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Nonlocal extension of the dispersive optical model to describe data below the Fermi energy
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Present applications of the dispersive-optical-model analysis are restricted by the use of a local but energy-
dependent version of the generalized Hartree-Fock potential. This restriction is lifted by the introduction of
a corresponding nonlocal potential without explicit energy dependence. Such a strategy allows for a complete
determination of the nucleon propagator below the Fermi energy with access to the expectation value of one-body
operators (like the charge density), the one-body density matrix with associated natural orbits, and complete
spectral functions for removal strength. The present formulation of the dispersive optical model (DOM) therefore
allows the use of elastic electron-scattering data in determining its parameters. Application to 40Ca demonstrates
that a fit to the charge radius leads to too much charge near the origin using the conventional assumptions of
the functional form of the DOM. A corresponding incomplete description of high-momentum components is
identified, suggesting that the DOM formulation must be extended in the future to accommodate such correlations
properly. Unlike the local version, the present nonlocal DOM limits the location of the deeply bound hole states
to energies that are consistent with (e,e′p) and (p,2p) data.
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I. INTRODUCTION

An important link between the description of nuclear
reactions and nuclear structure was proposed in Ref. [1],
establishing a workable connection between the optical-model
and the shell-model potential. The proposed implementation
is now known as the dispersive optical model (DOM) and
has been extensively reviewed in Ref. [2]. Using empirical
knowledge of standard optical potentials Mahaux and Sartor
proposed to employ the experimentally well-constrained imag-
inary parts of the optical potential as the critical building blocks
to determine, through a subtracted dispersion relation, the
corresponding dynamic real part without requiring additional
parameters. Since the subtraction point is usually chosen to
be the Fermi energy, the remaining static and real Hartree-
Fock-like potential can be linked to empirical information
from mean-field theories. Conventional Woods-Saxon form
factors have been employed including standard forms for
volume and surface contributions. By assuming a similar
energy dependence of the imaginary part of the potential above
and below the Fermi energy, it is then possible to derive and
successfully predict properties of bound nucleons, including
removal energies, overlap functions, spectroscopic factors, and
widths [2].

The success in reproducing spectroscopic factors derived
from the (e,e′p) reaction [3] relies partly on the inclusion of an
energy asymmetry far from the Fermi energy for the imaginary
volume contribution associated with the larger phase space of
particlelike as compared to holelike states. This asymmetry can
be inferred from nuclear-matter calculations of the imaginary
part of the self-energy [2]. A number of studies have made
use of the framework of the DOM [4–12]. Some steps toward
a global version of the DOM have been recently reported in
Refs. [13–16]. A different perspective was recently developed
in Refs. [17,18] where the DOM was exploited to extract the
nucleon asymmetry dependence from fitting 40Ca and 48Ca

data. This allows both interpolation and extrapolation to other
nuclei and the prediction of experimental data. Such data-
driven extrapolations may play an important role in predicting
the properties of nuclei toward the drip lines.

Additional benefits may result when DOM ingredients
are used in the description of transfer reactions using the
adiabatic distorted-wave approximation which employs proton
and neutron optical potentials for the description of the relevant
deuteron scattering wave function [19,20]. The spectroscopic
factors deduced from transfer reactions continue to exhibit a
strong dependence on which optical potential is employed,
as was recently shown for a number of Ar isotopes [21]. In
addition to this uncertainty, there is a substantial discrepancy
between the extracted single-particle (sp) properties from
transfer and heavy-ion knockout reactions [22,23]. Without
a means to unambiguously extract such sp properties, the
success of rare-isotope facilities will be severely hampered. A
well-constrained complete optical potential in the sense of the
self-energy for the Dyson equation for nucleons will therefore
be an important ingredient in obtaining unique and undisputed
information [24] linking structure and reaction data in a unified
manner.

The DOM can easily be applied to elastic-scattering data,
because only phase shifts are required to describe differential
cross sections and polarization data. To be useful for transfer
reactions, knowledge of the interior wave functions of protons
and neutrons at positive energy is required. The current
implementation of the DOM employs a real component, a
Hartree-Fock-like term, that is in principle nonlocal but is
replaced by an equivalent local potential with an energy
dependence mainly governed by the so-called k mass [2].
Since this energy dependence does not result from a dispersion
integral, it leads to a distortion of the normalization that can
be approximately fixed [25–27]. Since specific assumptions
about a Gaussian form of the nonlocality are made in addition
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to the approximate nature of the local approximation, it is quite
important to explore the actual form of nonlocal potentials
that are based on microscopic calculations of the nucleon
self-energy like in the Faddeev random-phase approximation
(FRPA) [28–30]. Another reason to explore the inclusion of
a nonlocal Hartree-Fock-like potential is to allow additional
data to be included in the fitting procedure. It is the goal
of the present article to explore the inclusion of a nonlocal
Hartree-Fock-like potential in the DOM in order to describe a
larger set of data in particular those pertaining to properties of
nucleons below the Fermi energy.

The normalization distortion is particularly significant
below the Fermi energy, where it leads to difficulties in
determining the sp strength distribution [2]. A nonlocal DOM
potential can avoid these problems and provide a properly
normalized solution of the Dyson equation. The resulting
propagator below the Fermi energy then provides access
to spectral functions, the one-body density matrix, and all
one-body expectation values in the ground state. In turn,
elastic electron-scattering data that yield the nuclear charge
distribution can be used to constrain the DOM potentials.
The sp strength distributions obtained from (p,2p) [31,32] and
(e,e′p) [3] reactions provide further constraints. A nonlocal
DOM potential also avoids the pitfall of the linear energy
dependence of the equivalent local potential, which provides
too much binding for the most deeply bound levels.

