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A new parametrization PC-PK1 for the nuclear covariant energy density functional with nonlinear point-
coupling interaction is proposed by fitting to observables of 60 selected spherical nuclei, including the binding
energies, charge radii, and empirical pairing gaps. The success of PC-PK1 is illustrated in the description of
infinite nuclear matter and finite nuclei including the ground-state and low-lying excited states. In particular,
PC-PK1 provides a good description for the isospin dependence of binding energy along either the isotopic or
the isotonic chain, which makes it reliable for application in exotic nuclei. The predictive power of PC-PK1 is
also illustrated for the nuclear low-lying excitation states in a five-dimensional collective Hamiltonian in which
the parameters are determined by constrained calculations for triaxial shapes.
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I. INTRODUCTION

In recent years, unstable nuclear beams have extended
our knowledge of nuclear physics from the stable to the
unstable nuclei far from the stability line—so-called exotic
nuclei. Extensive research in this area shows a lot of entirely
unexpected features and novel aspects of nuclear structure,
such as the halo phenomenon [1–3] and the disappearance of
traditional magic numbers and the occurrence of new ones [4].
The exotic nuclei play important roles in nuclear astrophysics,
since their properties are crucial to stellar nucleosynthesis.
To understand the physics in exotic nuclei, it becomes very
important to find a reliable theory and improve the reliability
for predicting the properties of more exotic nuclei close to
proton and neutron drip lines.

Nuclear energy density functional (EDF) theory [5] has
played an important role in the self-consistent description of
nuclei. With a few parameters, EDF theory is able to give
a satisfactory description for the ground-state properties of
spherical and deformed nuclei all over the nuclide chart.
A detailed discussion of the EDF theory can be found in
Ref. [6] for nonrelativistic representations and in Refs. [7,8]
for relativistic ones.

There exist a number of attractive features in the covariant
EDF theory, especially in its practical applications in the self-
consistent relativistic mean-field (RMF) framework [7,8]. The
most obvious one is the natural inclusion of the nucleon spin
degree of freedom and the resulting nuclear spin-orbit potential
that emerges automatically with the empirical strength in a
covariant way. The relativistic effects are responsible for the
empirical existence of approximate pseudospin symmetry in
the nuclear single-particle spectra [9]. Moreover, a covariant
treatment of nuclear matter provides a distinction between
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scalar and four-vector nucleon self-energies, leading to a
natural saturation mechanism.

The most widely used RMF framework is based on the
finite-range meson-exchange representation, in which the
nucleus is described as a system of Dirac nucleons that
interact with each other via the exchange of mesons. The
isoscalar-scalar σ meson, the isoscalar-vector ω meson,
and the isovector-vector ρ meson build the minimal set of
meson fields that, together with the electromagnetic field,
is necessary for a description of bulk and single-particle
nuclear properties. Moreover, a quantitative treatment of
nuclear matter and finite nuclei needs a medium dependence
of effective mean-field interactions, which can be introduced
by including nonlinear meson self-interaction terms in the
Lagrangian or by assuming explicit density dependence
for the meson-nucleon couplings. Of course, at the energy
characteristic for nuclear binding and low-lying excited
states, the heavy-meson exchange (σ ,ω,ρ) is just a convenient
representation of the effective nuclear interaction.

Since the exchange of heavy mesons is associated with
short-distance dynamics that cannot be resolved at low
energies, as an alternative, the RMF model with point-
coupling interaction (RMF-PC) [10,11] is proposed in which
the zero-range point-coupling interaction is used instead of
the meson exchange, i.e., in each channel (scalar-isoscalar,
vector-isoscalar, scalar-isovector, and vector-isovector) meson
exchange is replaced by the corresponding local four-point
(contact) interaction between nucleons. Analogously, in the
case of contact interactions, the medium effects can be taken
into account by including higher-order (nonlinear coupling)
interaction terms or by assuming a density dependence of
strength parameters for the coupling interactions.

In recent years, the RMF-PC model has attracted more and
more attention owing to the following advantages. First, it
avoids the possible physical constrains introduced by explicit
usage of the Klein-Gordon equation to describe mean meson
fields, especially the fictitious σ meson. Second, it is possible
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to study the role of naturalness [12,13] in effective theories
for nuclear-structure-related problems. Third, it provides more
opportunities to investigate its relationship to the nonrelativis-
tic approaches [14]. Finally, it is relatively easy to study the
effects beyond the mean field for nuclear low-lying collective
excited states.

In practical application of the RMF-PC model, the most
widely used nonlinear coupling parametrizations include
PC-LA [10] and PC-F1 [11]. PC-LA is determined by the
ground-state observables of 16O, 88Sr, and 208Pb. Because of
the explicit omission of the pairing interaction, the pairing
effects are not included in the fitting procedure. Moreover, the
test for naturalness in Ref. [12] shows that only six of the nine
coupling constants are natural. As an improvement, PC-F1
is optimized to observables of 17 spherical nuclei including
open-shell nuclei, and the pairing correlation is considered
through a standard BCS approach in the fitting procedure.
Furthermore, all the coupling constants of PC-F1 turn out to be
natural [11]. However, the isospin dependence of the binding
energy given by PC-F1 along either the isotopic or the isotonic
chain deviates from the data remarkably.

Recently, a density-dependent parametrization DD-PC1
was proposed from the equation of state (EOS) of nuclear
matter and the masses of 64 axially deformed nuclei in the
mass regions A � 150–180 and A � 230–250 [15]. Although
it reproduces the binding energies, deformations, and charge
radii of deformed nuclei quite well, the differences between
the predicted binding energies and the corresponding data are
somewhat large for spherical nuclei.

Therefore, it is necessary to have a new parametrization
for the nuclear covariant energy density functional with point-
coupling interaction to describe both the nuclear matter and
finite nuclei properties. In this work, a new parametrization
PC-PK1 with nonlinear coupling interactions is proposed. In
Sec. II, the theoretical framework for the relativistic point-
coupling model is briefly outlined. The numerical details are
given in Sec. III. In Secs. IV–VII, a series of illustrative
descriptions for the nuclear matter, spherical nuclei, and
deformed nuclei as well as the nuclear excited properties are
presented. Finally, a summary is given in Sec. VIII.

