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Investigation of phenomenological models for the Monte Carlo simulation of the prompt
fission neutron and γ emission
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A Monte Carlo simulation of the fission fragment deexcitation process was developed in order to analyze and
predict postfission-related nuclear data which are of crucial importance for basic and applied nuclear physics.
The basic ideas of such a simulation were already developed in the past. In the present work, a refined model
is proposed in order to make a reliable description of the distributions related to fission fragments as well as
to prompt neutron and γ energies and multiplicities. This refined model is mainly based on a mass-dependent
temperature ratio law used for the initial excitation energy partition of the fission fragments and a spin-dependent
excitation energy limit for neutron emission. These phenomenological improvements allow us to reproduce with a
good agreement the 252Cf(sf) experimental data on prompt fission neutron multiplicity ν(A), ν(TKE), the neutron
multiplicity distribution P (ν), as well as their energy spectra N (E), and lastly the energy release in fission.
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I. INTRODUCTION

The data related to fission fragments (FF) are of crucial
importance for applied and basic nuclear physics. Their kinetic
and excitation energies at scission and after full acceleration
are at the root of the prompt neutron and γ emission. Spectra
and multiplicities of prompt particles are as important as cross
sections since the energies released during fission by FF and
prompt particles are directly related to the heat deposited in
nuclear reactors.

Among the fission observables, the prompt fission neutron
spectra and average multiplicities are commonly described
by the Madland-Nix Los Alamos model [1]. This model was
refined in order to account for the fission fragment mass,
charge, and kinetic energy distributions [2] and applied by
Vladuca and Tudora in their so-called point-by-point model
[3,4] by considering, among other things, fission modes.

In order to predict and analyze the various neutron, γ ,
and fission-fragment-related data, a Monte Carlo approach
simulating the FF deexcitation was undertaken by Lemaire
et al. [5] and very recently by Randrup and Vogt in Refs. [6,7].
In Lemaire’s work, two kinds of hypotheses related to the
partitioning of the FF initial excitation energy at the scission
point were considered. The first one is an equipartition of
the temperature between the two complementary fragments
and the second one uses experimental results, such as mean
neutron energy or the average number of prompt neutrons,
as a function of the fission fragment mass to infer the initial
excitation energy of each fragment. The first hypothesis is
not able to reproduce the sawtooth shape of the distribution
of the average number of prompt neutrons as a function of
the fragment mass and the second one is not a predictive
calculation route due to experimental results used as input
parameters.

In the present work, a dedicated Monte Carlo code
named FIFRELIN (fission fragment evaporation leading to
an investigation of nuclear data) was developed, including
various improved models mainly based on a mass-dependent
temperature ratio of the fully accelerated complementary

fragments and a spin-dependent excitation energy limit for
neutron emission to improve the agreement with experimental
data.

Section II details the method and models implemented
in our Monte Carlo code while Sec. III is devoted to the
analysis of the different models in comparison with selected
experiments from literature. The data presented in this paper
are related to the 252Cf spontaneous fission.

II. MODEL DESCRIPTION

As usual a Monte Carlo game can only be performed
with the knowledge of physical probability density functions
through the repartition functions. The most basic probability
laws concern the mass and the kinetic energy of the fission
fragments. These are experimental distributions. Another
distribution needed to select a nucleus (a fission fragment)
concerns the nuclear charge (Z). The next step in the
simulation consists of calculating the excitation energy. The
total excitation energy (TXE) at scission is composed of
intrinsic excitation energy E∗,sc, deformation energy Edef,sc,
and rotational energy

TXE = E∗,sc + Edef,sc + Erot,sc. (1)

After full acceleration (i.e., after relaxation of the deformation
energy), the fission fragments are rotating and the total
excitation energy is converted into intrinsic excitation energy
E∗ and collective rotational energy Erot,

TXE = E∗
L + E∗

H + Erot
L + Erot

H , (2)

where Erot
L , Erot

H are the rotational energies of the light and
heavy fragments and E∗

L, E∗
H are their intrinsic excitation

energies. The rotational energy of deformed fragments is due
to angular-momentum-bearing collective modes, like bending
or wriggling and as such is not drained from the intrinsic
excitation energy available at scission [8].

Only the intrinsic excitation energy corresponding
to E∗

L,H = TXE − Erot
L,H is treated within a Fermi-gas
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approximation in aT 2, where a and T stand for the level-
density parameter and the nuclear temperature. The parti-
tioning between the two fragments is performed through a
mass-dependent temperature ratio. This energy is dissipated by
neutron emission until an excitation energy limit is reached.
This limit is spin dependent through the neutron separation
energy plus the rotational energy. When this limit is reached
the neutron evaporation ends and the γ deexcitation can start
(but is not yet implemented). Finally, as the kinematic relations
are computed accounting for FF recoil and neutron emission,
a simulation of the detection system can be undertaken.

