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Coupled-channels density-matrix approach to low-energy nuclear collision dynamics: A technique
for quantifying quantum decoherence effects on reaction observables
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The coupled-channels density-matrix technique for nuclear reaction dynamics, which is based on the Liouville-
von Neumann equation with Lindblad dissipative terms, is developed with the inclusion of full angular momentum
couplings. It allows a quantitative study of the role and importance of quantum decoherence in nuclear scattering.
Formulas of asymptotic observables that can reveal effects of quantum decoherence are given. A method for
extracting energy-resolved scattering information from the time-dependent density matrix is introduced. As an
example, model calculations are carried out for the low-energy collision of the 16O projectile on the 154Sm target.
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I. INTRODUCTION

Low-energy nuclear reaction dynamics has successfully
been treated within the stationary-state multichannel scattering
theory including complex potentials [1,2]. However, this
cannot account for quantum decoherence [3–5], which is a
key aspect of irreversibility in open dynamical systems [6],
when unavoidably a limited number of degrees of freedom
and reaction channels are used [7]. This issue can be
tackled through the present time-dependent approach. The
coupled-channels density-matrix (CCDM) technique was first
introduced in studies of quantum molecular dynamics [8] and
has recently been applied to investigate the coupling-assisted
quantum tunneling in heavy-ion fusion [9,10]. Reference [11]
provides a didactic discussion on the CCDM approach. In
contradistinction to this approach, most of the dynamical
models [9] of dissipative nuclear collisions do not treat the
relative motion of the nuclei quantum mechanically and/or
use incoherent (statistically averaged) rather than decoherent
(partially coherent) reaction channels.

Figure 1 illustrates the innovative ideas of the CCDM
approach. The situation can be imagined as an orchestra (repre-
senting the reduced quantum system), where the director plays
the role of the relative motion and the musicians correspond
to a few intrinsic, low-lying collective states. Now imagine an
airplane appearing overhead, representing the environment of
innumerable nucleonic states. When the airplane is not present,
the orchestra plays a marvelous music, all musicians are in
sync, like in a coherent quantum superposition. But when the
airplane approaches, the listener perceives two effects due to
interference: (i) the music gets attenuated (dissipation) and,
most importantly, (ii) the quality of the music changes, as the
musicians play out of sync (decoherence).

Decoherence, which always accompanies dissipation in
open quantum systems [6], means dynamical dislocalization
of coherent quantum superpositions due to entanglement of
the system with its environment [12]. Coherent quantum
superpositions are the basis of the coherent coupled-channels
approach to near-barrier reaction dynamics, which manifest
themselves through experimental fusion-barrier distributions
[13]. Dissipation of energy and angular momentum is revealed
in heavy-ion deep-inelastic scattering that occurs at near-

barrier energies as well [14]. Cross sections of deep-inelastic
collisions also indicate loss of angular-momentum coherence
[15,16]. While the coherent coupled-channels calculations
[17] are able to explain several collision observables, major
problems are unresolved. Foremost is the inability to describe
the elastic and quasielastic scattering and fusion processes
simultaneously [18] and the related, more recent, failure to
describe consistently below-barrier quantum tunneling and
above-barrier fusion yields [19]. New, precise fusion mea-
surements have inevitably led to phenomenological (some-
times contradictory) adjustments [20–22] to stationary-state
coupled-channels models to fit the experimental data, but
without a physically consistent foundation. Complementary
to fusion experiments, precision measurements of back-angle
scattering energy spectra [23–25] and quasielastic barrier
distributions [26] clearly indicate that complex, dynamical
processes (other than the low-lying collective excitation of the
interacting nuclei [27]) play an important role in low-energy
heavy-ion collisions.

This article suggests that quantum decoherence and dis-
sipation should be simultaneously included in a consistent
description of low-energy reaction dynamics, when a restricted
set of (relevant) degrees of freedom is employed. A possible
description is the CCDM approach whose formalism is
described in Sec. II. For the sake of simplicity and a specific
application, without loss of generality, the collision of an inert
spherical 16O projectile on a deformed 154Sm target is studied.
It includes the couplings between the relative orbital angular
momentum L̂ of the reactants and the spin Î of the ground-
state rotational-band levels of 154Sm. Formulas of asymptotic
observables that can reveal effects of quantum decoherence
are obtained. A method for calculating the energy-resolved
observables is presented. In Sec. III, model calculations are
carried out and discussed, while a summary is given in Sec. IV.