II. THEORETICAL FRAMEWORK

The basic building blocks of RMF theory with point-
coupling vertices are

(ψ̄O�ψ),O ∈ {1, �τ }, � ∈ {1, γµ, γ5, γ5γµ, σµν}, (1)

where ψ is the Dirac spinor field of the nucleon, �τ is the
isospin Pauli matrix, and � generally denotes the 4 × 4 Dirac
matrices. There are ten such building blocks characterized by
their transformation characteristics in isospin and Minkowski
space. In this paper, vectors in the isospin space are denoted
by arrows and the space vectors by bold type. Greek indices µ

and ν run over the Minkowski indices 0, 1, 2, and 3.
A general effective Lagrangian can be written as a power

series in ψ̄O�ψ and their derivatives. We start with the
following Lagrangian density of the point-coupling model:

L = Lfree + L4f + Lhot + Lder + Lem, (2)

which is divided as the Lagrangian density for free nucleons
Lfree,

Lfree = ψ̄(iγµ∂µ − m)ψ, (3)

the four-fermion point-coupling terms L4f ,

L4f = − 1
2αS(ψ̄ψ)(ψ̄ψ) − 1

2αV (ψ̄γµψ)(ψ̄γ µψ)

− 1
2αT S(ψ̄ �τψ)(ψ̄ �τψ) − 1

2αT V (ψ̄ �τγµψ)(ψ̄ �τγ µψ),

(4)

the higher-order terms Lhot which are responsible for the
effects of medium dependence,

Lhot = − 1
3βS(ψ̄ψ)3 − 1

4γS(ψ̄ψ)4 − 1
4γV [(ψ̄γµψ)(ψ̄γ µψ)]2,

(5)

the gradient terms Lder which are included to simulate the
effects of finite range,

Lder = − 1
2δS∂ν(ψ̄ψ)∂ν(ψ̄ψ) − 1

2δV ∂ν(ψ̄γµψ)∂ν(ψ̄γ µψ)

− 1
2δT S∂ν(ψ̄ �τψ)∂ν(ψ̄ �τψ)

− 1
2δT V ∂ν(ψ̄ �τγµψ)∂ν(ψ̄ �τγµψ), (6)

and the electromagnetic interaction terms Lem,

Lem = −1

4
FµνFµν − e

1 − τ3

2
ψ̄γ µψAµ. (7)

For the Lagrangian density in Eq. (2), m is the nucleon
mass and e is the charge unit for protons. Aµ and Fµν are
respectively the four-vector potential and field strength tensor
of the electromagnetic field. There are in total 11 coupling
constants, αS , αV , αT S , αT V , βS , γS , γV , δS , δV , δT S , and
δT V , in which α refers to the four-fermion term, β and γ

respectively to the third- and fourth-order terms, and δ the
derivative couplings. The subscripts S, V , and T respectively
indicate the symmetries of the couplings, i.e., S stands for
scalar, V for vector, and T for isovector.

From prior experience [11], we neglect the isovector-scalar
channel in Eq. (2) since a fit including the isovector-scalar
interaction does not improve the description of nuclear ground-
state properties. Consequently, there are nine free parameters
in the present RMF-PC model, comparable with the number
in the RMF model with finite-range interaction (RMF-FR).
Furthermore, the pseudoscalar γ5 and pseudovector γ5γµ

channels are also neglected in Eq. (2) since they do not
contribute at the Hartree level owing to parity conservation
in nuclei.

Similarly to the RMF-FR case, the mean-field approxima-
tion leads to the replacement of the operators ψ̄(Ô�)iψ in
Eq. (2) by their expectation values, which become bilinear
forms of the nucleon Dirac spinor ψk ,

ψ̄(Ô�)iψ → 〈|ψ̄(Ô�)iψ |〉 =
∑

k

v2
k ψ̄k(Ô�)iψk, (8)

where i indicates S, V , and T V . The sum
∑

runs over only
positive energy states with occupation probabilities v2

k , i.e., the
“no-sea” approximation. Based on these approximations, one
finds the energy density functional for a nuclear system,

EDF
[
τ , ρS, j

µ

i , Aµ

] =
∫

d3rE(r), (9)
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with the energy density

E(r) = Ekin(r) + E int(r) + Eem(r), (10)

which is composed of a kinetic part

Ekin(r) =
∑

k

v2
kψ

†
k (r) (α · p + βm) ψk(r), (11)

an interaction part

E int(r) = αS

2
ρ2

S + βS

3
ρ3

S + γS

4
ρ4

S + δS

2
ρS�ρS

+ αV

2
jµjµ + γV

4
(jµjµ)2 + δV

2
jµ�jµ

+ αT V

2
�jµ

T V · ( �jT V )µ + δT V

2
�jµ

T V · �( �jT V )µ, (12)

with the local densities and currents

ρS(r) =
∑

k

v2
k ψ̄k(r)ψk(r), (13a)

j
µ

V (r) =
∑

k

v2
k ψ̄k(r)γ µψk(r), (13b)

�jµ

T V (r) =
∑

k

v2
k ψ̄k(r)�τγ µψk(r), (13c)

and an electromagnetic part

Eem(r) = 1
4FµνF

µν − F 0µ∂0Aµ + eAµj
µ
p . (14)

Minimizing the energy density functional Eq. (9) with
respect to ψ̄k , one obtains the Dirac equation for the single
nucleons,

[γµ(i∂µ − V µ) − (m + S)]ψk = 0. (15)

The single-particle effective Hamiltonian contains local scalar
S(r) and vector V µ(r) potentials,

S(r) = �S, V µ(r) = �µ + �τ · ��µ

T V , (16)

where the nucleon scalar-isoscalar �S , vector-isoscalar �µ,
and vector-isovector ��µ

T V self-energies are given in terms of
the various densities,

�S = αSρS + βSρ
2
S + γSρ

3
S + δS�ρS, (17a)

�µ = αV j
µ

V + γV

(
j

µ

V

)3 + δV �j
µ

V + eAµ, (17b)

��µ

T V = αT V
�jµ

T V + δT V ��jµ

T V . (17c)

For a system with time-reversal invariance, the spacelike com-
ponents of the currents j i in Eq. (13) and the vector potential
V (r) in Eq. (16) vanish. Furthermore, one can assume that
the nucleon single-particle states do not mix isospin, i.e., the
single-particle states are eigenstates of τ3. Therefore only the
third component of the isovector potentials ��µ

T V survives.
The Coulomb field A0 is determined by Poisson’s equation.

In addition to the self-consistent mean-field potentials, for
open-shell nuclei, pairing correlations are taken into account
by the BCS method with a smooth cutoff factor fk to simulate
the effects of finite range [16,17], i.e., we have to add to the
functional Eq. (9) a pairing energy term of the form depending

on the pairing tensor κ ,

Epair[κ, κ∗] =
∑
kk′>0

fkfk′ 〈kk̄|V pp|k′k̄′〉κ∗
k κk′, (18)

with the smooth-cutoff weight factor

fk = 1

1 + exp[(εk − εF − �Eτ )/µτ ]
, (19)

where εk is the eigenvalue of the self-consistent single-particle
field, and εF is the chemical potential determined by the
particle number, 〈|N̂τ |〉 = Nτ , with Nτ the particle number
of neutrons or protons. The cutoff parameters �Eτ and
µτ = �Eτ/10 are chosen in such a way that 2

∑
k>0 fk =

Nτ + 1.65N
2/3
τ [17].

