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Nuclear mass relations based on systematics of proton-neutron interactions
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The proton-neutron interaction between the last proton and the last two neutrons, V1p-2n, and that between
the last two protons and the last neutron, V2p-1n, for nuclei with mass number A � 60, are extracted by using
experimental binding energies of neighboring nuclei. By using a simple function to describe V1p-2n and V2p-1n,
we present new relations connecting the masses of neighboring nuclei with improved accuracies.
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Nuclear mass (or nuclear binding energy) is one of the
fundamental properties of a nucleus. An accurate knowledge
of nuclear masses is very important not only in nuclear physics
but also in many other branches of science, for example,
astrophysics and cosmology. Although nuclear masses near
the β stability line are measured very accurately, masses of
many more unstable nuclei are not yet known. Describing and
predicting masses of atomic nuclei is therefore one of the key
goals in nuclear structure theory.

The early efforts toward describing nuclear masses can
be traced back to the Weizsäcker formula [1–3]. Nowadays
there are a number of popular models of nuclear masses, for
example, the Duflo-Zuker model (D-Z) [4], the finite-range
droplet model (FRDM) [5], and the Skyrme-Hartree-Fock-
Bogoliubov theory (SHFB) [6]. These models describe and
predict masses of about 9000 nuclei, including unknown ones.
The root-mean-squared (abbreviated as “rms” from now on)
deviation from the experimental values for known nuclei is
about 380 keV for the D-Z model and about 670 keV for the
other two. There are also many efforts based on systematics
of local mass relations, such as the famous Audi-Wapstra sys-
tematics [7–9], the Garvey-Kelson (G-K) mass relations [10],
and others [11–13]. For a comprehensive review, see Ref. [14].

Recently, Barea and collaborators investigated the G-K
mass relations from a new perspective [15–17]: For a given
nucleus, there are a number of evaluations (maximally 12)
based on the G-K relations, and they took the average of all
available evaluations. The rms deviation σ is 76 keV with
respect to the Atomic-Mass Evaluation 2003 [9], for mass
number A � 60, if all 12 G-K relations are available.

In Ref. [18], Fu and collaborators took an exponential
function to describe the residual proton-neutron (p-n) interac-
tion between two valence protons and two valence neutrons,
denoted by V2p-2n [19], and derived a new set of local mass
formulas that are competitive with the G-K mass relations
based on the systematics of p-n interactions. If all masses
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of the neighboring nuclei involved in maximally four local
mass relations are available [18], the rms deviation from
the AME2003 is 78 keV. The crucial role played by the
residual p-n interaction has been long emphasized [20–22] and
extensively studied. See Ref. [23] for a review. Some recent
and important progress can be found in Refs. [19,24–35].

The purpose of this paper is to investigate how far we can
go in constructing local mass relations based on systematics
of the p-n interaction. We first show that the more appropriate
quantities to apply in this construction are the p-n interaction
between the last proton and the last two neutrons, V1p-2n,
and that between the last two protons and the last neutron,
V2p-1n. They are more proper than V2p-2n in constructing
local mass relations. We use a simple function to describe the
average values of V1p-2n and V2p-1n and present new relations
connecting the masses of neighboring nuclei with improved
accuracies.

The p-n interaction (denoted by Vip-jn) between the last
i proton(s) and the last j neutron(s) for a given nucleus was
defined in Ref. [31]:

Vip-jn(N + j, Z + i) = [B(N + j, Z + i) − B(N,Z + i)]

− [B(N + j, Z) − B(N,Z)], (1)

where B(N,Z) is the negative of the nuclear binding energy
for the nucleus with proton number Z and neutron number N .