II. FORMALISM

A. Initial density matrix

The origin of the reference frame is in the overall center
of mass. The vector �r refers to the relative vector between the
projectile and the target, while r̂ and ξ̂ are, respectively, the
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FIG. 1. (Color online) A low-energy nuclear collision represented
by an open quantum system (relative motion + a few intrinsic, low-
lying collective states). The bath of single-particle states surrounding
a giant resonance state represents the environment. It gradually
destroys the coherent quantum superposition of the reduced-system
collective states, as the nuclei approach.

orientation angles of �r and the target intrinsic symmetry axis,
with respect to the laboratory fixed z axis defined by the beam
direction.

Initially, the target is considered to be unpolarized at
the ground state of spin I0, being the rotational state the
YI0MI0

(ξ̂ ) spherical harmonic. It is coupled to the orbital
motion described with YLML

(r̂). The total angular-momentum
state, |I0L; JM〉 = ∑

MLMI0
CJM

LMLI0MI0
YLML

(r̂)YI0MI0
(ξ̂ ), de-

scribes the angular variables, denoting C as the Clebsch-
Gordan coefficients. The radial motion is described with a
Gaussian ψk0 (r) wave packet, centered at r0 with the average
radial wave number k0 and the spatial dispersion σ :

ψk0 (r) = N exp

[
− (r − r0)2

2σ 2

]
eik0r , (1)

where the constant N is specified below. Thus, the initial state
is |χ〉 = ∑

LJM ψk0 (r)|I0L; JM〉, and the initial density oper-
ator is ρ̂0 = (2I0 + 1)−1|χ〉〈χ |. The latter can be represented
as

ρ̂0 =
∑

α,α′,rs

|r)|α〉ρrs
αα′(t = 0)〈α′|(s|, (2)

where α ≡ (IL; JM) and |α〉 and |r) are the coupled angular-
momentum basis and the discrete grid-basis describing the
internuclear separations, respectively. The initial density ma-
trix is

ρrs
αα′ (t = 0) = (2I0 + 1)−1N2 exp

[
− (r − r0)2

2σ 2

]
eik0r

× exp

[
− (s − r0)2

2σ 2

]
e−ik0sδII0δI ′I0 , (3)

where N is determined from the normalization condition∑
rα ρrr

αα = 1.

B. Time evolution

1. Nondissipative case

The Liouville-von Neumann master equation dictates the
time evolution of the density matrix operator ρ̂(t) with the
initial value (2). It reads as

ih̄
∂ρ̂

∂t
= [Ĥ , ρ̂], (4)

where Ĥ is the system (Hermitian) Hamiltonian specified
below. Inserting the expansion (2) for ρ̂(t) in Eq. (4), and
projecting onto the basis states, we get a system of coupled
equations for the matrix elements ρrs

αα′ (t):

ih̄ρ̇rs
αα′ =

∑
tβ

(
Hrt

αβρts
βα′ − ρrt

αβH ts
βα′

)
, (5)

with the initial values (3). The system Hamiltonian contains
different pieces: (i) the radial kinetic energy operator T̂ , (ii) the
total bare (Coulomb + nuclear + centrifugal) nucleus-nucleus
real potential Û , (iii) the total (Coulomb + nuclear) real
coupling potential V̂ between the relative motion and the
intrinsic rotational states of the target, and (iv) the target
intrinsic Hamiltonian Ĥ0. In terms of these operators, the
coupled equations (5) read as

ih̄ρ̇rs
αα′ =

∑
t

(
T rtρts

αα′ − ρrt
αα′T

ts
) + [Uα(r) − Uα′ (s)]ρrs

αα′

+
∑

β

[
Vαβ(r)ρrs

βα′ − ρrs
αβVβα′ (s)

] + (εα − εα′ )ρrs
αα′ .