In the following calculations, a density-independent δ force
in the pairing channel is adopted. Thus, the pairing energy is
given by

Epair[κ, κ∗] = −
∑

τ=n,p

Vτ

4

∫
d3rκ∗

τ (r)κτ (r), (20)

where Vτ is the constant pairing strength and the pairing tensor
κ(r) reads

κ(r) = −2
∑
k>0

fkukvk|ψk(r)|2. (21)

The pairing strength parameters Vτ can be adjusted by fitting
the average single-particle pairing gap

〈�〉 ≡
∑

k fkukvk�k∑
k fkukvk

(22)

to the data obtained with a five-point formula.
As the translational symmetry is broken in the mean-field

approximation, proper treatment of center-of-mass (c.m.)
motion is very important, and here the c.m. correction energy
is calculated by microscopic c.m. correction

Emic
c.m. = − 1

2mA

〈
P̂

2
c.m.

〉
, (23)

with A the mass number and P̂c.m. = ∑A
i p̂i the total momen-

tum in the c.m. frame. It has been shown that the microscopic
c.m. correction provides more reasonable and reliable results
than phenomenological ones [18–20].

Therefore, the total energy for the nuclear system becomes

Etot = EDF
[
τ , ρS, j

µ

i , Aµ

] + Epair[κ, κ∗] + Emic
c.m.. (24)

III. NUMERICAL DETAILS

In this work, a series of calculations have been performed
for both the spherical and deformed nuclei. The Dirac equation
for nucleons is solved in a three-dimensional harmonic
oscillator basis [21]. For spherical calculations, by increasing
the fermionic shells from Nf = 20 to Nf = 22, the binding
energy, charge radius, and neutron skin thickness in 208Pb
change by 0.003%, 0.007%, and 0.1% respectively. For
240U, the binding energy changes by 0.001% in the axially
deformed calculation with Nf = 16 to Nf = 18. Therefore,
a basis of 20 major oscillator shells is used in the spherical
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calculations and 16 shells in the axially deformed cases. The
triaxial calculations are performed with Nf = 12, which, for
Nd isotopes, provides an accuracy of 0.04% for binding
energies in comparison with the calculations with Nf = 14.
To achieve an accuracy of ∼100 keV in the description of both
the fission barrier and the energy of the isomer state in 240Pu, a
basis of 20 oscillator shells has been adopted in both the axial
and triaxial calculations.

In order to determine the parameters of Lagrangian density
in Eq. (2) and the pairing strength in Eq. (20), a multiparameter
fitting to both the binding energies and charge radii for selected
spherical nuclei is performed with the Levenberg-Marquardt
method [22]. As usual, the masses of neutron and proton are
fixed as 939 MeV. The corresponding data [23–25] for selected
spherical nuclei used in the fitting procedure are listed in
Tables II and III. The empirical neutron pairing gaps for 122Sn,
124Sn, and 200Pb as well as the proton ones for 92Mo, 136Xe, and
144Sm obtained with the five-point formula are also employed
to constrain the pairing strengths.

With the experimental observable O
expt
i and the calculated

value Ocalc
i , by minimizing the square deviation

χ2(a) =
N∑
i

[
O

expt
i − Ocalc

i (a)

ωi

]2

, (25)

the ensemble of parameters a can be obtained. Furthermore,
in order to balance the influence of different observables, the
weight ωi is introduced for binding energies, charge radii,
and empirical pairing gaps, respectively. The corresponding
weight ωi is roughly determined by the desired accuracy.
Here the weights ωi are respectively 1.00 MeV for binding
energies, 0.02 fm for charge radii, and 0.05 MeV for empirical
pairing gaps. A new parameter set PC-PK1, which contains
the nine coupling constants in Eq. (2) and the pairing strength
in Eq. (20), is obtained and listed in Table I.

By scaling the coupling constants in accordance with the
QCD-based Lagrangian, the naturalness in effective theories
can be investigated [12,13]. According to the QCD-based

TABLE I. The point-coupling constants and pairing strengths of
PC-PK1 set. The corresponding QCD-scaled coupling constants cln

are given in the last column as well.

Coupling Value Dimension cln

constant

αS −3.962 91 × 10−4 MeV−2 −1.695
βS 8.6653 × 10−11 MeV−5 1.628
γS −3.807 24 × 10−17 MeV−8 −3.535
δS −1.091 08 × 10−10 MeV−4 −0.277
αV 2.6904 × 10−4 MeV−2 1.151
γV −3.642 19 × 10−18 MeV−8 −0.338
δV −4.326 19 × 10−10 MeV−4 −1.097
αT V 2.950 18 × 10−5 MeV−2 0.505
δT V −4.111 12 × 10−10 MeV−4 −4.171
Vn −349.5 MeV fm3

Vp −330.0 MeV fm3

Lagrangian [13],

L ∼ −cln

[
ψ̄ψ

f 2
π �

]l [
∂µ

�

]n

f 2
π �2, (26)

with ψ the nucleon field, fπ = 92.5 MeV the pion decay
constant, and � = 770 MeV a generic QCD large-mass scale,
respectively, by taking into account the role of chiral symmetry
in weakening N -body forces by � = l + n − 2 � 0 [26,27], it
has been found that six of the nine coupling constants in PC-LA
and all of them in PC-F1 are natural, i.e., the QCD-scaled
coupling constants cln are of order unity [11,12].

Similarly, the nine coupling constants of PC-PK1 are also
tested for naturalness and all the dimensionless coefficients cln

are of order 1, as shown in the last column of Table I, which
indicates that all the coupling constants in PC-PK1 are natural.

Tables II and III list, respectively, the binding energies and
charge radii for nuclei selected in the determination of PC-
PK1, PC-F1, PC-LA, and NL3∗ [28] effective interactions. The
corresponding root mean square (rms) deviation � together
with the root of relative square (rrs) deviation δ for the binding
energy and charge radius are given in the last two rows
of Tables II and III, respectively. Compared with the other
effective interactions, the newly obtained PC-PK1 provides a
much better description for the experimental binding energies
and the same good description for the charge radii.

