. 1.

The behavior of the hindrance in the fusion of 48Ca + 48Ca
is illustrated in Fig. 3 in terms of the ratio of the measured and
calculated fusion cross sections. It is seen that the ratio with
respect to the best fit to the data (the solid diamonds) has a
strong peak near 50 MeV, slightly below the Coulomb barrier,
which is at VCB ≈ 52 MeV. The ratio drops quickly at energies
below 50 MeV. This is attributed to the fusion hindrance
phenomenon. In fact, the steep falloff with decreasing energy
observed in the comparison to standard coupled-channels
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FIG. 3. (Color online) Ratios of the measured and calculated
cross sections shown in Fig. 2. The error bars on the open diamonds
were determined by the statistical uncertainties and a 7% systematic
error.

calculations was the signature that was first used to identify the
fusion hindrance [22]. Later it was shown that the hindrance is
often so strong that the S factor for fusion develops a maximum
at very low energies. Moreover, it was realized that an S factor
maximum together with the energy ES of the maximum is
a good quantitative way to characterize the fusion hindrance
phenomenon [23].

Since the fusion hindrance occurs at low energies one may
exclude the low-energy region and focus on reproducing the
data at higher energies. The result of this approach is shown
in Fig. 2 by the solid curve, which is based on a slightly larger
radius, R0 = 8.562 fm. The larger radius implies larger cross
sections below the Coulomb barrier but that gives a better
description of the excitation function in the barrier region. The
radius of the Woods-Saxon potential was therefore chosen so
that the ratio of the measured and calculated cross sections
essentially is a constant above 50 MeV. This is illustrated by
the open diamonds in Fig. 3. It is seen that the fusion hindrance
sets in very strongly below 50 MeV, where the ratio falls off
very steeply with decreasing energy.

V. ANALYSIS BASED ON THE M3Y + REPULSION
POTENTIAL

The parameters of the M3Y + repulsion potential that
provides the best fit to the data were determined using
an improved calibration procedure. For a given nuclear
radius parameter R of 48Ca and a given diffuseness ar of
the density used in calculating the repulsive part of the
potential, the strength of the repulsive term vr was adjusted so
that the incompressibility K = 223.7 MeV was achieved in
Eq. (8). Having determined the nuclear potential, we per-
formed coupled-channels calculations and the average χ2

per data point, χ2/N , was calculated from the statistical
uncertainties and a systematic error of 7%.

This procedure was repeated with different values of the
radius R for a fixed diffuseness parameter ar until a minimum
χ2/N was found. The whole process was repeated for a
new value of ar . The results of this process are illustrated in
Fig. 4, where χ2/N , minimized with respect to the radius
R, is plotted as a function of the diffuseness parameter ar .
The dashed curve is the result of calculations that include the
9 channels and the solid curve is the result obtained with all
24 channels described in Sec. II.

The fusion data of Ref. [5] are compared in Fig. 5 to various
calculations. The solid curve is the result of coupled-channels
calculations associated with the deepest minimum in Fig. 4,
which has a χ2 per data point of 1.66. The upper (blue)
dashed curve shows the cross sections obtained in similar
calculations using the Woods-Saxon potential with the radius
R0 = 8.562 fm. All 24 channels described in Sec. II were
included in both sets of calculations. The only difference
between the two calculations is the choice of the nuclear
potential, and it is seen that the shallow M3Y + repulsion
potential labeled M3Y + rep-2 is a much better choice.

The lowest dashed curve in Fig. 5 is the cross section
obtained in the no-coupling limit (i.e., with only one channel)
using the same M3Y + repulsion potential that was used to
produce the solid curve. By comparing the two curves, it is
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FIG. 4. (Color online) Results of the χ 2 analysis of the 48Ca +
48Ca fusion data [5]. χ 2/N , minimized with respect to the radius R, is
shown as a function of the diffuseness parameter ar . The solid curve
(24 ch) is for calculations that include 24 channels; the dashed curve
(9 ch) is for 9 channels.

seen that the effect of the couplings to the 24 channels is
equivalent to shifting the no-coupling limit almost 1 MeV to
lower energies.