(6)

2. Dissipative case

In practice, however, a truncated model space of reaction
channels (reduced system) is employed [28]. The impact of the
excluded model space (environment) on the reaction dynamics
is usually treated through complex potentials [1,2,28], making
the system Hamiltonian non-Hermitian. This results in loss
of probability and energy from the reduced system to the
environment, but the quantum coherence in the basis states
of the reduced system is preserved, as recently demonstrated
in Ref. [7]. It is inconsistent with the irreversible dynamics
of an open quantum system [6], as energy dissipation always
goes hand in hand with quantum decoherence [3–5].

Irreversibility can be consistently described by the Lindblad
master equation [29–32]. Here, quantum decoherence and
dissipation are incorporated into the dynamics through a
dissipative Liouvillian, ih̄LDρ̂, which is added to the right-
hand side of Eq. (4). LDρ̂ reads as

LDρ̂ =
∑

ν

(
Ĉν ρ̂Ĉ†

ν − 1

2
[Ĉ†

ν Ĉν, ρ̂]+

)
, (7)

where [. . .] and [. . .]+ denote the commutator and anti-
commutator, respectively. Each Ĉν is a Lindblad operator
for a dissipative coupling, physically motivated according
to the specific problem. It is assumed that each dissipa-
tive coupling ν ≡ (αα′) between given states |α〉 and |α′〉
has an associated (local) radial-dependent decay rate �rr

αα′
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[33], that is, the spontaneous emission Lindblad operator
Ĉαα′ = √

�rr
αα′ |α〉〈α′|.

In order to also describe decay to the Hilbert space
of excluded, intrinsic degrees of freedom, environmental
states [34,35] are considered in addition to the basis |α〉
of the reduced system. All these states are assumed to be
orthonormal, resulting in an enlarged basis |ᾱ〉. Using this and
the discrete grid-basis, the matrix elements of Eq. (7) read
as [36]

(LDρ̂)rsᾱᾱ′ = δᾱᾱ′
∑

µ

√
�rr

ᾱµρrs
µµ

√
�ss

ᾱµ

− 1

2

∑
µ

(
�rr

µᾱ + �ss
µᾱ′

)
ρrs

ᾱᾱ′ , (8)

where µ runs over all the ᾱ states, and �rr
ᾱᾱ = ∑

µ �=ᾱ �rr
µᾱ [37].

We now distinguish two kinds of density matrix elements
ρrs

ᾱᾱ′ , namely, one type associated with the reduced-system
states |α〉 only and another type related to the environmental
states |ᾱ〉, ᾱ �= α. These obey the following equations of
motion:

ih̄ρ̇rs
αα′ =

∑
t

(
T rtρts

αα′ − ρrt
αα′T

ts
) + [Uα(r) − Uα′ (s)]ρrs

αα′

+
∑

β

[
Vαβ(r)ρrs

βα′ − ρrs
αβVβα′ (s)

] + (εα − εα′ )ρrs
αα′

+ ih̄

{
δαα′

∑
µ

√
�rr

αµρrs
µµ

√
�ss

αµ

− 1

2

∑
µ

(
�rr

µα + �ss
µα′

)
ρrs

αα′

}
, (9)

for matrix elements of the reduced-system states, whereas

ρ̇rs
ᾱᾱ′ = δᾱᾱ′

∑
µ

√
�rr

ᾱµρrs
µµ

√
�ss

ᾱµ

− 1

2

∑
µ

(
�rr

µᾱ + �ss
µᾱ′

)
ρrs

ᾱᾱ′ , (10)

for matrix elements involving the environmental states, that is,
either ᾱ or ᾱ′ �= α, at least. It is worth emphasizing that the
environmental states are not reaction channels, but auxiliary
states [34] supplying a probability drain and rendering the
reduced-system states decoherent.

The initial values for Eq. (9) are given by Eq. (3), while
for Eq. (10) these are zero as the nuclei are initially (far apart)
at the ground states. Hence, the off-diagonal elements ρrs

ᾱᾱ′ in
Eq. (10) remain zero. However, the diagonal terms ρrs

ᾱᾱ absorb
probabilities only, provided there is no flux back from the
environment to the reduced system.