IV. NUCLEAR MATTER PROPERTIES

In this section, we will present the saturation properties
and the equation of state for nuclear matter in the covariant
EDF with PC-PK1. The results will be compared with the
corresponding empirical values as well as the predictions with
PC-LA, PC-F1, DD-PC1, NL3∗, and PK1 [19].

A. Saturation properties

The saturation properties, including the binding energy per
nucleon E/A, saturation density ρ0, incompressibility K0,
nucleon effective masses M∗

D and M∗
L, and symmetry energy

Esym, as well as the characteristics L and Kasy for the density
dependence of Esym, will be investigated.

There are several kinds of nucleon effective mass [29,30].
Here we mainly focus on the Dirac mass and Landau mass.
The Dirac mass M∗

D is defined through the nucleon scalar
self-energy in the Dirac equation, i.e., M∗

D = M + �S . It is
directly related to the spin-orbit potential in finite nuclei and is
thus a genuine relativistic quantity without nonrelativistic cor-
respondence, while the Landau mass M∗

L = pdp/dE is related
to the density of states in both relativistic and nonrelativistic
models. In relativistic models, the relation between the Dirac
mass and the Landau mass is M∗

L =
√

p2
F + M∗2

D , where pF

is the Fermi momentum.
The density dependence of the nuclear symmetry en-

ergy is very important for understanding the properties
of exotic nuclei with extreme isospin values, in particular
the slope L ≡ 3ρ0(dEsym/dρ)ρ=ρ0 and curvature Ksym ≡
9ρ2

0 (d2Esym/d2ρ)ρ=ρ0 of the symmetry energy at the saturation
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TABLE II. The calculated binding energies (in MeV) for selected spherical nuclei obtained by PC-PK1 in comparison with the data [23]
and those obtained by DD-PC1 [15], PC-F1 [11], PC-LA [10], and NL3∗ [28]. The bold-faced quantities denote that the experimental values
of the corresponding nuclei are used in the parametrization fitting. The root mean square (rms) deviation � = ∑N

i

√
(Eexpt.

i − Ecalc
i )2/N and

the root of relative square (rrs) deviation δ = ∑N

i

√
(Eexpt.

i
−Ecalc

i
)2/(Eexpt.

i
)2

N
are respectively listed in the last two rows.

Nuclei Expt. PC-PK1 DD-PC1 PC-F1 PC-LA NL3∗

16O 127.619 127.280 128.527 127.691 127.407 128.112
18O 139.806 140.223 141.145 140.028 140.356 140.504
20O 151.370 151.962 152.790 151.606 152.228 151.955
22O 162.026 162.285 163.141 162.054 162.665 161.990
18Ne 132.143 132.088 132.923 132.216 132.317 132.494
20Mg 134.468 134.563 135.141 134.613 134.992 134.786
34Si 283.429 284.727 285.967 285.067 283.989 283.236
36S 308.714 308.374 309.305 308.973 307.221 306.086
38Ar 327.342 327.107 328.691 328.540 326.755 325.379
36Ca 281.360 281.412 281.878 282.001 280.454 279.579
38Ca 313.122 313.230 314.501 314.415 312.901 311.669
40Ca 342.052 343.060 345.113 345.041 343.202 341.578
42Ca 361.896 363.142 365.143 364.411 363.685 361.547
44Ca 380.960 381.915 383.967 382.748 382.789 380.246
46Ca 398.769 399.451 401.668 400.060 400.627 397.718
48Ca 415.990 415.492 417.973 416.085 416.969 413.616
50Ca 427.490 426.937 428.660 427.302 426.883 424.445
42Ti 346.905 348.024 349.848 349.701 348.626 346.539
50Ti 437.781 436.445 437.761 436.171 437.223 434.389
56Ni 483.992 483.669 481.447 480.758 481.826 481.058
58Ni 506.458 503.636 502.587 501.646 502.623 501.342
72Ni 613.169 614.875 617.071 614.646 614.486 612.561
84Se 727.343 725.732 728.792 726.609 727.605 724.965
86Kr 749.234 747.939 751.050 749.427 750.313 747.055
88Sr 768.468 767.138 770.240 769.143 769.742 766.225
90Zr 783.892 783.033 785.806 785.348 785.565 782.336
92Mo 796.508 796.148 798.308 798.191 798.719 795.788
94Ru 806.848 807.034 808.575 808.731 809.695 807.019
98Cd 821.067 822.765 823.162 823.668 825.580 823.347
100Sn 824.794 827.715 827.609 828.156 830.582 828.529
106Sn 893.868 892.323 893.469 893.370 895.447 893.873
108Sn 914.626 913.179 914.627 914.236 916.165 914.665
112Sn 953.532 951.831 953.922 953.367 954.258 952.866
116Sn 988.684 987.601 990.019 989.326 989.016 987.920
120Sn 1020.546 1020.415 1022.902 1021.704 1020.767 1020.014
122Sn 1035.529 1035.860 1038.417 1036.755 1035.794 1035.116
124Sn 1049.963 1050.715 1053.402 1051.160 1050.327 1049.631
126Sn 1063.889 1064.993 1067.877 1064.978 1064.381 1063.560
128Sn 1077.346 1078.688 1081.835 1078.234 1077.945 1076.885
130Sn 1090.293 1091.774 1095.253 1090.930 1090.993 1089.566
132Sn 1102.851 1104.202 1108.096 1103.057 1103.484 1101.551
134Sn 1109.235 1109.253 1112.253 1107.330 1106.707 1106.027
134Te 1123.434 1124.205 1128.176 1124.193 1124.613 1122.859
136Xe 1141.878 1142.621 1146.587 1143.601 1143.997 1142.480
138Ba 1158.292 1159.381 1163.283 1161.245 1161.575 1160.331
140Ce 1172.692 1174.054 1177.868 1176.722 1176.953 1175.954
142Nd 1185.141 1185.938 1189.537 1189.138 1189.292 1188.002
144Sm 1195.736 1195.736 1199.024 1199.353 1199.420 1198.079
146Gd 1204.435 1203.712 1206.614 1207.635 1207.687 1206.449
148Dy 1210.780 1209.974 1212.454 1214.117 1214.258 1213.186
150Er 1215.331 1214.624 1216.686 1218.943 1219.236 1218.343
206Hg 1621.049 1621.321 1623.820 1620.353 1616.956 1621.515
200Pb 1576.354 1574.885 1577.817 1575.666 1575.769 1578.189
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TABLE II. (Continued.)