Experimental evidence for the presence of high-momentum
components in the nuclear ground state has been provided
by the (e,e′p) reaction [33] in reasonable agreement with
microscopic calculations for light nuclei [34,35]. While the
number of high-momentum protons in light nuclei represents
a modest 10% of the total, their presence does confirm the
basic tenet of most realistic nucleon-nucleon interactions that
contain a sizable repulsion at short relative distances. It is
unclear whether current DOM implementations generate any
sizable presence of high-momentum nucleons. It is therefore
useful to explore the spectral distribution in momentum space
of the DOM propagator to assess its high-momentum content,
and, if found lacking, provide an incentive to construct DOM
self-energies that represent the experimental findings [33].
While spectroscopic factors obtained from the analysis of
the (e,e′p) reactions are already employed in current DOM
fits [17,18], a nonlocal treatment of the DOM potential opens
the possibility to use these cross-section data directly in the
fitting procedure, because both the overlap function of the
removed proton as well as the scattering wave function of
the outgoing proton can be described by the corresponding
DOM wave functions. Data from the (e,e′p) reaction therefore
can provide additional constraints and provide further confir-
mation of the interpretation of these data as well as reducing the
uncertainty in the quoted absolute spectroscopic factors [24].

The purpose of this work is to clarify the inclusion of a
nonlocal Hartree-Fock-like potential and generate the resulting
solution of the Dyson equation below the Fermi energy,
while keeping the earlier DOM results obtained with the
local equivalent potential intact or improving upon them.
We will continue to make the simplest possible assumptions
about the form of the nonlocality and thereby not introduce
any additional parameters. In Sec. II we clarify the required

strategy to solve the Dyson equation in coordinate space while
preserving the ingredients obtained from earlier fits to 40Ca
data [17,18]. The results illustrating the complete solution of
the Dyson equation below the Fermi energy are illustrated and
discussed in Sec. III. A summary and conclusions are presented
in Sec. IV.

II. DYSON EQUATION AND DOM SELF-ENERGY
WITH NONLOCAL POTENTIALS

A. Green’s function ingredients

We start with a brief summary of relevant results from the
Green’s function formulation of the many-body problem [27].
The nucleon propagator with respect to the A-body ground
state is given by
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(1)

where complete sets of states in the A ± 1 systems are
inserted and the sp basis with good radial position, orbital
angular momentum (parity), and total angular momentum is
chosen while suppressing the projection of the total angular
momentum and the isospin quantum numbers. The continuum
solutions in the A ± 1 systems are also implied in the
completeness relations. The numerators of the particle and hole
components of the propagator represent the products of overlap
functions associated with adding or removing a nucleon
from the A-body ground state. The standard development of
Green’s function theory relates the nucleon propagator to the
self-energy yielding the Dyson equation in the following form:

G�j (r, r ′; E) = G
(0)
�j (r, r ′; E) +

∫
dr̃ r̃2

∫
dr̃ ′ r̃ ′2

×G
(0)
�j (r, r̃; E)��j (r̃ , r̃ ′; E)G�j (r̃ ′, r ′; E). (2)

For the present discussion the noninteracting propagator
involves only kinetic energy contributions. The nucleon self-
energy contains all linked diagrammatic contributions that are
irreducible with respect to propagation represented by G(0).
All contributions to the propagator are then generated by the
Dyson equation itself. The solution of the Dyson equation
generates all discrete poles corresponding to bound A ± 1
states explicitly given by Eq. (1) that can be reached by adding
or removing a particle with quantum numbers r�j . The hole
spectral function is obtained from

S�j (r; E) = 1

π
ImG�j (r, r; E) (3)

for energies in the continuum. The total spectral strength at E

for a given �j combination,

S�j (E) =
∫ ∞

0
drr2S�j (r; E), (4)
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yields the spectroscopic strength per unit of energy. For
discrete energies as well as all continuum ones, overlap
functions for the addition or removal of a particle are generated
as well. The connection between the nucleon propagator
and elastic-scattering data can therefore be made explicit by
identifying the nucleon elastic-scattering T matrix with the
reducible self-energy obtained by iterating the irreducible one
to all orders with G(0) [27,36–38].

For discrete states in the A − 1 system one can show that
the overlap function obeys a Schrödinger-like equation [27].
Introducing the notation

ψn
�j (r) = 〈

�A−1
n

∣∣ ar�j

∣∣�A
0

〉
(5)

for the overlap function for the removal of a nucleon at r with
discrete quantum numbers � and j , one finds[

p2
r

2m
+ h̄2�(� + 1)

2mr2

]
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�j (r) +
∫

dr ′r ′2��j (r, r ′; ε−
n )ψn
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= ε−
n ψn
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where

ε−
n = EA

0 − EA−1
n (7)

and in coordinate space the radial momentum operator is given
by pr = −ih̄( ∂

∂r
+ 1

r
). Discrete solutions to Eq. (6) exist in

the domain where the self-energy has no imaginary part and
these are normalized by utilizing the inhomogeneous term in
the Dyson equation. For an eigenstate of the Schrödinger-like
equation [Eq. (6)], the so-called quasihole state labeled by
αqh, the corresponding normalization or spectroscopic factor
is given by [27]

Sn
�j =

(
1 − ∂��j (αqh, αqh; E)

∂E

∣∣∣∣
ε−
n

)−1

, (8)

which is the discrete equivalent of Eq. (4). Discrete solutions
in the domain where the self-energy has no imaginary part
can therefore be obtained by expressing Eq. (6) on a grid
in coordinate space and performing the corresponding matrix
diagonalization. Likewise, the solution of the Dyson equation
[Eq. (2)] for continuum energies in the domain below the Fermi
energy can be formulated as a complex matrix inversion in
coordinate space. This is advantageous in the case of a nonlocal
self-energy representative of all microscopic approximations
that include at least the Hartree-Fock approximation. Below
the Fermi energy for the removal of a particle,

ε−
F = EA

0 − EA−1
0 , (9)

the corresponding discretization is limited by the size of the
nucleus as can be inferred from the removal amplitude given
in Eq. (5), which demonstrates that only coordinates inside the
nucleus need to be considered. Such a finite interval therefore
presents no numerical difficulty.