A. Details of the analysis

The minima of the curves shown in Fig. 4 define the stable
solutions of the χ2 analysis of the fusion data since they are
minima with respect to variations in both ar and R. There
are two local minima for each set of calculations, and the
parameters of the M3Y + repulsion interactions that determine
them are given in Table II. It is seen the two solutions obtained
with nine coupled channels have almost the same χ2/N . It is
not clear what causes the existence of two solutions. The main
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FIG. 5. (Color online) Fusion cross sections for 48Ca + 48Ca. The
upper two curves are coupled-channels calculations with 24 channels
that are based on the Woods-Saxon (WS) and the M3Y + repulsion
(M3Y + rep-1 and M3Y + rep-2) potentials discussed in the text.
The lowest dashed curve is the no-coupling limit based on the same
M3Y + repulsion potential.

TABLE II. Parameters of the M3Y + repulsion potential associ-
ated with the χ 2 minima in Fig. 4. Results are shown for coupled-
channels calculations that include 9 and 24 channels, respectively.
The last three columns show the minimum of the pocket, Vmin, the
height of the Coulomb barrier, VCB, and the χ 2 value per data point.

Number of channels R ar vr Vmin VCB χ 2/N

(fm) (fm) (MeV fm3) (MeV) (MeV)

9 3.775 0.4025 480.1 33.58 51.67 2.76

9 3.810 0.4250 504.2 41.66 51.60 2.69

24 3.745 0.4070 481.8 34.61 51.77 2.52

24 3.798 0.4295 505.6 42.55 51.73 1.66

difference between them is that the energy of the pocket in the
entrance channel potential, Vmin, is about 8 MeV deeper in the
solution with the smaller radius R.

Of the two solutions obtained with 24 channels, the one
with the larger radius gives a much better fit to the data with
χ2/N = 1.66 and the associated potential will be referred to
as the M3Y + rep-2 potential. The potential for the solution
with the smaller radius is called the M3Y + rep-1 potential.
The two entrance channel potentials are illustrated in Fig. 1.
An important question is whether the parameters of the stable
solutions are realistic, or whether some of them can be ruled
out as being unrealistic. One parameter of particular interest is
the radius, which is examined next.

The rms radii obtained for the stable solutions are shown
in the fourth column of Table III. They can be compared to
the estimated experimental rms matter radius of 48Ca shown
in the last line of the table. The estimate was based on the rms
radius of the proton distribution, which was obtained from the
measured rms charge radius [24], and the experimental rms
radius of the neutron distribution [25]. The neutron radius
is uncertain and several values exist in the literature. The

TABLE III. The radius R of 48Ca extracted from the analysis
of the fusion data (cf. Table II). The rms radii are compared to the
measured rms charge [24], proton [24], and neutron [25] radii. The
latter two have been combined into the rms matter radius shown in
the last line. The quoted matter radius ([3.75] fm) was derived by
inserting the rms matter radius and the diffuseness a = 0.54 fm into
Eq. (6).

Reference Number of channels R (fm) 〈r2〉1/2 (fm)

9 3.755 3.547

9 3.810 3.569

M3Y + rep-1 24 3.745 3.528

M3Y + rep-2 24 3.798 3.562

charge [24] 3.474(1)

protons 3.387(1)

neutrons [25] 3.63(5)

matter [3.75] 3.53(3)
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TABLE IV. χ 2/N values (column 3) obtained in calculations that
use the M3Y + rep-2 potential and include 1, 9, or 24 channels. The
energy shift �E of the calculations that optimizes the fit to the data
and the associated χ 2/N values are shown in the last two columns.