A. Input experimental distributions

The primary probability density function is the exper-
imental mass (A), nuclear charge (Z), and kinetic en-
ergy (KE) distribution F(A, KE, Z). Here the parameters
stand for the characteristics of the fragment before neutron
emission.

1. Mass A and kinetic energy (KE)

We have used the experimental data from [9] where
postneutron and preneutron emission masses are determined
from the measurement of the FF kinetic energies using a double
Frisch-grid ionization chamber. A NE213 neutron detector is
used to measure in coincidence the prompt neutrons with the
fission fragments. After basic mathematical arrangements the
experimental f (A, KE) matrix can be decomposed in a product
of two normalized distribution functions:

f (A, KE) = Y (A) N (〈KE〉, σKE), (3)

where Y (A) is the preneutron mass yield normalized to 2
and N (〈KE〉, σKE) is a mass-dependent Gaussian function
characterized by a mean 〈KE〉 and a standard deviation σKE

(see Fig. 1). Due to too low statistics in the very asymmetric
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FIG. 1. 252Cf experimental input data from [9]. Preneutron mass
yield Y (A) (a) and kinetic energy [distribution width σKE (b) and
mean value 〈KE〉 (c)].

mass region and neglecting the ternary fission, we have
considered a sample of 97 masses ranging from A = 78 to
A = 174.

2. Nuclear charge Z

In order to take into account the different isobars within a
mass chain, we have considered a nuclear charge distribution
P (Z) which is almost Gaussian in shape [10] characterized
by a mean Zp value which corresponds to the most probable
charge and a width parameter c,

P (Z) = 1√
cπ

e−(Z−Zp)2/c. (4)

The width parameter c is related to a charge dispersion σZ

through the Sheppard’s correction [11],

c = 2
(
σ 2

Z + 1/12
)
. (5)

Here we have considered a constant value for charge
dispersion: 〈σz〉 = 0.59 [12]. The most probable charges for
light and heavy fragments (ZL

p and ZH
p , respectively) are

obtained within the unchanged charge-density assumption
(UCD) of the nuclear charge division. It means that the charge
density Z/A of both the complementary fragments and the
fissioning nucleus are conserved,

Z
L,H
UCD = AL,H

(
Zf

Af

)
, (6)

where f stands for the fissioning nucleus. It has been
shown that the measured charges differ slightly from these
most probable charges, the difference being the polarization
function �Z(A) defined by

�Z(A) = (Zp − ZUCD)H = (ZUCD − Zp)L. (7)

Most of the time a −1/2 mean value is considered even
if an oscillating structure seems to be observed for various
fissioning systems [12–15]. It has been argued, for instance,
that for symmetrical fission, �Z tends to 0 and an abrupt
change is observed near the Z = 50 closed proton shell.
Recently some constrained Hartree-Fock-Bogoliubov calcu-
lations were performed by Younes and Gogny for thermal
neutron-induced fission of 239Pu in order to define scission
configurations [16]. In the present work we have accounted for
the slightly oscillating polarization function from Wahl [12]
which was extended from A = 170 to A = 174.

Finally the complete distribution reads

F(A, KE, Z) = Y (A) N (〈KE〉, σKE)P (Z). (8)

It is then possible to sample a fission fragment (for instance,
the light one) corresponding to a mass number AL, a nuclear
charge ZL, and a kinetic energy KEL. The complementary
mass number AH and charge ZH of the heavy fragment are then
deduced because of baryon number and charge conservation
in binary fission. The kinetic energy KEH of the heavy fission
fragment is sampled as for the light one using a Box-Muler
algorithm [17].
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B. Excitation energy calculation

At this stage of the procedure we are able to calculate
some basic quantities: the total kinetic energy of the fission
fragments TKE and the energy release during the fission
process Q based on binding energies from references [18]
and [19]:

TKE = KEL + KEH , (9)

Q = B(AL,ZL) + B(AH,ZH ) − B(Af ,Zf ). (10)

The total number of ejectiles evaporated by the fission
fragments is directly related to the excitation energy. For
spontaneous fission, the total excitation energy (TXE) is
simply related to the previous quantities

TXE = Q − TKE. (11)

As the kinetic energy is sampled, the energy release in
fission can be lower than the total kinetic energy, leading to a
negative total excitation energy. These rare events are simply
rejected by the code and represent less than 0.01% of the total
number of fissions.

As mentioned before, one of the key points of the simulation
is related to the partitioning of the excitation energy between
the two fragments. Once fully accelerated, the intrinsic
excitation energy of the rotating fission fragments is given
by

E∗ = TXE − Erot
L − Erot

H = E∗
L + E∗

H , (12)

where Erot
L , Erot

H are the rotational energies of the light and
heavy fragments and E∗

L, E∗
H are their intrinsic excitation

energies assumed to be used for neutron emission.
If we consider the nucleus as a Fermi gas the excitation

energy can be related to the nuclear temperature T by

E∗ = aT 2, (13)

where a is the level-density parameter. The determination of
the level-density parameter and the nuclear temperature are
discussed in the two following subsections. The calculation
of the rotational energy will be discussed in Sec. II D dealing
with the excitation energy limit below which neutron emission
is forbidden.