B. Link with the DOM

While microscopic calculations of the nucleon self-energy
have made substantial progress in recent years [28–30,39],
accurate representations of elastic-scattering data in particular

have not yet gone beyond phenomenological representations
of the self-energy in terms of standard or dispersive optical
potentials. A clear link with the microscopic self-energy is
provided by the DOM strategy [1,2]. It employs the dispersion
relation between the real and imaginary part of the microscopic
self-energy given by

Re��j (r, r ′; E) = �s
�j (r, r ′) − P

∫ ∞

ε+
T

dE′

π

Im��j (r, r ′; E′)
E − E′

+P
∫ ε−

T

−∞

dE′

π

Im��j (r, r ′; E′)
E − E′ , (10)

where P represents the principal value. The static contribution
arises from the correlated Hartree-Fock term and the dynamic
parts start and end at corresponding thresholds in the A ± 1
systems that have a larger separation than the corresponding
difference between the Fermi energies for addition (ε+

F =
EA+1

0 − EA
0 ) and removal (ε−

F = EA
0 − EA−1

0 ) of a particle.
The latter feature is particular to a finite system and generates
possibly several discrete quasiparticle and holelike solutions
of the Dyson equation in Eq. (6) in the domain where the
imaginary part of the self-energy vanishes.

The standard definition of the self-energy requires that
its imaginary part is negative, at least on the diagonal, in
the domain that represents the coupling to excitations in the
A + 1 system, while it is positive for the coupling to A − 1
excitations. This translates into an absorptive potential for
elastic scattering at positive energy, where the imaginary part
is responsible for the loss of flux in the elastic channel. It is
convenient to introduce the average Fermi energy:

εF = 1
2 [ε+

F − ε−
F ]. (11)

Subtracting Eq. (10) calculated at this energy from Eq. (10)
generates the so-called subtracted dispersion relation:

Re��j (r, r ′; E)

= Re��j (r, r ′; εF ) − P
∫ ∞

ε+
T

dE′

π
Im��j (r, r ′; E′)

×
[

1

E − E′ − 1

εF −E′

]
+P

∫ ε−
T

−∞

dE′

π
Im��j (r, r ′; E′)

×
[

1

E − E′ − 1

εF − E′

]
. (12)

The beauty of this representation was recognized by Mahaux
and Sartor [1,2] because it allows for a link with empirical
information both at the level of the real part of the nonlocal
self-energy at the Fermi energy (probed by a multitude
of Hartree-Fock calculations) and also through empirical
knowledge of the imaginary part of the optical potential
(constrained by experimental data) that consequently yields
a dynamic contribution to the real part by means of Eq. (12).
This procedure requires further assumptions because detailed
knowledge of the imaginary part of the self-energy below the
Fermi energy has only become available with electron-induced
proton knockout reactions [3]. Because the empirical knowl-
edge has relied on local representations of the imaginary part of
the optical potential, it is natural to make a similar assumption
for the DOM version. In addition, a separation in terms of
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surface (low energy) and volume (higher energy) absorption
has been incorporated in accordance with standard practice.

Most implementations of the DOM simply assume that near
the Fermi energy there is a similar behavior above and below
the Fermi energy for the imaginary part of the surface contribu-
tion to the self-energy, although this assumption requires more
stringent tests. Farther away from the Fermi energy the phase
space asymmetry characterized by the density of two-particle–
one-hole (2p1h) and two-hole–one-particle (2h1p) states leads
to an assumed energy asymmetry for the volume contribution
that is also consistent with expectations from nuclear-matter
results. Standard forms and fitted parameters for a recent
implementation of the DOM for Ca isotopes can be found
in Ref. [18].

A clear success of the DOM approach is the accurate
prediction of bound sp properties including radii, spectro-
scopic factors, and the compression of sp levels near the
Fermi energy that originates from the dispersive contribution in
Eq. (12) [2] and cannot be obtained with standard Hartree-Fock
approaches. The latter feature provides an explanation for the
observed nuclear level density parameter a which is large
compared to sp estimates [40].

The remaining ingredient in the DOM procedure is the
nonlocal self-energy at the Fermi energy represented by
Re��j (r, r ′; εF ). It is more convenient to discuss the spin-
independent part of this term in a basis with vectors in
coordinate space using the notation �HF (r, r ′) and employing
the HF label that was introduced by Mahaux and Sartor [2]
even though this term is not a true Hartree-Fock contribution
as the derivation of Eq. (12) clarifies. The usual treatment of
�HF (r, r ′) is to assume that it can be replaced by a local
but energy-dependent potential [2,25–27]. The corresponding
form then can be written as

�HF(r, r ′) ⇒ VHF(r, E)δ(r − r ′), (13)

where

VHF(r, E) = VHF(E)f (r, rHF, aHF), (14)

containing the Woods-Saxon form factor

f (r, ri, ai) = 1

1 + exp
(

r−riA1/3

ai

) . (15)

The factorized linear energy dependence can be parametrized
by the corresponding effective mass below the Fermi energy
and can be represented by

VHF(E) = VHF(εF ) +
[

1 − m∗
HF

m

]
(E − εF ) , (16)

which can be combined with the Woods-Saxon form factor
to generate m∗

HF(r). This version is inspired by the Skyrme
implementation of the HF potential [2]. More generally, one
may identify this effective mass with an energy-dependent
version of the effective mass m̃∗(r; E) that governs the
nonlocality of the self-energy and is sometimes referred to as
the k mass. It was shown in Ref. [41] that this effective mass
is critical to reconcile the phenomenological (local) imaginary
part of the optical potential with the microscopic one [27]
and to explain the observed nucleon mean free path. For finite

nuclei, this implies that the DOM version of its local imaginary
part W is related to the self-energy by

W(r; E) = m̃∗(r; E)

m
Im�(r; E). (17)