Nuclei Expt. PC-PK1 DD-PC1 PC-F1 PC-LA NL3∗

202Pb 1592.187 1591.172 1594.139 1591.675 1591.240 1593.909
204Pb 1607.506 1607.068 1610.026 1607.325 1606.187 1609.199
206Pb 1622.324 1622.525 1625.385 1622.563 1620.490 1624.008
208Pb 1636.430 1637.438 1640.008 1637.241 1633.865 1638.237
210Pb 1645.552 1645.449 1648.272 1644.793 1641.484 1645.954
212Pb 1654.514 1653.425 1656.428 1652.275 1648.887 1653.546
214Pb 1663.291 1661.397 1664.481 1659.697 1656.073 1661.056
210Po 1645.212 1646.703 1649.441 1647.760 1644.643 1648.995
212Rn 1652.497 1654.632 1657.476 1656.863 1653.921 1658.319
214Ra 1658.315 1661.172 1664.092 1664.512 1661.709 1666.174
216Th 1662.689 1666.248 1669.244 1670.649 1667.967 1672.505
218U 1665.648 1669.602 1672.733 1675.109 1672.491 1677.091
� 1.33 3.09 2.60 2.64 2.88
δ 0.18% 0.45% 0.32% 0.30% 0.34%

density ρ0. In Refs. [31,32], the isospin-dependent part, Kasy ≈
Ksym − 6L, in the isobaric incompressibility K(δ) = K0 +
Kasyδ

2 [with δ ≡ (ρn − ρp)/ρ], is often used to characterize

TABLE III. The calculated charge radii (in fm) for selected spher-
ical nuclei obtained by PC-PK1 in comparison with data [24,25] and
those obtained by DD-PC1 [15], PC-F1 [11], PC-LA [10], and NL3∗

[28]. The bold-faced quantities denote that the experimental values of
the corresponding nuclei are used in the parametrization fitting. The

root mean square (rms) deviation � = ∑N

i

√
(rexpt.

i − rcalc
i )2/N and

the root of relative square (rrs) deviation δ = ∑N

i

√
(rexpt.

i
−rcalc

i
)2/(rexpt.

i
)2

N

are respectively listed in the last two rows.

Nuclei Expt. PC-PK1 DD-PC1 PC-F1 PC-LA NL3∗

16O 2.737 2.7677 2.7472 2.7633 2.7528 2.7352
40Ca 3.4852 3.4815 3.4566 3.4777 3.4678 3.4704
42Ca 3.5125 3.4805 3.4626 3.4778 3.4729 3.4672
44Ca 3.5231 3.4826 3.4709 3.4809 3.4810 3.4672
46Ca 3.5022 3.4865 3.4806 3.4860 3.4912 3.4693
48Ca 3.4837 3.4890 3.4895 3.4906 3.5023 3.4705
50Ti 3.5737 3.5558 3.5696 3.5664 3.5868 3.5442
58Ni 3.7827 3.7372 3.7761 3.7645 3.8065 3.7399
88Sr 4.2036 4.2247 4.2231 4.2269 4.2379 4.2159
90Zr 4.2720 4.2695 4.2664 4.2724 4.2847 4.2636
92Mo 4.3170 4.3125 4.3140 4.3192 4.3333 4.3087
112Sn 4.5957 4.5801 4.5894 4.5870 4.6044 4.5753
116Sn 4.6257 4.6121 4.6174 4.6168 4.6307 4.6039
122Sn 4.6633 4.6561 4.6579 4.6549 4.6728 4.6430
124Sn 4.6739 4.6694 4.6714 4.6677 4.6864 4.6554
138Ba 4.8348 4.8508 4.8511 4.8494 4.8667 4.8369
140Ce 4.8774 4.8879 4.8879 4.8871 4.9037 4.8748
144Sm 4.9525 4.9544 4.9521 4.9547 4.9676 4.9484
202Pb 5.4772 5.4908 5.4869 5.4892 5.4996 5.4825
204Pb 5.4861 5.5005 5.4962 5.4987 5.5112 5.4916
206Pb 5.4946 5.5098 5.5049 5.5078 5.5200 5.5004
208Pb 5.5046 5.5185 5.5129 5.5162 5.5279 5.5087
214Pb 5.5622 5.5798 5.5711 5.5762 5.5813 5.5699
� 0.019 0.019 0.017 0.023 0.022
δ 0.53% 0.51% 0.45% 0.55% 0.60%

the density dependence of the symmetry energy as both L and
Kasy can be extracted from the experiment empirically (see
Ref. [33] and references therein).

In Table IV, the saturation properties for nuclear matter,
including the binding energy per nucleon E/A, saturation
density ρ0, incompressibility K0, nucleon effective masses
M∗

D and M∗
L, and symmetry energy Esym, as well as the

characteristics L and Kasy for the density dependence of Esym,
predicted by PC-PK1 are listed in comparison with those
by both point-coupling DD-PC1, PC-F1, PC-LA and meson
exchange NL3∗, PK1 sets. In general, PC-PK1 gives a good
description for the saturation properties of nuclear matter.
In particular, the predicted values for binding energy per
nucleon and density at the saturation point are −16.12 MeV
and 0.154 fm−3, which agree well with the empirical values
−16 ± 1 MeV and 0.166 ± 0.018 fm−3 [34], respectively.
Moreover, the incompressibility given by PC-PK1 is 238 MeV.

For the effective masses, all the effective interactions give
reasonable values between 0.55 and 0.60 for the Dirac mass
M∗

D/M [35] as required by the spin-orbit splitting data in finite
nuclei, but smaller Landau masses M∗

L/M compared with the
empirical constraint 0.8 ± 0.1 [36], implying that they would
give a small single-particle level density at the Fermi energy
in finite nuclei as compared with data.

The symmetry energies in the calculations with the non-
linear effective interactions PC-F1, PC-LA, NL3∗, and PK1
are always larger than the empirical value (around 32 MeV)
by around 16%–18%, which is reduced to 11% for PC-PK1.
Therefore all the interactions would predict large neutron
skin thicknesses in finite nuclei except DD-PC1, which is
adjusted by fixing Esym = 33 MeV. Moreover, the empirical
L (88 ± 25 MeV) [33] and Kasy (−550 ± 100 MeV) [37] have
been reproduced quite well by PC-PK1.

B. Equation of state

In Fig. 1, the binding energy per nucleon E/A for nuclear
matter as a function of the baryon density ρB given by PC-PK1
is shown in comparison with those by DD-PC1, PC-F1,
PC-LA, NL3∗, and PK1. All the effective interactions predict

054319-6



NEW PARAMETRIZATION FOR THE NUCLEAR COVARIANT . . . PHYSICAL REVIEW C 82, 054319 (2010)

TABLE IV. The predicted saturation properties for nuclear matter by PC-PK1 in comparison with those by DD-PC1, PC-F1, PC-LA, NL3∗,
and PK1.