1. Level-density parameter

According to the Ignatyuk’s model [20], in order to take into
account the shell-effect damping for high excitation energies,
this level-density parameter is energy dependent,

a = a

{
1 + δW

U ∗ (1 − e−γU∗
)

}
. (14)

In Eq. (14), a(A) is the asymptotic level-density parameter.
δW accounts for the shell corrections that can be estimated by
the difference between measured and calculated mass excesses
(with a liquid-drop model, for example). U ∗ = E∗ − � is
an effective excitation energy function corrected by pairing
�. Finally γ stands for the damping factor. Different sets
of shell and pairing energy corrections are implemented:
Gilbert-Cameron revisited and compiled for RIPL-1 [21],

Myers-Swiatecky from RIPL-2 database [22], and Moller-
Nix from RIPL-2 database [22]. Shell and pairing energy
corrections are not defined in the same way by these various
authors [23–25]. The entire set of parameters (a, δW , �,
and γ ) involved in Eq. (14) must be consistent so if shell
and pairing corrections come from the Myers-Swiatecky set
then the following pametrization is used for the asymptotic
level-density parameter and damping factor:

a = 0.0959A + 0.1468A2/3 and γ = 0.325A−1/3

(15)

and for the Moller-Nix corrections

a = 0.1125A + 1.22 10−4A2 and γ = 0.325A−1/3.

(16)

In this work, the level-density parameters are calculated
with the Myers and Swiatecki mass formula. In this case
the shell corrections take into account the correction for the
deformed nuclear shape based on β2 and β4 deformation
parameters.

2. Nuclear temperature

A first assumption is to consider the same temperature for
both fragments (as is done in [5] through the H1 hypothesis).
Under this assumption both the fission fragments and the
compound fissioning nucleus have the same temperature T

related to the excitation energy within the Fermi-gas model by
the following formula:

E∗
int

a
= E∗

L

aL

= E∗
H

aH

. (17)

An iterative procedure is used to solve the “implicit” equation
(E∗ depends on the level-density parameter a which depends
on the excitation energy E∗):

E∗
L,H = aL,H

a
E∗

int. (18)

We will see in Sec. III that this hypothesis is not able
to reproduce the sawtooth shape of the prompt neutron
multiplicity distribution ν(A).

Consequently, a non-equitemperature model must be con-
sidered (TL = RT TH ) as originally proposed by Ohsawa
[26]. The parameter RT was chosen to be constant or
linearly dependent of the mass number leading to the dif-
ferent phenomenological models which will be discussed in
Sec. III.

C. Prompt neutron emission

Knowing the excitation energy of each fission fragment,
the evaporation process (dissipation of energy) can start
leading to the emission of neutrons and γ rays. In the
center-of-mass frame, the energy ε of a neutron emitted by a
nucleus at a given temperature T is sampled over a Weisskopf
spectrum [27],

φ(ε) = ε

T 2
e−ε/T , (19)
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assuming that the cross section of the inverse process of
compound nucleus formation is constant. The center-of-mass
neutron energy ε is a random variate that can be easily
sampled from this distribution since it is an Erlang distribution
Er(α, β), which is a particular case of a γ distribution defined
by

fX(x) =
⎧⎨
⎩

xα−1e−x/β

βα�(α) for 0 � x < ∞ and α > 0, β > 0

0 elsewhere,

where �(n + 1) = n!, α = 2, and β = T . The algorithm
consists of sampling and summing two (because α = 2)
independent exponential random variates as referred in [17].
The temperature T in Eq. (19) is the temperature of the
residual nucleus after neutron emission and not the temperature
of the compound nucleus before emission ([27,28]) so T =
T (A − 1, Z,E∗),

T (A − 1, Z,E∗) =
√

E∗(A,Z) − Sn

a(A − 1, Z)
, (20)

where Sn is the neutron separation energy.
When a neutron is emitted with an energy ε in the center-

of-mass frame, the excitation energy of the residual nucleus
becomes

E∗(A − 1, Z) = E∗(A,Z) − Sn − ε. (21)

After each neutron emission (isotropic in the center-of-mass
frame), the transformation in the laboratory frame is performed
using kinematic relations accounting for the FF recoil.