This suggests that the use of a nonlocal HF self-energy in
the DOM framework has to be accompanied by enhancing
the imaginary part with a corresponding factor m/m̃∗(r; E).
Results discussed later indeed corroborate the necessity of
including this factor, for example, to obtain spectroscopic
factors identical to those in Ref. [18]. It is therefore possible to
employ the same parameters as in the fit of Ref. [18] and only
replace the energy-dependent local equivalent HF potential by
a suitable energy-independent nonlocal one. We have chosen
the standard form introduced in Ref. [25] to represent

�HF(r, r ′) = VNLf
(

1
2 |r + r ′|, rNL, aNL

)
H (|r − r ′|), (18)

where the degree of nonlocality is expressed by a Gaussian
governed by the parameter β:

H (|r − r ′|) = 1

π
3
2 β3

exp

[
−

(
r − r ′

β

)2
]
. (19)

This nonlocal form requires four parameters (VNL, rNL, aNL,
and β), which is the same number required to represent
VHF(r, E) in Eq. (14). We reiterate that this nonlocal represen-
tation is essential in obtaining properly normalized spectral
functions and spectroscopic factors. In the following we
discuss results for 40Ca with this nonlocal version of the
DOM with emphasis on energies below the Fermi energy. We
note that all DOM parameters that were obtained in Ref. [18]
have been kept while only the local HF potential with its
spurious energy dependence has been replaced by Eq. (18)
and the application of the dispersion relation Eq. (12) has been
modified according to Eq. (17).

III. RESULTS

As discussed in the previous section, only four parameters
are needed to introduce the nonlocal HF contribution to the
DOM. As in the usual DOM fit, the location of the main
fragments of the 0d3/2 and 1s1/2 valence hole levels was used to
constrain the parameters of the nonlocal HF potential. Because
the complete one-body density matrix can be obtained with
a nonlocal HF potential, it was also possible to constrain the
parameters by the mean square radius of the charge distribution
that is well known experimentally [42]. An additional problem
that can be cured by the nonlocal version of the HF potential
is associated with the linear energy dependence of the local
version as shown in Eq. (16). Typical DOM fits generate rather
deeply bound 0s1/2 states, often well below the peaks seen in
(e,e′p) and (p,2p) experiments. With a nonlocal potential it is
possible to use the peak of the deeply bound 0s1/2 state as
an additional constraint and avoid the problem. The resulting
parameters are collected in Table I including those for the
local potential. All other parameters and the detailed shapes
chosen for the imaginary parts of the DOM potential for 40Ca
can be found in Ref. [18]. When adjusting the parameters
of the nonlocal potential it was found that it was possible
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TABLE I. Parameters for the local energy-
dependent Woods-Saxon potential and the nonlocal
version with Gaussian nonlocality for 40Ca.

Local Nonlocal

Depth (MeV) −56.5 −92.3
Radius (fm) 1.19 1.05
Diffuseness (fm) 0.70 0.70
m̃∗

HF/m 0.57 –
Nonlocality (fm) – 0.91

to incorporate the constraint of the mean square radius of
the charge distribution while generating quasihole fragments
at energies that are at least as good as the original fit.
It may be useful in the future to explore other forms for
nonlocal potentials, especially when microscopic self-energies
obtained with the FRPA method [28–30,39] are analyzed. It is
possible to keep the same value for the diffuseness parameter
as for the local potential. Depth and radius parameters are,
however, clearly very different and must combine with the
nonlocality parameter β to generate similar results for the
energies of the valence hole states. It was found that the charge
radius of the nucleus provides a significant constraint and
should therefore be used in future applications of the DOM
method.

After projecting the nonlocal potential onto states with
good orbital angular momentum, it is possible to perform
the complex matrix inversion in coordinate space to solve
Eq. (2). We note that the imaginary part of the DOM
potential of Refs. [17,18] ends at the Fermi energy [see
Eq. (11)] so this procedure generates sharply peaked features
for valence hole states just below the Fermi energy. To
illustrate the influence of the spurious energy dependence
included for a local potential, we display in Fig. 1 the proton
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1
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(E

) 
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-1

]

s
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FIG. 1. (Color online) Comparison of proton s1/2 spectral strength
with the nonlocal (solid curve) and local potential with the spurious
energy dependence (dashed curve). The nonlocal result does not yet
contain the correction given in Eq. (17). Note that the dashed curve
even exceeds the number of mean-field s1/2 particles by more than
50%, illustrating the incorrect normalization when the local energy-
dependent potential is used in the Dyson equation without proper
corrections.

s1/2 spectral strength [see Eq. (4)] with a nonlocal potential
(solid) and the local version (dashed) from the original fit.
The nonlocal potential yields the same valence quasihole
energy but the correction implied by Eq. (17) was not yet
applied. Spectral functions obtained by solving the Dyson
equation with the spurious energy dependence associated with
the local HF potential typically overestimate the mean-field
occupation by more than 50%, leading to more than 30 protons
for 40Ca.

While general features of the solid curve in Fig. 1 for s1/2

strength distribution appear in order, like the wide peak for the
lowest orbit and a sharp well-localized peak for the one near the
Fermi energy, it should be noted that the strength in the peak
near the Fermi energy contains a spectroscopic strength of 0.78
not in agreement with the DOM results of Refs. [17,18]. It is
only when the remainder of the DOM potential is multiplied
by the effective mass correction of Eq. (17) that we obtain
a spectroscopic factor of 0.65 for the 1s1/2 state in better
agreement with Ref. [18]. The correct strength distributions
for the most relevant proton �j combinations including f7/2

are displayed in Fig. 2. All peaks correspond to the orbits
that are expected to be fully occupied in the mean field.
It is important to realize, however, that at each energy the
total strength according to Eq. (4) is obtained for a given �j

combination. For a given (reasonable) mean-field potential,
several of the corresponding orbits may exhibit finite amounts
of strength at one energy, including those that are not occupied
in that mean field. The converse is illustrated by the f7/2

strength distribution, because this orbit is completely empty
in a mean-field picture. The strength exhibited appears on
account of the presence of the imaginary part of the self-energy
below the Fermi energy, which allows some finite amount
of f7/2 strength to appear there. In addition to this feature,
mostly occupied �j combinations exhibit a broadening of the
strength with a width that represents the local mixing with
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FIG. 2. (Color online) Spectral functions for all mostly occupied
�j combinations in 40Ca together with the f7/2 result. Orbits with j =
� + 1

2 are dashed to distinguish them from the ones with j = � − 1
2 .