In the following calculations, it is considered that the off-
diagonal elements of the decay-rate matrix � are nonzero only
for transitions from the reduced system to the environment,
that is, �rr

ᾱα, ᾱ �= α. (Still, environment-induced transitions
among the states of the reduced system may occur.) The decay
rates are given by �rr

ᾱα = Wα(r)/h̄, where Wα(r) > 0 are decay
functions. These are here treated as empirical functions, but it
is hoped that a microscopic theory on damping of collective

excited states [38–40], including dynamical modifications of
excited state properties due to the close proximity of other
nucleus [41], can provide them.

Various types of environments can coexist in a nuclear
collision, which may be specific to particular degrees of
freedom, such as isospin asymmetry or weak binding. Among
these environments, which can be coupled to specific states or
to all states of the reduced system, are (i) the high level-density
of one- and multinucleonic excitations in different mass/charge
partitions (transfer), (ii) the continuum of nonresonant de-
cay states of weakly bound nuclei (breakup), and (iii) the
innumerable nuclear molecular (compound nucleus) states
(fusion). These can be treated separately, and their effects can
be distinguished within the CCDM approach.

C. Asymptotic observables

Having the solution of Eq. (9), after a long period of time tf ,
when the centroid of the recoiled body of the wave packet is at
a large internuclear distance and a quasistationary probability
current is established in all the α channels, we then calculate
asymptotic observables. For instance, these can be the angular
distribution of the target excitations and their integrated values.
These are calculated as follows.

We now introduce the projector P̂IMI
= |IMI 〉〈IMI | as-

sociated with a specific state of the target. The new operator
ρ̂(tf )P̂IMI

describes the scattered waves in this target state,

ρ̂(tf )P̂IMI
= 〈IMI |ρ̂(tf )|IMI 〉
=

∑
p

CJM
LmIMI

YLm(r̂)|r)ρrs
γ λ(tf )(s|CJ ′M ′

L′m′IMI
Y ∗

L′m′(ŝ),

(11)

where p ≡ (r, s, L,m, J,M,L′,m′, J ′,M ′), γ ≡ (IL; JM),
and λ ≡ (IL′; J ′M ′). The reduced density matrix, ρrs

γ λ(tf ), is
normalized with its trace, that is,

∑
rγ ρrr

γ γ (tf ).
We note that Eq. (11) is still an operator in �r and �s. The radial

projector P̂r ′ = |r ′)(r ′| associated with a specific separation
between the nuclei is then introduced. With this projector we
now act on Eq. (11) and set r̂ = ŝ = r̂ ′. A new operator is
thus obtained, whose partial trace (sum over all separations
r ′) provides the probability for producing the target in state
(I,MI ) with the relative coordinate in the direction r̂ ′:

dW
d�

(I,MI ) =
∑

q

CJM
LmIMI

YLm(r̂ ′)Sγ λ(tf )CJ ′M ′
L′m′IMI

Y ∗
L′m′ (r̂ ′),

(12)

where q ≡ (L,m, J,M,L′,m′, J ′,M ′) and Sγ λ(tf ) =∑
r ′ ρ

r ′r ′
γ λ (tf ). The latter contains information about the

coherence of angular momenta.
Integrating Eq. (12) over all directions r̂ ′ of solid angles,

and summing over all MI , the total probability for producing
the target in state I (population) is obtained:

W(I ) =
∑
MI

∑
LmJM

(
CJM

LmIMI

)2Sγ γ (tf ). (13)
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D. Energy-resolved observables

The observables, Eqs. (12) and (13), correspond to average
values for the range of energies contained in the incident wave
packet (1). The energy-resolved scattering information can be
obtained using a window operator [42]. The key idea is to
calculate, for definite γ λ indices, the energy spectrum P(Ek)
of the initial and final reduced density matrices. Ek is the
centroid of a total energy bin of width 2ε. A matrix of reflection
coefficients, Rγ λ(Ek), is determined by the ratio

Rγ λ(Ek) = Pfinal
γ λ (Ek)∑

γ P initial
γ γ (Ek)

, (14)

which replaces the matrix Sγ λ(tf ) in Eqs. (12) and (13).
Expression (14) generalizes the wave-packet formulation of
the reflection coefficient [43,44].