R (fm) Channels χ 2/N �E (MeV) χ 2/N

3.798 1 33.3 −0.80 4.65

3.798 9 4.28 −0.12 2.71

3.798 24 1.66 0.0 1.66

experimental value chosen here was obtained from an analysis
of elastic proton scattering data at 800 MeV [25] and is in
fairly good agreement with most of the theoretical predictions
shown in Table I of Ref. [26].

The estimated rms matter radius quoted in the last line
of Table III is in perfect agreement with the rms radius
associated with the M3Y + rep-1 solution. The rms radius for
the M3Y + rep-2 solution is larger but it is still consistent
with the experimental estimate within the 1σ uncertainty. A
possible explanation for the larger radius could be the influence
of the polarization of high-lying states not included in the
calculations (see the following).

It is also encouraging that the extracted values of ar shown
in Table II are similar to those determined in the analysis of
the fusion data for 64Ni + 64Ni (ar = 0.403 fm [3]), 16O + 16O
(ar = 0.41 fm [27]), and 48Ca + 96Zr (ar = 0.40 fm [28]). It
is noted that in the previous works the densities (including the
radius) were kept fixed and only the value of ar was adjusted
in each case to improve the fit to the data.

B. Polarization effects

The polarization effect discussed in Sec. I is illustrated in
Table IV. The table shows that, for the M3Y + rep-2 potential,
one needs to shift the one-channel calculation by �E =
−0.80 MeV and the nine-channel calculation by −0.12 MeV
in order to optimize the fit to the data. The negative energy
shifts are equivalent to using a larger radius of the reacting
nuclei. For example, the required energy shift of −0.12 MeV
for the calculations with nine channels can be simulated by
increasing the radius of 48Ca by only 0.02 fm.

The required energy shift �E shown in Table IV for
the calculation with 24 channels is zero simply because the
radius R was already adjusted in this case to optimize the
fit to the data. The issue of whether the calculations have
converged with respect to the excitation and polarization of
high-lying states is a difficult one to address. It is possible
that the polarization of other high-lying states, which have not
been considered here, could play a role and explain part of
the 0.05 fm difference between the radius of the M3Y + rep-2
solution and the estimated experimental matter radius (see
Table III).

C. S factor representation

A good way to illustrate the behavior of the fusion cross
section σf at low energies is to plot the S factor for fusion,

S = Ec.m.σf exp(η − η0), (9)
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FIG. 6. (Color online) S factors for the fusion cross sections
shown in Fig. 5. Also shown is the S factor obtained in calculations
with the M3Y + rep-1 potential. All calculations include 24 channels,
except the no-coupling limit, which has only 1 channel.

where η = Z1Z2e
2/(h̄v) is the Sommerfeld parameter and η0

is that value of η at a fixed reference energy E0. The S factors
for the fusion cross sections shown in Fig. 5 are illustrated in
Fig. 6 using the (arbitrary) reference energy E0 = 52 MeV.
Also shown is the result obtained with the M3Y + rep-1
potential and 24 coupled channels.

The coupled-channels calculations for the Woods-Saxon
potential produce an S factor in Fig. 6 that keeps increasing
with decreasing energy. The S factors obtained with the
two M3Y + repulsion potentials and 24 coupled channels are
lower. The S factor for the best fit to the data (the solid curve,
obtained with the M3Y + rep-2 potential) has a maximum
at Es = 43.2 MeV. The cross section associated with the
latter maximum is very small, about 0.3 nb. The S factor
for the calculation based on the M3Y + rep-1 potential has a
maximum at Es = 35.4 MeV, which is outside the depicted
energy range.

It would be very interesting to know whether the predicted
S factor maximum near Es = 43.2 MeV can be confirmed by
experiments, but to measure a cross section of only 0.3 nb
would be a serious challenge.