These results exhibit similar peak locations and widths as observed
in (p,2p) [31,32] and (e,e′p) experiments [43].
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TABLE II. Quasihole energies for proton orbits in 40Ca for the
local and nonlocal DOM implementation compared with experiment.

Orbit Local Energy (MeV) Peak Experiment
Nonlocal

0s1/2 −57.3 −47.4 −46.7 ∼−47
0p3/2 −35.1 −31.4 −31.1 ∼−30
0p1/2 −30.3 −26.7 −26.4 ∼−30
0d5/2 −13.5 −13.8 −13.5 −13.5
1s1/2 −9.5 −9.8 −9.8 −10.8
0d3/2 −8.3 −8.3 −8.3 −8.3

more complicated states like 2h1p, etc. We note that it is
straightforward to place the first peak of the s1/2 distribution
in accordance with experimental observations from (p,2p)
[31,32] and (e,e′p) experiments [43]. This is more difficult
when the local HF potential is employed due to its linear energy
dependence, which lowers the well with decreasing energy.
When integrating the total strength shown in Fig. 2 for all orbits
except the f7/2 orbit and multiplying with the corresponding
degeneracy factor of 2j + 1, the summed strength is 19.48.
While this may appear reasonable, it should be kept in mind
that the assumed state independence of the DOM potential
(apart from spin-orbit) and the � dependence of the nonlocal
HF potential [on account of its angular dependence implied
by Eq. (18)] imply that some strength will also be generated
for higher � values leading to an overestimate of the total
proton number. Indeed, when the cutoff is placed at � = 3,
that is, the f7/2 and f5/2 contributions are also included, the
total proton number becomes 21.43. This suggests that in
future DOM work the total proton (neutron) number should be
used as a further constraint on the potentials. The possibility
of including some state dependence may also be explored,
in particular by relying on microscopic input from FRPA
calculations [28–30,39].

Before discussing new results not available with the
standard DOM implementation, we first compare several
quasiparticle properties in the two approaches. In Table II
we compare quasihole energies obtained with the local and
nonlocal DOM with experimental data (for deeply bound
orbits we use Ref. [32]). The numbers quoted in the following
tables for quasiparticle properties using the local version of
the DOM differ slightly from the ones generated in Ref. [18],
because a small error in the calculation of the dispersive
volume contribution has been corrected. The column labeled
“local” reports the solutions of the eigenvalue equation for
the local DOM potential without the imaginary part. This
includes a self-consistency procedure because the potential
is energy dependent; that is, the chosen input energy has to
coincide with the obtained eigenvalue. Such a calculation for
the nonlocal DOM is reported in the column labeled nonlocal.
The imaginary part is included in the column labeled “peak,”
which identifies the location of the peak of the spectral function
for each orbit. As expected, there is little difference between
the latter two approaches, especially close to the Fermi energy.
The largest difference between the local and the nonlocal
approach occurs for the lowest s1/2 orbit. As discussed earlier,
the nonlocal potential is better able to constrain the peak of the

TABLE III. Spectroscopic factors for proton
orbits in 40Ca for the local and nonlocal DOM
implementation.

Orbit Local Nonlocal

0s1/2 1.11 0.98
0p3/2 0.94 0.93
0p1/2 0.95 0.94
0d5/2 0.83 0.86
1s1/2 0.67 0.65
0d3/2 0.65 0.64

spectral s1/2 strength to the correct value. Overall agreement
for the peak location appears quite satisfactory for the nonlocal
DOM, although it may be necessary to consider some state
dependence if a better fit for 1s1/2 quasihole energy is deemed
appropriate. The results for neutrons are naturally not very
different apart from the Coulomb shift to those for protons on
account of isospin symmetry and are therefore not reported. We
only note that the lowest neutron s1/2 peak occurs at −56 MeV
in the nonlocal DOM while in the local counterpart it is found
at −67 MeV, confirming the discussion for the corresponding
proton level that the local DOM tends to bind this orbit too
deeply.

In Table III the spectroscopic factors are listed for the
same orbits as in Table II. These results are obtained for
the local DOM by using the approximate expression for the
spectroscopic factor reviewed in Ref. [2] and given explicitly
in Eq. (12) of Ref. [18]. This expression does not guarantee that
the resulting spectroscopic factor is less than 1 (as it should
be), which is illustrated by the outcome for the 0s1/2 orbit.
For the nonlocal DOM, Eq. (8) has been used where the
derivative is taken at the eigenvalue obtained from Eq. (6)
with neglect of the imaginary part of the potential. This
procedure is also not appropriate in the domain where the
imaginary part becomes substantial and is already suspect for
the d5/2 orbit. When the imaginary part is neglected, it is
possible that the total real dispersive correction has a positive
derivative at the energy corresponding to the self-consistent
eigenvalue even in the nonlocal case, leading to an unphysical
spectroscopic factor. Already the strength content of the peak
for the d5/2 orbit in Fig. 2 is more in line with the spectroscopic
factors quoted for the 1s1/2 and 0d3/2 orbits and therefore
substantially smaller than the 0.86 listed in Table III. Only
for the latter two orbits is the neglect of the imaginary part
of the potential unimportant, because the content of the sharp
peaks in Fig. 2 coincides with the spectroscopic factors given
in Table III. We also note that there is reasonable agreement
with the local and nonlocal DOM results for these levels.
We therefore conclude that only for these orbits is the use
of spectroscopic factors sensible and unambiguous. This is in
complete accord with the notion that the Landau quasiparticle
(hole) concept is only valid in the immediate vicinity of the
Fermi energy [44–46] that is discussed for nuclei, for example,
in Refs. [47,48]. As discussed in Ref. [18], these quasihole
spectroscopic factors are consistent with the analysis of the
(e,e′p) reaction on this nucleus for the d3/2 orbit [49,50]. These
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references quote a result for the 1s1/2 orbit that is too small
and has been superseded by more recent experiments [51]. For
more deeply bound orbits, including the d5/2 orbit, it is much
more appropriate to consider the complete spectral functions
as shown in Fig. 2. We note that the very sharp peaks in the
immediate vicinity of the Fermi energy can also be replaced
by δ functions with the strength given by the spectroscopic
factor.