D. Excitation energy limit of the neutron evaporation process

The neutron evaporation ends when the excitation energy
is lower than a given energy limit. In a first step we can simply
consider the neutron separation energy Sn as a lower limit and
then the residual excitation energy is available for deexcitation
through γ rays. It will be shown in Sec. III that this crude
approximation leads to an overestimation of the total average
prompt neutron multiplicity ν compared to experimental data.
A higher energy limit is therefore required in order to reach a
more consistent ν value. We must consider that the fission
fragment is a rotating nuclei and consequently we add a
rotational energy in addition of the neutron separation energy
of the ground state,

E∗
lim = Sn + Erot. (22)

The collective rotational energy is approximated by the
rotating liquid-drop model. In such a macroscopic model, the
rotational energy of a fission fragment is given by

Erot = h−2
J (J + 1)

2J , (23)

where J stands for the total angular momentum and J
stands for the moment of inertia. These excited states have
a minimum energy for a given angular momentum and
correspond to the so-called yrast line under which no state is
available. This formulation of the rotational energy is used in
Eq. (12) for the partitioning of the excitation energy after
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FIG. 2. Schematic representation of the evaporation of the fission
fragments in the (E∗, J ) plan. Primary fragments dissipate excitation
energy E∗ through neutron emission until E∗ < Sn + Erot while
secondary fragments dissipate energy through γ rays.

full acceleration. In a quantum-mechanical description, spher-
ical fission fragments cannot exhibit collective rotation and
Eq. (23) is no longer valid. This has a negligible impact on
the results that will be presented in Sec. III because spherical
FF have a low initial excitation energy and they cannot emit
as many neutrons (configuration near magic shells) no matter
what the considered excitation energy limit is [Sn or Sn(J )].
Under these simple assumptions the neutron evaporation
occurs when the excitation energy is higher than the neutron
separation energy above the yrast line:

E∗ > Sn(J ) where Sn(J ) = Sn + Erot(J ). (24)

When the condition given by Eq. (24) is no longer satisfied,
γ deexcitation can start. First, statistical transitions of low
multipolarities (E1 and M1) carry away a large amount of
excitation energy and second, discrete γ rays from yrast bands
occur. The γ deexcitation is not yet implemented and will be
studied in future developments; nevertheless, the remaining
excitation energy needed for γ emission is obviously available.
Figure 2 shows a typical deexcitation process in a (E∗, J )
plan. Primary fragments stop emitting neutrons when the final
state (E∗, J ) is lower than E∗

lim = Sn(J ). These secondary
fragments dissipate the remaining excitation energy and
angular momentum by γ -ray transitions.

Accounting for Erot in this excitation energy limit favors
the γ deexcitation at high spin and therefore allows us to
simulate the n/γ competition as already suggested by Grover
and Gilat [29].

1. Fission fragment angular momentum

The primary fission fragment angular momentum involved
in Eq. (23) is sampled from a probability of states from [30]:

P (J ) ∝ (2J + 1) e−(J+1/2)2/B2
, (25)

where B is almost equal to the root mean square value
of J + 1

2 . The best agreement with experimental data (see
Sec. III) is achieved by considering as input data: B = 6h−
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for light fission fragments and B = 7.2h− for heavy fragments.
Even if these average values have to be replaced by a more
rigorous treatment1 in a future release of the code, they are
consistent with the Wilhelmy’s observations based on 21
even-even deformed fragments [31]. In Wilhelmy’s paper, the
252Cf FF average angular momentum is around (7 ± 2)h− and
the heavy fission fragments have around 20% greater angular
momentum than the light ones.

2. Moment of inertia J
For the determination of the nuclear moment of inertia

J involved in Eq. (23), we have considered two extreme
cases: a deformed rigid body and an irrotational flow obeying
hydrodynamical equations as described in Ref. [32]. The rigid
body moment of inertia is given by

Jrigid = 2
5AMR2(1 + 0.31β + 0.44β2 + · · ·), (26)

where A,M,R, and β, respectively, stand for the mass
number, the nucleon mass, the radius (R = 1.2A1/3 fm), and
the quadrupole deformation parameter of the nucleus in its
ground state taken from Ref. [22]. The moment of inertia of
the fluid irrotational model is given by

Jirrot = 2
5AM(�R)2, (27)

where �R = R3 − R⊥ stands for the difference between major
and minor semiaxes which can be related to the deformation
parameter through

�R = R3 − R⊥ = 3

4

√
5

π
Rβ. (28)

By replacing (28) in (27) we find the other expression used
in [33] or [34],2

Jirrot = 9

8π
AMR2β2. (29)

Nevertheless it is well established that a nucleus is neither
a rigid body nor a fluid inside a rotating ellipsoidal vessel:
Jirrot < J < Jrig. For instance, considering the 164Er first
excited state 2+ at 91.4 keV, from a numerical application
of Eq. (23) a value of h−2

/2J = 15 keV is deduced using
β � 0.3. The rigid body model gives h−2

/2Jrig. = 6 keV while
the fluid model gives h−2

/2Jirrot = 90 keV. Consequently we
must then consider an intermediate moment of inertia value
lying between these two extreme configurations.

III. RESULTS AND DISCUSSION

Among other distributions that can be achieved by the code,
the most important are listed here:

1For instance, it is well stated that B is related to the moment of
inertia and the nuclear temperature: B = 2J T/h−2.

2Note that the square power is missing in Eq. (5.19) from Ref. [34]
involving β instead of β2.

(i) ν(A, TKE), ν(A), and ν(TKE), the average prompt
neutron multiplicity as a function of the total kinetic
energy and/or mass fragment.