In Fig. 1, we present V1p-2n(N,Z) and V2p-1n(N,Z) versus
proton number Z for nuclei with A � 60, excluding those
for which either the proton number or the neutron number
is magic. The binding energies are taken from Ref. [9].
The circles and crosses correspond to V2p-1n and V1p-2n,
respectively. We see that both V2p-1n and V1p-2n change
smoothly versus Z, despite of sizable fluctuations, and that
there are no apparent differences between these two quantities
in the plot. We thus take one v(Z) to describe the average
values for both V2p-1n and V1p-2n, shown as the red solid curve
in Fig. 1, where

v(Z) = a × Zb + c, (2)
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FIG. 1. (Color online) V1p-2n(N,Z) and V2p-1n(N,Z) versus Z

for A � 60. The results are extracted by using the AME2003 database
[9]. The red curve is plotted by using v(Z) given in Eq. (2).

with a = −115 000 keV, b = −1.417, and c = −285.4 keV.
The preceding values of a, b, and c are optimized simul-
taneously for V1p-2n(N,Z) and V2p-1n(N,Z), with the rms
deviation of 200 keV. If parameters a, b, and c are optimized
separately for V1p-2n(N,Z) and V2p-1n(N,Z), the rms devia-
tions for V1p-2n(N,Z) and V2p-1n(N,Z) from corresponding
v(Z) are found to be 198 and 203 keV, respectively (see
Table I).

We have investigated systematics of V2p-2n in Ref. [18],
where we used an exponential function of Z and obtained
the rms deviation (�255 keV) between V2p−2n extracted from
experimental data of binding energies and those determined
by the optimized exponential function. Here we use v(Z) [see
Eq. (2)] for V2p-2n with parameters a, b, and c readjusted
and find that the rms deviation changes very slightly (less
than 1.0 keV). The rms deviations for other Vip-jn are also
presented in Table I. One sees that the rms deviation from
v(Z) is the smallest for V1p-2n(N,Z) and V2p-1n(N,Z). Thus,
V1p-2n(N,Z) and V2p-1n(N,Z) are expected to provide us with
the best accuracy while being applied to constructing local
mass relations.

Table I also presents the number (denoted byN ) of possible
local mass relations for nuclei with A � 60 and all masses
involved in Eq. (1) experimentally known for each Vip-jn.
One sees that the values of N are close to each other when

i � 3 and/or j � 3 (not including the case where both i and j

equal 3). When we construct the mass relations in this paper,
we use both V2p-1n and V1p-2n, for all of which the value of
N is large. Therefore, the total number of evaluations in this
paper, by using V2p-1n and V1p-2n, is larger than any other
Vip-jn. Apparently, for cases with larger N , one again expects
to achieve better accuracies.

Assuming that both V1p-2n(N,Z) and V2p-1n(N,Z) are
represented by v(Z) in Eq. (2), we obtain

Bpred(N,Z) = B(N − 1, Z) + B(N,Z − 2)

−B(N − 1, Z − 2) + v(Z),

Bpred(N,Z) = B(N + 1, Z) − B(N + 1, Z − 2)

+B(N,Z − 2) − v(Z),

Bpred(N,Z) = B(N,Z + 2) − B(N − 1, Z + 2)

+B(N − 1, Z) − v(Z + 2),

Bpred(N,Z) = −B(N + 1, Z + 2) + B(N,Z + 2)

+B(N + 1, Z) + v(Z + 2),
(3)

Bpred(N,Z) = B(N − 2, Z) + B(N,Z − 1)

−B(N − 2, Z − 1) + v(Z),

Bpred(N,Z) = B(N + 2, Z) − B(N + 2, Z − 1)

+B(N,Z − 1) − v(Z),

Bpred(N,Z) = B(N,Z + 1) − B(N − 2, Z + 1)

+B(N − 2, Z) − v(Z + 1),

Bpred(N,Z) = −B(N + 2, Z + 1) + B(N,Z + 1)

+B(N + 2, Z) + v(Z + 1).

Similar to procedures in Refs. [15–18], we take the average of
all possible evaluations for the binding energy Bpred(N,Z) of
a given nucleus.