By integrating the imaginary part of the propagator given
in Eq. (1) for each �j combination up to the Fermi energy,
it is possible to obtain the one-body density matrix
element

n�j (r ′, r) = 1

π

∫ εF

−∞
dE ImG�j (r, r ′; E)

= 〈
�A

0

∣∣ a†
r ′�j ar�j

∣∣�A
0

〉
. (20)

For protons, the point charge distribution is thus obtained
from the diagonal matrix elements of the one-body density
matrix

ρp(r) = e

4π

∑
�j

(2j + 1)n�j (r, r). (21)

For a comparison with the experimental charge density of
40Ca it is necessary to fold this distribution with the proton
charge density. We used the procedure outlined in Ref. [52],
which employs three Gaussians for the proton. The mean
square radius of the resulting charge distribution is obtained
from

〈r2〉 = 1

Ze

∫ ∞

0
drr2ρch(r) (22)

and has been employed to constrain the nonlocal HF potential
to generate good agreement with the experimental mean square
radius of the 40Ca charge distribution. The parameters in Table I
generate a value of 3.45 fm compared to the experimental
result of 3.45 fm taken from the Fourier-Bessel analysis given
in Ref. [42]. We compare the calculated charge density with
the experimental one in Fig. 3. It is obvious that there is still a
significant discrepancy with the experimental charge density
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FIG. 3. (Color online) Experimental charge density of 40Ca [42]
(solid curve) compared with the DOM result (dashed curve).

TABLE IV. Radii for proton orbits in 40Ca for
the local and nonlocal DOM implementation.

Orbit Local (fm) Nonlocal (fm)

0s1/2 2.34 2.36
0p3/2 2.99 2.92
0p1/2 2.98 2.90
0d5/2 3.54 3.36
1s1/2 3.87 3.60
0d3/2 3.71 3.52

near the origin that requires further analysis. Before addressing
this issue in more detail we remark on the individual radii of
the quasihole orbits and compare these with results obtained
from the (e,e′ p) reaction. By constraining the nonlocal HF
potential to reproduce the mean square charge radius, we
obtain radii of individual orbits that are somewhat smaller
than for the local DOM fit. We list the radii for the solutions of
Eq. (6) (without the imaginary part) in Table IV and compare
the DOM results with each other. We first note that the radii
listed are for point particles and become larger when folded
with the proton charge density to generate the result for the
nonlocal case that agrees with the experimental mean square
radius of the charge distribution. This constraint makes the
nonlocal radii smaller than the ones for the local DOM.
The radii for the local DOM are in good agreement with the
(e,e′ p) analysis of Refs. [49,50] for the valence hole states.
A direct comparison of the point proton radii is appropriate,
because the analysis of the data employs bound-state wave
functions for point nucleons but includes the coupling to
an extended charge distribution of the proton by employing
the off-shell (e, p) cross section. We do note that the (e,e′p)
analysis generates a sp wave function with respect to the A − 1
system. This is not the case for the calculation of the DOM
propagator with the nonlocal HF potential. Because the DOM
calculation generates proton-scattering wave functions in a
wide energy domain and also calculates the proton overlap
function for removal to valence hole states, it provides all the
ingredients that are employed in the analysis of the (e,e′p)
cross sections. Such cross sections, in turn, can therefore be
used in future DOM calculations to constrain the nonlocal
potential to check whether the radii obtained for the nonlocal
DOM describe the data. Indeed, we note that elastic-nucleon-
scattering data only determine the phase shifts associated with
the asymptotic scattering wave functions and do not provide
strong constraints on the interior scattering waves.

The possibility of generating the one-body density matrix
from a nonlocal DOM calculation provides access to the
natural orbits of the system. We discuss these orbits before
we address the discrepancy of the DOM charge density with
the experimental one, because the shape of the natural orbits
provides some initial clues as to what is missing in the
DOM potentials as implemented so far. By diagonalizing
the one-body density matrix given in Eq. (20) one obtains
the natural orbits for each �j combination together with the
corresponding occupation numbers. It is therefore possible to

054306-7



W. H. DICKHOFF et al. PHYSICAL REVIEW C 82, 054306 (2010)

0 2 4 6 8
r [fm]

0

0.05

0.1

0.15

0.2

0.25

ψ
(r

) 
[f

m
-3

/2
]

d
3/2

FIG. 4. (Color online) Comparison of the wave functions for the
d3/2 natural orbit (dashed curve) and the corresponding quasihole
result (solid curve). The quasihole wave function has a slightly larger
radius.

write

n�j (r, r ′) =
∑

n

nno
n�jψ

no∗
n�j (r)ψno

n�j (r ′), (23)

with nno
n�j , ψ

no
n�j (r) being the corresponding occupation num-

bers and wave functions for the natural orbits. We note that
these wave functions are normalized to unity. While there is
a correspondence for n values that are nominally occupied
between the natural orbits with large occupation numbers
and overlap functions that correspond to mostly occupied
states, this is lost for the natural orbits with small occupation
numbers [53]. Indeed, natural orbits with small occupation
numbers are more confined than those with large
occupation and have no relation with mostly empty orbits
associated with, for example, DOM potentials.