D. Logarithmic derivative

The logarithmic derivative of the energy-weighted cross
sections,

L(Ec.m.) = d

dEc.m.

ln(Ec.m.σf ), (10)

is illustrated in Fig. 7. The logarithmic derivatives derived from
the data and from the coupled-channels calculation based on
the M3Y + rep-2 potential (the solid curve) are seen to be in
very good agreement. Similar results were obtained in Ref. [5]
in coupled-channels calculations that used a Woods-Saxon
potential with the large diffuseness a = 0.9 fm. Thus it appears
that a large diffuseness of the Woods-Saxon has an effect that
is similar to that of the shallow M3Y + repulsion potential, at
least in the low-energy region discussed here.
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FIG. 7. (Color online) The logarithmic derivative of the energy-
weighted cross sections shown in Fig. 5. Also shown is the result of
coupled-channels calculations based on the M3Y + rep-1 potential.
The top curve is the constant S factor limit, LCS(Ec.m.).

The similarity of the M3Y + repulsion and a Woods-Saxon
potential was recently pointed out in Ref. [29]. It was
shown that the M3Y + repulsion potential can be reproduced
accurately in the barrier region by a Woods-Saxon potential
with large diffuseness. However, a nuclear potential with a
large diffuseness is inconsistent with many measurements
of elastic and quasielastic scattering. For example, a recent
systematic study of quasielastic scattering of nuclei showed
that a realistic diffuseness in the range of 0.64 to 0.69 fm is
indeed required [30].

It is very interesting to point out that the low-energy
behavior of the experimental logarithmic derivative shown in
Fig. 7 is different from the behavior observed in other systems,
in particular in medium-heavy systems [2], where the loga-
rithmic derivative usually increases linearly with decreasing
energy and intersects with the logarithmic derivative for
constant S factor [23],

LCS(Ec.m.) = πη/Ec.m.. (11)

However, there are other systems that exhibit a deviant behav-
ior at low energies. For example, the logarithmic derivative for
the fusion of 36S + 48Ca [31] also becomes rather flat at low
energies and it seems unlikely that it will intersect with the
constant S factor limit. In fact, the S factor for the fusion of

36S + 48Ca increases slowly and linearly in a logarithmic plot
with decreasing energy (see Fig. 3 of Ref. [31]).

Another interesting point is that the solid curve in Fig. 7
exhibits a maximum near 48 MeV before it rises steeply below
44 MeV. It intersects with the constant S factor limit at Es =
43.2 MeV, where the associated S factor in Fig. 6 develops a
maximum.

VI. CONCLUSIONS

The fusion data for 48Ca + 48Ca have been analyzed using
the coupled-channels technique and different ion-ion poten-
tials. The analysis based on a standard Woods-Saxon potential
clearly showed that the data are strongly hindered at low
energies. By employing and adjusting the M3Y + repulsion
double-folding potential it was possible to achieve an excellent
description of the data.

The best fit to the data was achieved with a nuclear radius
of 48Ca that is slightly larger than but still consistent with the
matter radius of 48Ca. The latter radius was determined from
the measured rms charge radius and the rms neutron radius
extracted from an analysis of elastic proton scattering data. The
fact that the extracted radius is slightly larger than the matter
radius may be caused by the polarization of high-lying states
that are not included in the coupled-channels calculations.

The entrance channel potential for the best fit to the data has
a rather shallow pocket, consistent with the findings of previous
analyses of fusion data for medium-heavy systems. The
M3Y + repulsion potential model is therefore also referred
to as the shallow potential model, in contrast to models based
on the standard Woods-Saxon potentials, which have relatively
deep pockets in the entrance channel potential.

The S factor for the fusion of 48Ca + 48Ca does not show a
maximum within the energy range of the experiment. However,
it is predicted to develop a maximum 3 MeV lower in energy,
which is nearly the same as the energy value obtained from the
extrapolation method in Ref. [10]. The cross section associated
with the maximum S factor is very small (≈0.3 nb) and is a
serious challenge to the experimental technology.
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