PC-PK1 DD-PC1 PC-F1 PC-LA NL3∗ PK1

ρ0 (fm−3) 0.154 0.152 0.151 0.148 0.150 0.148
E/A (MeV) −16.12 −16.06 −16.17 −16.13 −16.31 −16.27
M∗

D/M 0.59 0.58 0.61 0.58 0.59 0.60
M∗

L/M 0.65 0.64 0.67 0.64 0.65 0.66
K0 (MeV) 238 230 255 264 258 283
Esym (MeV) 35.6 33 37.8 37.2 38.7 37.6
L (MeV) 113 70 117 108 123 116
Kasy (MeV) −583 −528 −627 −709 −630 −641

similar E/A behavior with density below ρB = 0.20 fm−3

owing to the constraints from the properties of finite nuclei.
Divergence appears at suprasaturation densities, especially for
the results given by PC-LA. This implies that the properties
of finite nuclei are not sufficient in the determination of the
EDF to describe the EOS at suprasaturation densities which
are directly related to the maximal mass of neutron stars.
The prediction by PC-PK1 is consistent with those by PK1
and PC-F1, while softer than those by NL3∗. The ab initio
variational calculation for symmetric nuclear matter [38] is
also given for comparison, which coincides with the relativistic
EOS with density below ρB = 0.20 fm−3 but predicts softer
EOS behavior at suprasaturation densities than the relativistic
ones, except those given by PC-LA and DD-PC1. One should
note that DD-PC1 has been adjusted to the EOS given by
ab initio variational calculations [15].

V. SPHERICAL NUCLEI

In this section, we will present the binding energies,
two-neutron separation energies, single-particle levels, charge
radii, and neutron skin thicknesses for selected spherical
isotopes and isotones in different mass regions in the covariant
EDF with PC-PK1. The results will be compared with the

FIG. 1. (Color online) The binding energy per nucleon E/A for
nuclear matter as a function of the baryon density ρB given by
PC-PK1, DD-PC1, PC-F1, PC-LA, NL3∗, and PK1. The shaded area
indicates the empirical value [34] and the filled diamonds present the
microscopic results of the ab initio variational calculation [38].

corresponding data available as well as the predictions with
DD-PC1, PC-F1, PC-LA, and NL3∗ sets.

A. Binding energy

The binding energies for the Ca, Ni, Sn, and Pb isotopes are
calculated with PC-PK1 and their deviations from the data [23]
are shown in Fig. 2 in comparison with those calculated
with DD-PC1, PC-F1, PC-LA, and NL3∗. The calculation
with PC-PK1 reproduces the experimental binding energies
within 1 MeV for the Ca isotopes and 2 MeV for both Sn and
Pb isotopes. For Ni isotopes, although remarkable improve-
ment is achieved by PC-PK1 in comparison with results by
the other interactions, there is still an underestimation of
2.4–5.2 MeV for the even-even 58–64Ni. Former investigations
have shown that these nuclei are soft against deformation
[39]. Therefore, the dynamic correlation energies gained by
restoration of rotational symmetry and configuration mixing
are expected to reduce these deviations. Similarly, the un-
derestimations of the binding energies for neutron-deficient
Pb isotopes can also be improved by configuration mixing,
as demonstrated in the nonrelativistic calculations for the
even-even 182–194Pb [40]. For the spherical Ca and Sn isotopes,
the energies gained from the restoration of rotational symmetry
and configuration mixing are expected to be much smaller as
illustrated in systematic beyond-mean-field studies [41,42].
Therefore, the inclusion of these energies will not change
significantly the discrepancy between the mean-field results
and the corresponding data for such spherical isotopes.

The binding energies for the isotonic chains are very
important for examinining the balance between the Coulomb
field and the isovector channel of the Lagrangian density in
Eq. (2). Here the binding energies for the N = 20, N = 50,
N = 82, and N = 126 isotones are calculated with PC-PK1
and their deviations from the data [23] are shown in Fig. 3
in comparison with those calculated with DD-PC1, PC-F1,
PC-LA,and NL3∗. In general, PC-PK1 improves the overall
agreement with data in comparison with the other interactions,
especially for N = 82 and N = 126 isotones. The deviations
are within 1 MeV for N = 82 isotones and 2 MeV for both
N = 20 and N = 50 isotones. A remarkable improvement in
the binding energies as well as proper isospin dependence for
N = 126 is found in the calculations with PC-PK1. In short,
PC-PK1 provides better prediction for not only the binding
energy but also its isospin dependence.
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FIG. 2. (Color online) Deviations of the calculated binding energies for Ca, Ni, Sn, and Pb isotopes by PC-PK1 from the data [23] in
comparison with those by DD-PC1, PC-F1, PC-LA, and NL3∗.

t.
t.

FIG. 3. (Color online) Same as Fig. 2 but for the N = 20, N = 50, N = 82, and N = 126 isotones.
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FIG. 4. (Color online) The calculated two-neutron separation
energies for O, Ca, Ni, and Sn isotopes obtained by PC-PK1 in
comparison with data [23] and those obtained by DD-PC1, PC-F1,
PC-LA, and NL3∗.

B. Two-neutron separation energy

From the binding energies, one can extract the two-neutron
separation energies S2n = EB(N,Z) − EB(N − 2, Z). In
Fig. 4, the two-neutron separation energies for even-even O,
Ca, Ni, and Sn isotopes predicted by PC-PK1 are shown in
comparison with data [23] and those obtained by DD-PC1,
PC-F1, PC-LA, and NL3∗. Generally speaking, as with the
other interactions, the calculation with PC-PK1 reproduces
the experimental two-neutron separation energies quite well.
For the oxygen isotopic chain, all the effective interactions
predict the last bound neutron-rich nucleus as 28O, contrary to
experiment in which 24O is so far found to be the last bound
neutron-rich nucleus. One can also see that the deviations are
large for the even-even 58–68Ni, which can be attributed to
the underestimation of binding energies as shown in Fig. 2.
Moreover, visible deviations between different predictions can
be seen in the neutron-rich Sn isotopes, which requires future
experimental confirmation.

C. Single-particle level

In Figs. 5 and 6, the calculated single-particle energies
for 16O, 40Ca, 132Sn, and 208Pb by PC-PK1 are shown in
comparison with data [43] and those obtained by DD-PC1, PC-

F1, PC-LA, and NL3∗. The experimental values are extracted
from the single-nucleon separation energies or excitation
energies [43]. The theoretical single-particle energies are the
eigenvalues of the Dirac equation for nucleons. It should be
kept in mind that the calculations are performed by neglecting
particle-vibration coupling [44].