We compare in Fig. 4 the proton d3/2 natural orbit
(solid curve) with the corresponding quasihole wave function
(dashed curve) obtained by diagonalizing Eq. (6) at the correct
energy. Both wave functions are normalized to 1 and are
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FIG. 5. (Color online) As in Fig. 4 but for proton s1/2 orbit with
one node.
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FIG. 6. (Color online) As in Fig. 4 but for the proton s1/2 orbit
with no node.

basically indistinguishable. This feature was also observed in
the microscopic calculation of Ref. [53] for 16O. For the s1/2

orbit two natural orbits are generated with large occupation
numbers. In this case the comparison in Figs. 5 and 6 shows
quite similar behavior. The DOM quasihole wave functions
exhibit the expected shell-model wave function characteristics
because they have been generated by solving Eq. (6) and occur
at quite different energies. The natural orbits are generated
quite differently as they require an integration of the spectral
density over all energies up to the Fermi energy with a
subsequent diagonalization of the the one-body density matrix
without any direct reference to a Schrödinger-like equation.
Nevertheless, the wave functions of natural orbits with large
occupation numbers appear almost indistinguishable from
their quasiparticle counterparts.

Occupation numbers for natural orbits are collected in
Table V. The number of large eigenvalues (comparable to
unity) corresponds exactly to the expected number of the
simple shell model. All other eigenvalues are small and are
associated with wave functions with increasing number of
nodes. We also include the sum of the occupation numbers
for each �j combination in Table V. Somewhat surprising is
that the largest deviation occurs for the s1/2 orbit (in that case
from 2, because there are nominally two levels occupied). As
observed in Ref. [53], the largest eigenvalues for the nuclear
natural orbits are substantially larger than the corresponding
one for drops of a finite number of 3He atoms [54]. Because
short-range correlations associated with the underlying bare
interaction are included in the work of Refs. [53] and [54], this

TABLE V. Occupation numbers of natural orbits.

n s1/2 p3/2 p1/2 d5/2 d3/2 f7/2 f5/2

1 0.926 0.921 0.905 0.899 0.858 0.109 0.064
2 0.881 0.072 0.062 0.037 0.032 0.024 0.020
3 0.032 0.021 0.020 0.015 0.014 0.010 0.010
4 0.015 0.010 0.009 0.007 0.007 0.006 0.005
5 0.007 0.005 0.005 0.004 0.004 0.003 0.003∑

n 1.86 1.03 1.00 0.96 0.92 0.15 0.10
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difference is mostly related to the much stronger repulsion be-
tween 3He atoms which, for example, in the liquid at saturation
leads to a depletion of the Fermi sea of more than 50% [55].
Nucleon-nucleon interactions typically generate 10%–15%
depletion due to short-range and tensor correlations [56]. The
inclusion of short-range correlations is partly accomplished
by the assumed energy dependence of the volume term of the
imaginary part of the DOM potential that is based on nuclear
matter calculations [57]. Such an imaginary term is responsible
for the global depletion of orbits including those that are
deeply bound. We note that the complementary admixture
of high-momentum components is not yet incorporated by
the current DOM implementation, as becomes clear in the
following discussion. We also observe that the large occupation
numbers of the natural orbits calculated for 16O in Ref. [53]
are 5%–10% larger than the DOM numbers quoted in Table V.
It appears reasonable to interpret this difference to be due to
the proper inclusion of low-energy, and therefore long-range,
correlations that are represented by the surface components of
the DOM potentials. The imaginary part of the DOM potential
up to about 50 MeV is dominated by the surface potential. The
associated absorption is well-constrained by the differential
cross sections for elastic nucleon scattering in this energy
domain. It is then also unavoidable that sp strength from below
the Fermi energy is removed to this energy domain when
such potentials are employed in the solution of the Dyson
equation.

DOM implementations usually generate occupation num-
bers for quasihole and other bound orbits [2] based on
approximate expressions. It is therefore useful to compare
these with the more accurate results obtained by integrating
the corresponding strength up to the Fermi energy. This can
also be accomplished by using the quasihole wave functions
and performing an integration over r and r ′ involving the
one-body density matrix. For the proton d3/2 quasihole orbit
we find an occupation number of 0.86 that is identical
to the one for the natural orbit. This is hardly surprising
because these wave functions are almost identical as shown
in Fig. 4. The DOM result of Ref. [18] yields 0.82, reasonably
close to the Green’s function result of the nonlocal DOM.
For the 1s1/2 quasihole state calculated at −9.8 MeV we
obtain an occupation number of 0.88, a little larger than the
result obtained with the local DOM which generates 0.85. For
the 0s1/2 state the corresponding numbers are 0.93 (nonlocal)
and 0.93 (local) in complete agreement. This suggests that
the corresponding approximate expression in the local DOM
may be appropriate for the occupation numbers deep in the
Fermi sea. It is, however, well known that for such orbits
unreasonable spectroscopic factors can be generated. For the
0s1/2 orbit the local DOM yields, for example, an unphysical
spectroscopic factor of 1.11 (see Table III). The corresponding
calculation for the nonlocal DOM yields 0.98, a not unphysical
result but also not useful because it is larger than the properly
calculated occupation number of 0.93. This is hardly surprising
because the calculation employing Eq. (8) neglects the role of
the imaginary part of the self-energy completely. As discussed
earlier, it is therefore only useful to consider spectroscopic
factors near the Fermi energy where the imaginary part of the
self-energy is insignificant or zero. At other energies, it is more

appropriate to consider the spectral function as illustrated in
Fig. 2.