(ii) 〈ε〉(A) and 〈E〉(A), the mean neutron energies in the
center of mass and laboratory frames for each mass.

(iii) φ(ε,A) and N (E,A), the neutron spectrum in the center
of mass and laboratory frames for each mass.

(iv) φ(ε) and N (E), the average neutron spectra in the center
of mass and laboratory frames.

(v) P (ν), the prompt neutron multiplicity distribution.
(vi) 〈Eγ 〉(A), the mean energy deposited by prompt γ -rays

for each mass.
(vii) Etc.

The experimental data used for comparison in this section
are the following:

(i) Budtz-Jørgensen and Knitter [35] for ν(A), ν(TKE) and
〈ε〉(A).

(ii) Hambsch et al. [36] for ν(A) (preliminary results).
(iii) Bowman et al. [37] for ν(A) and ν(TKE).
(iv) Nifenecker et al. [38] for ν(TKE) and 〈Eγ 〉(A).
(v) Vorobyev [39] for ν and P (ν).

(vi) Boldeman [40] for ν and P (ν).
(vii) Santi and Miller [41] for P (ν).

Various models are proposed and analyzed. As the number
of neutrons evaporated by a fragment is directly related to the
nuclear temperature and the excitation energy, these models
differ by the temperature ratio between the two complementary
fragments after full acceleration (RT = TL/TH ), the excitation
energy limit for neutron emission (E∗

limit), and the moment of
inertia J involved in the rotational energy if needed.

A. Influence of a constant temperature ratio with E∗
lim = Sn

In this case Erot = 0 in Eq. (12) and Eq. (22) and the neutron
separation energy Sn is considered as an upper limit below
which the neutron evaporation is forbidden. Furthermore, if we
consider an equipartition of the temperature between the two
fragments (RT = 1) then the distribution of the multiplicity
as a function of the mass number does not show the well
known sawtooth shape (see Fig. 3). Similar results were
already reported in the Lemaire’s paper [5] obtained with the
H1 hypothesis. The νL/νH ratio is inverted as mentioned by
Talou [42] and ν is strongly overestimated (see Table I).

If we consider that the temperature of the light fragment is
25% higher than the heavy one, a sawtooth can be observed
with νL > νH (see Fig. 3 and Table I). The temperature ratio
plays a role in the partition of the multiplicity between light and
heavy fragments but not necessarily in the total average value:
ν is almost unchanged (10% higher than the measurement) but
the νL/νH ratio is different.

B. Influence of the moment of inertia involved in
E∗

lim = Sn + Erot with RT = 1.25

We now consider Sn + Erot as an excitation energy limit
for the neutron evaporation with again RT = TL/TH = 1.25.
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FIG. 3. (Color online) Average prompt neutron multiplicity as
a function of mass calculated with RT = 1 and E∗

lim = Sn compared
with measurements from Budtz-Jørgensen and Knitter [35], Hambsch
et al. [36], and Bowman et al. [37].

If the moment of inertia involved in the rotational energy Erot

is a rigid body moment of inertia [Jrig. given by Eq. (26)], the
νL, νH , and ν values are a bit more improved (see Table I) but
the sawtooth is not entirely satisfactory (see Fig. 4).

With an irrotational model for the moment of inertia [Jirrot.

given by Eq. (27)], results become completely wrong because
the moment of inertia is directly related to the square of the
deformation parameter and appears in the denominator for the
rotational energy calculation [Eq. (23)]. Therefore, a fission
fragment with a small deformation will have a low excitation
energy for neutron emission [Eq. (12)], leading to a drastic
underestimation of ν(A).

With an intermediate moment of inertia (50% of a rigid
body moment) the overall distribution is not yet satisfactory
(see Fig. 4) even if the total average multiplicities νL, νH , and
ν are consistent with the experimental data (see Table I). With
a constant temperature ratio, it is definitively not possible to
reproduce the sawtooth shape of the average prompt neutron
multiplicity as a function of mass.

Table I summarizes the influence of a constant temperature
ratio and a spin-dependent excitation energy limit on the total
average prompt neutron multiplicity.

TABLE I. Total average prompt neutron multiplicities for various
models.

RT E∗
limit J νL νH ν

1. Sn 1.82 2.44 4.26
1.25 Sn 2.28 1.93 4.21
1.25 Sn + Erot Jrig. 2.18 1.83 4.01
1.25 Sn + Erot 0.5Jrig. 2.07 1.71 3.78

Vorobyev et al. [39] 2.051 1.698 3.756(31)
Boldeman [40] 3.757
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FIG. 4. (Color online) Same as Fig. 3 with RT = 1.25 and E∗
lim =

Sn + Erot involving two sets of moment of inertia (J = Jrig. and
J = 0.5Jrig.).