The rms deviation (σ ) of our predicted binding energies
with respect to experimental results, for nuclei with A � 60,
is summarized and compared with those by using the G-K mass
relations in Ref. [16] in Table II. One sees that the deviation by
using Eq. (3) is on average smaller than that by using the G-K
relations, except for the case of small n (the first column).

Now let us look at the deviations of the predicted binding
energies from data obtained by experiment, by using Eq. (3),
and by using Eq. (6) of Ref. [18]. The latter equation is given

TABLE I. The rms deviations (denoted by σ , in keV) between Vip-jn extracted from the binding energies compiled in the AME2003
database [9] and optimized v(Z) [using Eq. (2)] for A � 60, excluding those for which either the proton numbers or the neutron numbers are
magic. The parameters of v(Z) are optimized for each of Vip-jn. One sees that the rms deviation between Vip-jn and v(Z) is the smallest for
V1p-2n and V2p-1n (about 200 keV). We also present the numbers of possible local mass relations (denoted by N ) involving of Vip-jn. It is noted
that the numbers of possible local mass relations are close to each other for i � 3 and/or j � 3 (not including the case where both i and j

equal 3) and decrease drastically for larger i and j values.

V1p-1n V1p-2n V2p-1n V2p-2n V2p-3n V3p-2n V3p-3n V3p-4n V4p-3n V4p-4n

σ 336 198 203 255 348 335 460 489 520 617
N 1425 1396 1351 1316 1246 1211 296 283 275 251
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TABLE II. The rms deviations (in keV) of masses evaluated by
using Eq. (3) of this paper (first row) from the AME2003 data and
that evaluated by using the G-K relations (second row) presented
in Ref. [16] for nuclei with A � 60. n is the number of possible
evaluations for a given nucleus.

Relations n � 1 n � 4 n � 7 n � 8 n � 12

Eq. (3) 123 92 73 70 –
G-K 115 98 86 – 76

here for the sake of convenience and completeness:

4B(Z − 1, N + 1) + 4B(Z + 1, N − 1)

− 4B(Z − 1, N − 1) − 4B(Z + 1, N + 1)

+B(Z + 2, N + 1) + B(Z + 1, N + 2)

+B(Z − 2, N − 1) + B(Z − 1, N − 2)

−B(Z − 2, N + 1) − B(Z − 1, N + 2)

−B(Z + 2, N − 1) − B(Z + 1, N − 2) = 0. (4)

This is a relation involving the masses of 12 neighboring
nuclei, but we focus on binding energies B(Z − 1, N + 1),
B(Z + 1, N − 1), B(Z − 1, N − 1), and B(Z + 1, N + 1),
as in Ref. [18]. Thus, the maximum number of possible
evaluations n that we use is four. In Table III we present the
rms deviation and number of nuclei (denoted by N ′) described
by using Eq. (3) suggested in this paper and Eq. (4) (taken from
Ref. [18]). Better local mass relations are those that describe
more nuclei with smaller deviations. One sees that Eq. (3)
describes more nuclei (N ′ larger) with smaller deviations.
According to Table III, Eq. (3) describes 1506 nuclei with the
rms deviation of 92 keV, in comparison to Eq. (4) for 1292
nuclei with the rms deviation of 110 keV. Equation (3) also
presents smaller deviations (88 keV, see the third row) for
those described by Eq. (4) and is thus superior to Eq. (4) in
describing the nuclear masses.

We classify our predicted masses into four categories,
nuclei with even values for both proton numbers Z and neutron
numbers N (even-even), those with even values for Z and odd
values for N (even-odd), those with odd values for Z and even
values for N (odd-even), and those with odd values for both
Z and N (odd-odd). In Fig. 2, we present the distribution of

TABLE III. The rms deviations (σ ) and number of nuclei (denoted
byN ′) described by using Eq. (3) of this paper and Eq. (6) of Ref. [18].
The first row corresponds to results given by Eq. (3) here, and the
second row corresponds to results by using Eq. (4) (taken from Eq. (6)
of Ref. [18]). The third row presents the results by using Eq. (3) in
this paper, but for nuclei that are described by Eq. (4). One sees that
the former is superior to the latter: Eq. (3) in this work describes more
nuclei with smaller deviations.