The energy spectrum P(Ek) = T̃r(�̂ρ̂), where T̃r denotes
a partial trace involving the radial indices only, and �̂ is the
window operator [42],

�̂(Ek, n, ε) ≡ ε2n

[(Ĥ − Ek)2n + ε2n]
, (15)

where Ĥ is the system asymptotic Hamiltonian and n deter-
mines the shape of the window function. As n is increased,
this shape rapidly becomes rectangular with very little overlap
between adjacent energy bins [42], remaining the bin width
constant at 2ε. The spectrum is constructed for a set of Ek ,
where Ek+1 = Ek + 2ε. Thus, scattering information over a
range of incident energies can be extracted from a time-
dependent density matrix that has been calculated on a grid.

1. Example

Figure 2 shows the following for a single-channel CCDM
calculation with L = 0 [9]: (a) the energy spectrum (n = 4,
2ε = 1 MeV) of the initial (solid line) and final (dashed line)
density matrices, and (b) the final-to-initial ratio of the energy
spectrum providing energy-resolved reflection coefficients
(solid squares). These very well agree with those (dotted
line) of a time-independent Schrödinger equation with a
short-range imaginary potential or an ingoing-wave boundary
condition at small radii, as implemented in the CCFULL

code [45].
In the CCDM calculation above, the grid (r = 0–100 fm)

was evenly spaced with 512 radial points. The incident wave
packet was initially centered at r0 = 50 fm, with width σ =
5 fm, and was boosted toward the potential with the appropriate
average kinetic energy for the total energy E0 = 60 MeV.

The time evolution of the density matrix was carried out
using a Faber propagator [46] and the Fourier method [47]
for the commutator between the kinetic energy and density
operator. The time step for the density-matrix propagation was
�t = 10−22 s.

The form of the bare nuclear potential between the 16O and
154Sm nuclei is a Woods-Saxon potential with (V0, r0, a0) ≡
(−165 MeV, 0.95 fm, 1.05 fm). The Coulomb potential is that
for two point charges. These yield an s-wave Coulomb barrier
of VB = 59.41 MeV at the radius RB = 10.81 fm.
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FIG. 2. (a) Energy spectrum of the initial (solid line) and final
(dashed line) density matrices for the elastic scattering of 16O off the
154Sm target at the average total energy E0 = 60 MeV. (b) Energy-
resolved reflection coefficients provided by the final-to-initial ratio
of the energy spectrum (solid squares). These very well agree with
those of a stationary Schrödinger equation (dotted line).

The irreversible capture of the two nuclei in the
nucleus-nucleus potential pocket inside the Coulomb barrier
(fusion) is caused by an environmental coupling [9,10] with
a decay function W (r) taken as a Fermi function with depth
10 MeV and diffuseness 0.1 fm, located at the pocket radius of
5.77 fm.

III. MODEL CALCULATIONS

In the model calculations the 16O projectile was taken to be
inert and the 154Sm target was allowed to be excited up to the 4+
state of the ground-state rotational band. The all order nuclear
coupling of the ground state 0+ to the states 2+ and 4+, with
excitation energies E2+ = 0.08 MeV and E4+ = 0.27 MeV,
has a macroscopic deformed Woods-Saxon form with a radius
parameter of 1.06 fm and deformation parameters of β2 =
0.322 and β4 = 0.027. The Coulomb coupling includes terms
up to second order with respect to β2 and up to the first order of
β4. The total coupling-potential matrix in the coupled angular-
momentum basis is calculated using the CCFULL code [45] and
the Kermode-Rowley matrix technique [48].