C. Mass-dependent temperature ratio and spin-dependent
excitation energy limit

As shown in the preceding section, a constant temperature
ratio cannot reproduce properly the experimental sawtooth.
Here we will consider a mass-dependent temperature ratio
which is defined by the following physical constraints based
on nucleus deformation at scission. We consider three typical
fragment configurations for which the ratio RT should be
lower, equal,or greater than 1:

(i) For symmetric fission we expect the same temperature
for both complementary fragments and then RT = 1.

(ii) For light mass number AL = 120, RT is maximum
because in the case of 252Cf the complementary heavy
fragment is nearly spherical with 132 nucleons (corre-
sponding to Z = 50 closed proton shell and N = 82
closed neutron shell). Consequently the light fragment
AL = 120 gains the major part of the total excitation
energy associated with a higher temperature compared
to its double magic complementary partner.

(iii) For very asymmetric fission the heavy fragment is
more deformed than the light fragment because the
latter becomes shell stabilized. The light fragment
can be nearly spherical with a Z = 28 closed proton
shell and an N = 50 closed neutron shell, leading
to a temperature lower than the temperature of the
heavy fragment (RT < 1). This fact has been already
mentioned by Denschlag [43]. Therefore, as it has been
argued by Gönnenwein [44], the ratio of temperatures
should be reversed (RT < 1).

A simple composition of two linear laws is assumed
between these three key configurations as shown in Fig. 5.
In addition, the excitation energy limit is spin dependent,
involving a moment of inertia equal to 50% of the rigid body
moment of inertia.

With this refined model, we will now discuss the average
prompt neutron multiplicity, the distribution of the prompt
neutron multiplicity, the prompt fission neutron energy, the
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FIG. 5. (Color online) Macroscopic constraints for the determi-
nation of the temperature ratio law RT (A). For mass split 78/174
the light FF is near spherical and then its temperature is lower than
its heavy partner, leading to a minimum RT < 1. For mass split
120/132 the situation is reversed and the heavy FF is near spherical
with a higher temperature than its light partner, leading to a maximum
RT > 1. Finally for symmetric mass split 126/126 the temperature
is the same and then RT = 1.

available energy for γ emission, and lastly, the total prompt
energy release.

1. Average prompt neutron multiplicity as a function of mass ν(A)

The sawtooth description is clearly improved as observed in
Fig. 6 as well as the total average values (see Table II). It would
be possible to better reproduce the sawtooth by adjusting the
temperature ratio law for each mass but this is not the actual
goal of the code. Other fission observables are not sufficiently
known and mass resolution from experimental data is not
precise enough to make a confident adjustment.

2. Average prompt neutron multiplicity as a function
of total kinetic energy ν(TKE)

The average prompt fission neutron multiplicity is plotted
as a function of the fission fragment total kinetic energy
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FIG. 6. (Color online) Same as Fig. 3 with the refined model.

TABLE II. Total average prompt neutron multiplicities calculated
with the refined model and compared with experimental data.

RT E∗
limit J νL νH ν

RT (A) Sn + Erot 0.5Jrig. 2.06 1.70 3.76

Vorobyev et al. [39] 2.051 1.698 3.756(31)
Boldeman [40] 3.757

TKE in Fig. 7. Our Monte Carlo simulation does not fit the
data from Bowman [37] but is in good agreement with the
Budtz-Jørgensen data [35], except in the high total kinetic
energy region: above 190 MeV, our calculation underestimates
the prompt neutron number. A similar trend was reported
by Kornilov in Ref. [45] and explained by the possible
existence of scission neutrons which are not taken into
account here.

In addition, we have to keep in mind that, in the
present work, neutrons are evaporated following a Weisskopf
spectrum which requires among others that the neutron
energy in the center of mass has to be small compared
to the residual FF excitation energy [27]. This require-
ment could be not satisfied when the kinetic energy is
too high, yielding to a wrong estimation of the neutron
multiplicity.

The inverse slope of a straight line fit of the average
multiplicity as a function of TKE, given by −(δν/δTKE)−1,
is about 13 MeV/n, which is in quite good agreement with
published experimental data like those of Budtz-Jørgensen
et al. [35] and Nifenecker et al. [38] (see Table III). As reported
by Nifenecker this is not the energy necessary to emit one more
neutron, especially because different mass and kinetic energies
are involved.

We want to emphasize that calculation shows two differ-
ent slopes in ν(TKE) below and above around 180 MeV.
This nonlinear behavior can be understood by looking at
Fig. 8 where the contributions of both light and heavy FF

140 150 160 170 180 190 200 210 220 230
0

1

2

3

4

5

6

7

8

9

A
ve

ra
ge

 n
eu

tr
on

 m
ul

tip
lic

ity

TKE (MeV)

 Budtz-Jorgensen (1988)
 Bowman (1963)
 This work

FIG. 7. (Color online) Average prompt neutron multiplicity as a
function of the fission fragment total kinetic energy compared with
Budtz-Jørgensen et al. [35]. Data from Bowman et al. [37] are also
reported.