n � 1 n � 4 n � 8

σ N ′ σ N ′ σ N ′

Eq. (3), this work 123 1806 92 1506 70 815
Eq. (6), Ref. [18] 110 1292 78 435 – –
Eq. (3), this work 88 1292 66 435 66 435
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FIG. 2. (Color online) The distribution of deviations (denoted
by �) of our predicted masses for n = 8 by using Eq. (3) with respect
to the AME2003 database. Panels (a)–(d) correspond to the even-
even, even-odd, odd-even, and odd-odd nuclei, respectively.

deviations (denoted by �) of our predicted masses from the
AME2003 database versus Z, with A � 60 and n = 8, for
even-even, even-odd, odd-even, and odd-odd nuclei. Among
these four cases, the deviations in panel (a), which correspond
to even-even nuclei, are the smallest, with 83% between −60
to 60 keV; the deviation for odd-odd nuclei, shown in panel
(d), is the largest. The rms deviations (in keV) for even-even,
even-odd, odd-even, and odd-odd nuclei, are 52, 69, 70, 86,
respectively. The reason why the deviation of predicted masses
for odd-odd nuclei by using the Vin-jp is larger than that for
even-even and odd-A nuclei was argued in Ref. [31].

We perform an interesting numerical experiment, which
proceeds as follows. As seen in other recent works [15–18],
one usually achieves a relatively higher precision in describing

FIG. 3. (Color online) The deviations (in keV) of calculated
binding energies in this paper with respect to those evaluated in
the AME2003 database for nuclei with A � 60. The solid curve
represents the β stability given in Eq. (5). One sees that large
deviations arise for neutron-rich nuclei with relative small A.
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TABLE IV. The rms deviations (σ ) by using Eq. (3) of this work and the G-K relations for different n and d (the “distance” between a
given nucleus and the β stability line) for nuclei with A � 60. Columns labeled (3) present the values of σ obtained by using Eq. (3) of this
paper, and columns labeled G-K contain the values obtained by the G-K mass relations. One sees that σ is smaller for Eq. (3) than for G-K
mass relations with few exceptions.

Region 1 � n � 4 5 � n � 8 n = 8 9 � n � 12 n = 12

(3) G-K (3) G-K (3) G-K (3) G-K (3) G-K

0 � d � 2 118 131 70 98 59 94 – 73 – 73
2 � d � 4 118 126 83 87 80 80 – 86 – 84
4 � d � 6 226 254 117 160 82 116 – 97 – 79
6 � d � 8 208 277 98 146 57 176 – 79 – 86
8 � d � 10 220 166 97 91 63 67 – 118 – 50

nuclear masses when the number of possible evaluations on
the mass of a given nucleus is large. To refine the accuracy of
mass relations for neighboring nuclei, we combine Eq. (3) in
this paper (where n � 8) and Eq. (4) (taken from Ref. [18]), in
which n � 4. For n = 12 (=8 + 4), one obtains a considerably
smaller rms deviation for even-even nuclei; σ = 42 keV when
all 12 relations are available. However, σ for other types of
nuclei (odd-A and odd-odd) does not decrease, according to
our work.

We also investigate the accuracy of Eq. (3) from the stable
to unstable regions. Such an investigation provides us with
more detailed information on the accuracy of our local mass
relations, in particular, whether or not such mass relations
remain good if one goes to regions far from the β stability
line. If the mass relations deteriorated for unstable nuclei,
they would not be very useful for predicting the unknown
masses. We take the β stability line described as follows:

Z = A

1.98 + 0.0155A
2
3

. (5)

We define d to represent the “distance” between one nucleus
and the β stability line, varying from 0 to 10. The rms
deviations (σ ) for different n and d are summarized in
Table IV, and are compared with those by using the G-K mass
relations. One sees that large deviations arise for neutron-rich
nuclei with relative small A. Here we notice that for 8 � d �
10 the deviations with n = 9–12 and are much larger than
those with n = 12 or 4 � n � 8 if one uses the G-K relations.
This sudden change of σ is worth pointing out, because the rms
deviation becomes smaller with larger n, on average. See the
last row in Table IV. From Table IV, one also sees that the rms
deviations by using Eq. (3) are, in general, smaller than those of
G-K relations with exceptions (for 8 � d � 10 and/or small n).