In Figs. 5 and 6, it is clearly shown that the single-particle
levels near the magic numbers and the corresponding shell gaps
given by PC-PK1 are in good agreement with the experimental
values. In particular for 16O and 40Ca, both the experimental
proton and neutron single-particle spectra are well reproduced
by PC-PK1. For 132Sn and 208Pb, the empirical levels close
to the Fermi surface are also reproduced well. Moreover, the
spurious shells at Z = 58 (132Sn) and Z = 92 (208Pb) are found
for all the effective interactions; this might be improved by the
inclusion of ρ-tensor couplings [45].

D. Charge radii and neutron skin thicknesses

In Fig. 7, the charge radii for Sn and Pb isotopes predicted
by PC-PK1 are shown in comparison with data [24,25] and
those calculated by DD-PC1, PC-F1, PC-LA, and NL3∗. It is
seen that all the effective interactions reproduce the observed
charge radii of Sn isotopes quite well (within 0.3%). For the
Pb isotopes, the kink in the charge radii has been excellently
reproduced by all the effective interactions. Quantitatively, the
observed charge radii of Pb isotopes are reproduced by the
calculations with DD-PC1, PC-F1, and NL3∗ within ∼0.3%,
while the calculations with PC-LA are within ∼0.5%.

In Fig. 8, the neutron skin thicknesses for Sn isotopes
and 208Pb predicted by PC-PK1 are shown in comparison
with data [46,47] and those obtainbed by DD-PC1, PC-F1,
PC-LA, and NL3∗. For Sn isotopes, although PC-PK1 slightly
overestimates the neutron skin thickness in comparison with
DD-PC1, it nicely reproduces the isotopic trend. For 208Pb,
all the interactions except DD-PC1 give similar neutron
skin thicknesses, which are larger than the data deduced
from antiprotonic atoms [48], polarized proton scattering
[49,50], elastic proton scattering [51], and proton-nucleus
elastic scattering [47], and agree within the experimental
error bar with those from inelastic α scattering [52]. The
slightly overestimated neutron skin thicknesses are due to
the enhanced symmetry energies for nuclear matter shown
in Table IV. Overall, the DD-PC1 parametrization provides a
better description of experimental charge radii and neutron
skin thickness because of its smaller symmetry energy at
saturation density.

VI. DEFORMED NUCLEI

In this section, we will focus on the description of the
binding energies and deformations for selected well-deformed
even-even nuclei. In order to investigate the fission barrier, a
constrained calculation is also carried out by taking 240Pu as
an example.

A. Binding energy and deformation

The binding energies and quadrupole deformations of the
ground states for Yb and U isotopes are investigated in
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FIG. 5. (Color online) The calculated single-particle energies for 16O and 40Ca obtained by PC-PK1 in comparison with data [43] and those
obtained by DD-PC1, PC-F1, PC-LA, and NL3∗.

axially deformed code with PC-PK1 in comparison with those
obtained with DD-PC1 and PC-F1. In the upper panels of
Fig. 9, the deviations of the calculated binding energies with
PC-PK1, DD-PC1, and PC-F1 from the data [23] are shown
as circles, triangles, and squares, respectively.

Before taking into account the rotational correction for the
binding energies, a systematic underestimate of the binding
energies around 3 MeV for both Yb and U isotopes is found
for PC-PK1. For PC-F1, the difference between the calculated
and the observed binding energy decreases monotonically with
the isospin values, i.e., around 1 to −3 MeV for Yb isotopes
and −2 to −5 MeV for U isotopes. As almost all the isotopes
shown in Fig. 9 are used to adjust the parameters, the predicted

binding energies by DD-PC1 are in good agreement with the
data (within 1 MeV).

After taking into account the energy correction due to the
restoration of rotational symmetry in the cranking approxi-
mation [53], the calculated results by PC-PK1 (filled circles)
reproduce the data quite well for both Yb and U isotopes, and
the deviations are within 1 MeV, while the differences between
the corrected binding energies given by PC-F1 (filled squares)
and data are still large. Since DD-PC1 is adjusted to the binding
energies of 64 well-deformed nuclei, the rotational correction
energy is not considered in the corresponding calculations.
The energy correction due to the restoration of rotational
symmetry can be taken into account with a microscopic

t.
t.

FIG. 6. (Color online) Same as Fig. 5 but for 132Sn and 208Pb.
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FIG. 7. (Color online) The calculated charge radii for Sn and
Pb isotopes obtained by PC-PK1 in comparison with data [24,25]
and those obtained by DD-PC1, PC-F1, PC-LA, and NL3∗.

treatment of angular momentum projection or the cranking
approximation [54]. It is noted that a difference between
the results of the cranking approximation and the angular
momentum projection exists (for example, it reaches 1 MeV
in 240Pu) [55]. For simplicity of systematic calculations, only
the cranking approximation is used here.

In the lower panels of Fig. 9, the calculated quadrupole
deformations for the ground states by PC-PK1, DD-PC1,
and PC-F1 are given in comparison with the corresponding
data [56]. The figure shows that the deformations and their
corresponding evolutions with neutron number for both Yb
and U isotopes are well reproduced by PC-PK1, DD-PC1, and
PC-F1.

B. Fission barrier

In Fig. 10, the potential energy curves for 240Pu as functions
of the quadrupole deformation β2 are shown. The dashed and
solid lines correspond to the axially symmetric and the triaxial
calculations with PC-PK1, respectively. In the case of the
triaxial calculation, the solid line refers to the minima for
each β for the potential energy surface in the β-γ plane. For
comparison, the axially symmetric result given by PC-F1 is
also included.

It is found that the PC-PK1 calculation provides not only a
good description for the deformation of the ground state [56]
but also the energy difference between the ground state and
the shape isomeric state [57]. Furthermore, after including

t.

t.

FIG. 8. (Color online) The calculated neutron skin thicknesses for
Sn isotopes and 208Pb obtained by PC-PK1 in comparison with data
[46,47] and those obtained by DD-PC1, PC-F1, PC-LA, and NL3∗. In
the lower panel, the data for 208Pb deduced from antiprotonic atoms
[48], polarized proton scattering [49,50], elastic proton scattering
[51], inelastic α scattering [52], and proton-nucleus elastic scattering
[47] are shown from left to right, respectively.

the triaxiality, as shown in Fig. 10, the fission barrier given
by PC-PK1 is in agreement with the empirical value [58]. It
should be noted that the pairing correlation plays an important
role in the description of the fission barrier. Discussion of
the dependence of the fission barrier height on the pairing
correlations can be found in Ref. [59].