054616-7



O. LITAIZE AND O. SEROT PHYSICAL REVIEW C 82, 054616 (2010)

TABLE III. Inverse slope of the average
prompt neutron multiplicity as a function of the
fission fragment total kinetic energy TKE.

Authors −(δν/δTKE)−1

(MeV/n)

Nifenecker et al. [38] 13.0
Budtz-Jørgensen et al. [35] 12.5
This work 13.0

are plotted. Only the heavy FF has a rather linear behavior
while the light one exhibits two different trends: an increase
(decrease) of the neutron number below (above) around
180 MeV. Additionally, the heavy fission fragment is not
able to emit neutrons when the total kinetic energy is higher
than 210 MeV while at very low TKE (<135 MeV) it is the
main neutron emitter. Figure 9 depicts these observations in a
two-dimensional plot.

3. Distribution of the prompt neutron multiplicity P(ν)

Another important parameter related to prompt fission
neutrons is the prompt neutron multiplicity distribution. As
data of Vorobyev [39], Boldeman [40], and Santi [41] are very
close, our results are compared only with data of Ref. [39] for
reasons of clarity in Fig. 10.

Both light and heavy fragment contributions are also
given, showing a nice agreement with experimental data.
Obviously the prompt neutron multiplicity distribution
P (ν) is mainly governed by, at least, the following
parameters:

(i) The excitation energy limit for the neutron evaporation
process.

(ii) The competition between neutrons and gammas.
(iii) The angular momentum carried away by neutrons (here

�J = 1h− is assumed).
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FIG. 8. (Color online) Average prompt neutron multiplicity as a
function of the fission fragment total kinetic energy TKE for the light,
the heavy, and the pair of fragments.
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FIG. 9. (Color) Average prompt neutron multiplicity as a function
of mass number A and total kinetic energy TKE [ν(A, TKE)]. Qmax

and 〈TKE〉 are also represented to guide the eyes.

4. Average prompt fission neutron energy 〈ε〉(A)

The average neutron energy in the center of mass as a
function of FF mass 〈ε〉(A) is shown in Fig. 11 and compared
with data from Ref. [35].

A good agreement is achieved except in the A = 125 − 140
mass region. This discrepancy was already observed by
Lemaire [5] and Kornilov [45]. The Kornilov’s calculations are
based on the level-density systematic of Ignatyuk but corrected
by a factor lying between 0.4 and 1.25 applied on the heavy
FF excitation energy calculated under a RT = 1 assumption.
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FIG. 10. (Color online) Prompt neutron multiplicity distributions
for heavy (a), light (b), and both (c) fission fragments. The dashed
line correponds to experimental data from Vorobyev [39]. The full
line is the result obtained with our refined model.
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FIG. 11. (Color online) Average center-of-mass neutron energy
as a function of mass number compared with experimental data
from [35].

In this way the author can fit the experimental sawtooth
but cannot reproduce the 〈ε〉(A) behavior. As mentioned
by Kornilov, if the Fermi-gas model is valid, a positive
correlation is expected between the multiplicity and the energy
of the emitted neutrons. It is confirmed by our calculation
(see Figs. 6 and 11) but in conflict with experimental data.
For instance, when ν � 1.25 (A � 95 and A ∈ [125, 140]) a
strong underestimation of 〈ε〉 with respect to experimental data
is found, meaning that the Fermi-gas model cannot be applied
anymore in these mass regions, e.g., for fission fragments with
low excitation energy.

In addition, as already said previously, the Weisskopf’s
statistics theory used here for neutron emission is valid only
when the remaining intrinsic excitation energy is still high
after neutron emission: this could be no longer the case for
high (low) kinetic (excitation) energies.

Note that Gilbert and Cameron [23] proposed in their
so-called composite level-density formula to use a constant
temperature model (CTM) for low excitation energies and a
Fermi-gas model for high excitation energies. Moreover, very
recently Schmidt and Jurado [46] are claiming that the CTM
has to be used for level-density calculations up to 20 MeV.

5. Prompt fission neutron spectra N(E)

Since 252Cf neutron spectrum is an international reference
standard for metrological applications, important efforts have
been done to produce a revised evaluation [47]. In Fig. 12 a
comparison between the neutron spectrum in the laboratory
frame calculated with our model and both Maxwellian (TM =
1.42) and Manhart’s evaluation is shown.

In our simulation the neutron spectrum is slightly under-
estimated below 500 keV and slightly overestimated above
10 MeV. Figure 13 shows the ratio of the calculated prompt
neutron spectrum to the Manhart’s evaluation and the agree-
ment is encouraging with a discrepancy lower than 5% from
250 keV to 8 MeV. Nevertheless, this could be improved by
taking into account an energy-dependent cross section for the
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FIG. 12. (Color online) Neutron spectrum compared with a
Maxwellian (TM = 1.42) and the Manhart evaluation. The spectrum
is lying between the Maxwellian and the Manhart’s evaluation above
few MeV (a) and is slightly underestimated at low energies (b).

inverse process of the compound nucleus formation as already
reported by Madland and Nix in Ref. [1]. Another way of
improvement could be to account for the anisotropy of neutron
emission as proposed by Terrell [48] and recently applied by
Hambsch in Ref. [49].
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FIG. 13. Ratio of the calculated neutron spectrum to the
Manhart’s evaluation.
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FIG. 14. (Color online) Total excitation energy available for γ

deexcitation 〈Eγ 〉 as a function of the light fragment mass number,
compared with Nifenecker’s data [50].