With such a coupling Hamiltonian, the time propagation
on the grid employed in Fig. 2 is very time-consuming
and memory demanding, beyond the present limit of our
computational capability. That is why the present calcula-
tions aim at exploring qualitative effects only, for which a
smaller grid (r = 0–40 fm) with 64 evenly spaced radial
points suffices. The initial wave packet is then centered at
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FIG. 3. Time evolution of the measure of coherence in the reduced
system. While the fusion environment essentially preserves coherence
(solid line), it is destroyed by the surface environment (dashed line).

r0 = 25 fm, with width σ = 3 fm and the incident, average
total energy E0 = 60 MeV. Relative partial waves up to 20h̄
are included in the calculations.

Two types of calculations (without energy projection)
are carried out including: (i) only the effects of the fusion
environment highlighted previously, and (ii) in addition the
effects of a surface environment specified in the following.
While the fusion environment is coupled to all the 154Sm
states, the surface environment is considered to be coupled
to the ground state only. The latter can be associated with
complex, multinucleon/cluster transfers from the ground state
of the colliding nuclei to other mass (or charge) partitions.
The corresponding decay function is taken as a Gaussian with
width of 1 fm, centered at the contact radius that is estimated as
1.2(161/3 + 1541/3) fm. This function is physically motivated
by the spatial localization of transfer processes in heavy-
ion reactions [49]. The measure of coherence [7,50] in the
reduced system is the ratio Tr(ρ̂2)/[Tr(ρ̂)]2, whose time
evolution is presented in Fig. 3. The fusion environment
essentially preserves coherence (solid line), while the surface
environment results in decoherence (dashed line). Comparing
the calculation (ii) to calculation (i), we learn how the surface-
environment-induced decoherence impacts on the asymptotic
observables (12) and (13).

Figure 4 shows the angular distribution of the 154Sm excita-
tions, which corresponds to expression (12) summed over all
MI . The solid and dashed lines are results of the calculations (i)
and (ii), respectively. Clearly, the surface environment varies
the quantum interference effects, destroying the coherence
of relative partial waves and changing by a few degrees the
minimum of the inelastic probability distributions [Figs. 4(b)
and 4(c)]. It also affects significantly the asymptotic population
of the 154Sm states and the fusion probability, as presented in
Table I. The surface environment-induced decoherence hinders
the probability flow from the elastic to the inelastic and fusion
channels.

IV. SUMMARY

The innovative, coupled-channels density-matrix approach
to low-energy reaction dynamics has been developed further,
including full angular momentum couplings and a method
for extracting energy-resolved scattering information from the
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FIG. 4. Angular distribution of the 154Sm excitation probabilities,
when an inert 16O projectile scatters off the 154Sm target at the average
total energy E0 = 60 MeV: (a) 0+, (b) 2+, and (c) 4+. The solid
lines are outcomes including the effects of the fusion environment
only, while the dashed lines include in addition the effects of the
surface environment. The latter destroys the coherence of relative
partial waves, changing by a few degrees the minimum of the inelastic
distributions (small figures inserted).

TABLE I. Asymptotic population (13) of the 154Sm states and
the fusion probability for calculations including (i) only the fusion
environment (Environment 1), and (ii) in addition the surface
environment (Environment 2). The latter hinders the probability
flow from the elastic to the inelastic and fusion channels, due to
decoherence.

States Environment 1 Environments 1 and 2
Population Population

0+ 0.8376 0.8770
2+ 0.1206 0.0961
4+ 0.0418 0.0268
Fusion probability 3.127 × 10−3 9.106 × 10−4
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time-dependent density matrix. These developments have en-
abled a first exploration of decoherence effects on asymptotic
observables, such as the angular distribution of the target
excitations and their integrated values. These are significantly
affected by decoherence induced by a surface environment
(related to complex, multinucleon/cluster transfers), which
changes by a few degrees the minimum of the back-angle
inelastic probability distributions and hinders the probability
flow from the elastic to the inelastic and fusion chan-
nels. To test the present theory against experiments, both
extensive calculations (with energy projection) and high-
precision measurements of fusion and scattering observables
(including those investigated here) are required. It is hoped
that decoherence effects can help resolve major problems
in low-energy nuclear reaction physics, such as the current

inability to simultaneously describe fusion and scattering mea-
surements of heavy ions within the standard, coupled-channels
framework.
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