VII. NUCLEAR EXCITED PROPERTIES

As a test of the new parameter set PC-PK1 in the
description of nuclear spectroscopic properties for low-lying
excitation states, the collective excitation spectra and transition
probabilities in 150Nd as well as the characteristic collective
observables for Nd isotopes will be calculated, starting
from a five-dimensional collective Hamiltonian in which the
parameters are determined by constrained self-consistent RMF
calculations for triaxial shapes [60–62].

In Fig. 11, the excitation energies and B(E2; L+
1 → [L −

2]+1 ) values for the yrast states in 150Nd predicted by PC-PK1
are shown in comparison with data [63,64] and those calculated
by DD-PC1 and PC-F1. It can be seen that all the effective
interactions provide similar excitation energies and intraband
B(E2) values for the yrast band and reproduce the data quite
well.
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FIG. 9. (Color online) Deviations of
the calculated binding energies from the
data [23] for Yb and U isotopes in axially
deformed code obtained by PC-PK1, DD-
PC1, and PC-F1 (upper panel) as well as
the corresponding calculated ground-state
deformations in comparison with data
[56] (lower panel). The filled circles and
squares in the upper panels correspond to
the rotational corrected values given by
PC-PK1 and PC-F1, respectively.

In Fig. 12, the characteristic collective observables R4/2 =
E(4+

1 )/E(2+
1 ) and B(E2; 2+

1 → 0+
1 ) for Nd isotopes given

by PC-PK1 are shown in comparison with data [63,64] and
those from DD-PC1 and PC-F1. It is found that all the
parameter sets reproduce the data quite well. In particular,
the calculations reproduce in detail the rapid increase of R4/2

and B(E2) with the neutron number, i.e., from R4/2 ∼ 1.9 and
B(E2) < 30 W.u. in near-spherical 144Nd to R4/2 ∼ 3.3 and
B(E2) > 150 W.u. in well-deformed 152Nd.

FIG. 10. (Color online) The potential energy curves for 240Pu as
functions of the quadrupole deformation β2 in the calculations with
PC-PK1. The dashed and solid lines correspond to the axial results and
the triaxial results, i.e., the minima for each β for the potential energy
surface in the β-γ plane, respectively. For comparison, the axially
symmetric result given by PC-F1 is also included as a dot-dashed line.
The data for the ground-state deformation [56], the barrier height [58],
and the energy of the fission isomer [57] are respectively indicated
by an arrow, a diamond, and a square. To guide the eyes, the diamond
and square are respectively set at β2 = 0.64 and β2 = 0.95.

This shows clearly that the new effective interaction
PC-PK1 can provide a good description not only for the
ground-state properties in spherical and deformed nuclei but

t.

FIG. 11. (Color online) The predicted excitation energies (upper
panel) and B(E2; L+

1 → [L − 2]+1 ) values (lower panel) for the yrast
states in 150Nd obtained by PC-PK1 in comparison with data [63,64]
and those obtained by DD-PC1 and PC-F1. The energies and B(E2)
values are respectively normalized to E(2+

1 ) and B(E2; 2+
1 → 0+

1 ).
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FIG. 12. (Color online) The predicted characteristic collective
observables R4/2 = E(4+

1 )/E(2+
1 ) and B(E2; 2+

1 → 0+
1 ) (in W.u.) for

Nd isotopes obtained by PC-PK1 in comparison with data [63,64]
and those obtained by DD-PC1 and PC-F1.

also for the nuclear spectroscopic properties of low-lying
excitation states.

VIII. SUMMARY

In summary, a new parametrization PC-PK1 for the
nuclear covariant energy density functional with nonlinear
point-coupling interaction has been proposed by fitting to
observables of 60 selected spherical nuclei, including the
binding energies, charge radii, and empirical pairing gaps. By
scaling the coupling constants in PC-PK1 in accordance with a
QCD-based Lagrangian, it is found that all the nine parameters
are natural. The success of PC-PK1 has been illustrated
through the description of infinite nuclear matter and finite
nuclei including the ground-state and low-lying excited states.

For the spherical nuclei, PC-PK1 can provide better descrip-
tions for the binding energies in comparison with DD-PC1,
PC-F1, PC-LA, and NL3∗ sets. For neutron skin thicknesses,
the DD-PC1 provides a better description as compared with
the other effective interactions owing to its smaller symmetry
energy at saturation density.

Taking Yb and U isotopes as examples, it is found that the
PC-PK1 reproduces the deformations and their corresponding
evolutions with neutron number quite well. After taking
into account the rotational correction energy in the cranking
approximation, the binding energies given by PC-PK1 are
in very good agreement with data within 1 MeV, which
indicates that PC-PK1 achieves the same quality as DD-PC1
in the description of deformed nuclei. Moreover, PC-PK1
provides a good description for the isospin dependence of the

binding energy along either the isotopic or the isotonic chains,
which makes it reliable for application in exotic nuclei. It is
noted that the rotational correction energy evaluated using the
cranking approximation may differ from that using the angular
momentum projection.

Constrained calculations have also been performed for
240Pu in order to investigate the fission barrier. It is found
that the PC-PK1 provides a good description not only for the
deformation of the ground state [56] but also for the energy
difference between the ground state and the shape isomeric
state [57]. Furthermore, after including the triaxiality, the
fission barrier given by PC-PK1 is in agreement with the
empirical value [58].

The predictive power of the PC-PK1 is also illustrated
in the description of the collective excitation spectra and
transition probabilities in 150Nd as well as the characteristic
collective observables for Nd isotopes in a five-dimensional
collective Hamiltonian in which the parameters are determined
by constrained calculations for triaxial shapes. There are also
many extensions of nuclear covariant energy density functional
theory beyond the mean field using projection techniques [65]
and generator coordinate methods [66,67]. More microscopic
analysis of nuclear low-lying states in the context of these
frameworks with PC-PK1 is in progress.

The density-dependent parametrization DD-PC1 is deter-
mined mainly from the masses of deformed nuclei and the
EOS of nuclear matter. However, the calculations of the re-
arrangement terms for the density-dependent parametrization
can be nontrivial in some cases, in particular for random-phase
pproximation calculations. Here the nonlinear parametrization
PC-PK1 has been optimized to the masses, charge radii,
and empirical pairing gaps for 60 selected spherical nuclei.
It has been illustrated that PC-PK1 can provide very good
descriptions for both spherical and deformed nuclei. Therefore,
the nonlinear parametrization is very useful as it combines sim-
plicity with very good predictions for many nuclear properties.
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