6. Available energy for prompt γ emission

Even if the γ -rays deexcitation is not yet implemented, the
average fission fragment excitation energy leading to prompt
γ emission 〈Eγ 〉 is available for each secondary fragment.
This quantity is summed for each FF pair and represented as
a function of the light FF mass in Fig. 14. An overall good
agreement can be observed except in the symmetric region
where the calculation seems to underestimate experimental
data from Ref. [50]. In addition the total average value
weighted by the mass yields 〈Eγ 〉 = 6.77 MeV, which is in
perfect agreement with the Nifenecker value (6.82 MeV) and
other experimental data (see Table IV).

7. Total prompt energy release

The average total kinetic energy before neutron emission
〈TKE〉 and after neutron emission 〈TKE〉post, the prompt
fission γ -ray energy 〈Eγ 〉 = Mγ 〈εγ 〉 and the average energy
deposited by prompt neutrons 〈En〉 = ν〈E〉 can be estimated
with a good agreement. Table IV gives a comparison with
experimental data of energy released by neutrons, gammas,
and fission fragments during fission.

The average postneutron emission total FF kinetic energy
〈TKE〉post is very consistent with the recommended value by

TABLE IV. Mean energy release in fission by FF, prompt
neutrons, and gammas, compared with experimental data.

Mean energy release This work Experiment
(prompt component) (MeV) (MeV)

〈TKE〉 184.46 184.1 [51]
〈TKE〉post 181.64 181.35 [51]
〈En〉 8.04 8.00 (3.756 [39] × 2.13 [47])
〈Eγ 〉 6.77 6.82 [50]

7.08 [52]
6.84 ± 0.3 [53]
6.7 ± 0.4 [54]

Gönnenwein [181.35 ± 1.3 MeV for 252Cf(sf) [51]], meaning
that both the initial experimental distributions and the whole
evaporation process are satisfactory. The reference value for
the mean energy deposited by neutrons is given by 〈En〉 =
ν〈E〉 = 8.00 MeV where ν = 3.756 is taken from Ref. [39]
and 〈E〉 = 2.13 MeV comes from the Manhart’s neutron
spectrum in the laboratory frame taken from Ref. [47]. Our
calculation gives ν = 3.76 and 〈E〉 = 2.14 MeV, leading to
〈En〉 = 8.04 MeV in perfect agreement with the reference
data. Finally, as mentioned in the previous section, the total
average prompt γ energy is also in good agreement with
experimental data.

IV. CONCLUSION

Various phenomenological models have been implemented
in a Monte Carlo code simulating the fission fragment evapo-
ration process. These models were tested against experimental
data for spontaneous fission of 252Cf. The most important
parameters involved in the various models are the repartition
of the excitation energy between the complementary frag-
ments, the excitation energy limit for neutron emission which
involves the fission fragment moment of inertia J , and their
initial spin distribution. This work highlights that our refined
model is suitable to reproduce with an overall good agreement
the major distributions related to prompt fission neutrons as
well as the prompt component of the energy release in fission.
In this model the key parameters are the mass-dependent
temperature ratio law which governs the excitation energy
partition between the two primary fragments, the excitation
energy limit for neutron emission, which is given by a
spin-dependent neutron separation energy Sn(J ) = Sn + Erot,
and lastly, a moment of inertia equal to 50% of a rigid spheroid
moment of inertia (J = 0.5Jrig.).

Models and assumptions discussed in this paper could be
upgraded in different ways:

(i) Nuclear charge division in addition of unchanged
charge density (UCD): equal charge displacement
(ECD), minimum potential energy (MPE), etc.

(ii) Initial partitioning of the intrinsic, deformation, and
collective energies between both fragments at scission.

(iii) Rotational energy and realistic moment of inertia
involved in the excitation energy limit for neutron
evaporation.

(iv) Initial fission fragment spin distribution needed for a
reliable description of the neutron/γ competition.

(v) Possible additional neutron source (scission neutrons).

Additionally, an output file is generated during the Monte
Carlo run, storing the nuclear characteristics of the fission
fragments (mass number, kinetic energy, excitation energy at
each evaporation stage, energy of evaporated neutrons, etc.)
for each fragment history. A root tree [55] is then generated in
order to user-friendly analyze the whole data inside the root
data analysis framework. This specific tool is still under con-
struction and will allow us to analyze any kind of distribution
in any dimension with or without constraints and some very
particular events, such as cold fission, neutron multiplicity for
very low and very high kinetic energy, and so on.
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