Because we evaluate the mass of a given nucleus based on
experimental masses of the neighboring nuclei, experimental
uncertainties (denoted by σexp) of these masses may also lead
to deviations in applying Eq. (3). It is then interesting to
evaluate how much of the preceding rms deviations σ might
originate from the experimental uncertainties of masses for the
neighboring nuclei. Here we define σexp = √∑

i(δBi
)2, where

δBi
is the experimental uncertainty for binding energy of ith

term in Eq. (3). Comparisons between σexp and σ for different
values of n are presented in Table V. Our results suggest that
about 20%–60% of deviation σ might be originated from σexp.

One also sees that both σ and σexp are relatively small for
140 � A < 180 and 200 � A < 260.

To summarize, in this paper we investigate systematics
of the p-n interactions (denoted by Vip-jn) between the last
i valence protons and j valence neutrons of nuclei with mass
number A � 60, based on the masses of neighboring nuclei.
We demonstrate that V1p-2n and V2p-1n are appropriate for
constructing local mass relations. We use a simple function
v(Z) to describe V1p-2n and V2p-1n and present new relations
connecting the masses of neighboring nuclei, with improved
accuracies, based on systematics of V1p-2n and V2p-1n. The rms
deviations of our predicted values (in keV) for even-even, even-
odd, odd-even, and odd-odd nuclei with n = 8, with respect to
experimental data compiled in the AME2003 database [9], are
52, 69, 70, 86, respectively. We note that the simple function of
v(Z) is empirical, and that one arrives at similar rms deviations
between predicted masses and experimental data, if one takes
v(N ) or v(A) (A = Z + N , the mass number for each nucleus)
to describe V1p-2n and V2p-1n. If one optimizes the parameters
in v(Z) separately for V1p-2n and V2p-1n, the improvement is
very minor (less than 1 keV).

A comparison between our results and those of previous
studies [16,18] is made in detail. We tabulate the rms deviations
of our predicted masses from the AME2003 database [9]
with different mass regions for both the stable and unstable

TABLE V. The rms deviations σ by using Eq. (3) and σexp

calculated from uncertainties of experimental data of nuclear masses
for different n in various regions of A.

Region n � 1 n � 4 n � 8

σ σexp σ σexp σ σexp

60 � A < 80 227 151 151 89 98 51
80 � A < 100 143 84 133 39 117 17

100 � A < 120 157 56 109 35 84 25
120 � A < 140 114 44 71 26 58 13
140 � A < 160 86 52 71 25 64 15
160 � A < 180 65 42 51 27 42 15
180 � A < 200 103 41 93 34 61 19
200 � A < 220 77 28 55 21 45 16
220 � A < 240 77 40 53 29 47 25
240 � A < 260 89 19 56 18 34 18
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nuclei. The results show that there are considerably large
deviations for neutron-rich nuclei with relative small A and
that the deviations are relatively small for 140 � A < 180 and
200 � A < 260.

Note added in Proof: After this paper was accepted, we
were informed by Prof. Z. X. Li of other recent efforts of
evaluating the nuclear masses. In [36], Wang and collaborators
improved the macroscopic-microscopic mass formula by
considering the isospin effect and mirror nuclei constraint, and

achieved an accuracy with rms deviation around 0.44 MeV for
2149 measured masses.
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Technology Program of Shanghai Maritime University under
Grant No. 20100086.
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