As the discussion of natural orbits has shown, the effect
of short-range and tensor correlations are only included
in so far as orbits below the Fermi energy are depleted
by the presence of a substantial imaginary part at large
positive energy associated with the volume contribution to the
DOM self-energy. The associated presence of high-momentum
components is not explicitly guaranteed and we analyze this
in the following. The total proton momentum distribution for
protons (normalized by Z) is obtained from

n(k) = 1

Z

∑
�j

(2j + 1)n�j (k). (24)

We obtain the partial momentum distributions n�j (k) by
first generating the momentum-space spectral function by
performing a double Fourier-Bessel transform of the spectral
density in coordinate space:

S�j (k; E) = 2

π2

∫ ∞

0
drr2

∫ ∞

0
dr ′r ′2j�(kr)

× ImG�j (r, r ′; E)j�(kr ′). (25)

The momentum distribution for a given �j is then obtained
from

n�j (k) =
∫ εF

−∞
dES�j (k; E). (26)

In Fig. 7 we display the total proton momentum distribution
by the dashed line. For comparison we also show the
momentum distribution from the quasihole wave functions
(normalized to one) by the solid line. As discussed in previous
work (see, for example, Refs. [34,35,53]), these quasihole
contributions are mostly associated with wave functions near
the Fermi energy and hardly contain any high-momentum
components. The presence of high-momentum components is
demonstrated by the dashed line in Fig. 7. We emphasize their
contribution by showing in Fig. 8 the momentum distribution
weighted by k2. Interestingly we find about 10% of the protons
actually have momenta beyond 1.4 fm−1. This number is in
reasonable agreement with the 10% generated for 16O in the
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FIG. 7. (Color online) Comparison of the total momentum distri-
bution calculated according to Eq. (24) (dashed curve) with the one
obtained from the quasihole contributions (solid curve).
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FIG. 8. (Color online) Momentum distribution for protons as in
Fig. 7 but weighted by k2.

calculations of Refs. [34,35,53]. These calculations generate
high-momentum components that are in quite good agreement
in the aggregate with the results of Ref. [33]. It is therefore
clear that the present version of the DOM includes sufficient
flexibility to represent these experimentally well-established
ingredients at least in aggregate.

Looking in more detail we note that the expected behavior
of high-momentum components, that is, increasing importance
with increasing separation energy, is not contained in the DOM
spectral functions. We illustrate this observation in Fig. 9
by plotting the d3/2 spectral function in momentum space at
different energies; starting at −25 MeV with steps of 25 MeV
all the way to −150 MeV. The figure illustrates that the shape
of the momentum content of the spectral function hardly
changes as a function of energy, especially when momenta
above 1.4 fm−1 are considered. This latter feature is completely
opposite to the effect expected of short-range correlations.
As discussed at length in Refs. [34,35,53], the presence of
high-momentum components becomes more pronounced with
decreasing energy (away from the Fermi energy) unlike the
results shown in Fig. 9. The former result can be easily
understood on the basis of simple considerations involving
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FIG. 9. (Color online) Momentum-space spectral function for
d3/2 quantum numbers at different energies. The highest curve is
obtained at −25 MeV and each successive lower curve (at small
momenta) represents a 25-MeV step lower in energy with the last
curve representing the spectral function at −150 MeV.
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FIG. 10. (Color online) Momentum-space spectral function for
s1/2 quantum numbers at different energies as explained in the text.

momentum conservation and the location of the relevant 2h1p
states that are required for the admixture of high momenta [30].
We note that this effect has been experimentally confirmed by
the absence of appreciable high-momentum components in
the valence hole states in 208Pb [58]. The results of Ref. [33]
further illustrate that high-momentum components emerge
with decreasing energy and dominate at energies substantially
below the bottom of the traditional potential well used to
describe mean-field nucleons. In Fig. 10 we display the
momentum content for the s1/2 orbit at the same energy
values. In this case the short-dash-dot curve at −25 MeV
is reminiscent of the 1s1/2 quasihole wave function and the
long-dash-dot curve at −50 MeV is close to the quasihole
peak of the 0s1/2 orbit. At lower energy this shape persists but
the high-momentum content (apart from slowly decreasing)
exhibits no essential change in energy as for the d3/2 channel.

To describe the correct behavior of the high-momentum
components in the DOM it will be necessary in the future
to make the geometry of the potential dependent on energy.
Indeed, by reducing the radius of the confining nuclear
potential with decreasing energy, one may expect to raise the
high-momentum content and generate the behavior predicted
in Refs. [34,35] and experimentally confirmed in Ref. [33].
Since the geometry of the DOM potential has been assumed
independent of energy in the current implementations, this
will increase the computational effort substantially because
the application of the subtracted dispersion relation will have
to be performed also as a function of the coordinates for which
the real part of the dispersive part is required. The work of
Refs. [34,35] was performed in momentum space and it may
be necessary to consider DOM implementations that rely on
momentum-space formulations, at least as far as short-range
correlations are concerned.

Having established some missing ingredients in the descrip-
tion of high-momentum components, we now argue that this
has consequences for the description of the nuclear charge
density. As discussed in Ref. [59], the role of short-range
correlations is to remove some nuclear charge, present in the
mean-field description in terms of the occupied s1/2 states,
from the origin to larger radii but not to the surface, which
is dominated by quasihole contributions. While some of this
charge returns to the origin as partially occupied higher s1/2
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states, most of this strength is associated with higher � values,
similar to the results obtained in Refs. [35,53]. It is therefore
reasonable to expect that a proper treatment of short-range
correlations with the attendant presence of high-momentum
(higher �) components (constrained by the experimental data
[33]) will make it possible to obtain an accurate fit to the
nuclear charge density in a DOM framework.

It is well known that the sp propagator allows for the
calculation of the energy per particle from the contribution
of the underlying two-body interaction. For the present case, it
is useful to employ this result in momentum space. The energy
per proton of the ground state can, for example, be obtained
by calculating [27]

E(40Ca)

Z
= 1

2Z

∑
�j

(2j + 1)
∫ ∞

0
dkk2 k2

2m
n�j (k)

+ 1

2Z

∑
�j

(2j + 1)
∫ ∞

0
dkk2

∫ εF

−∞
dEES�j (k; E).

(27)

For the present DOM potential we obtain only −2.91 MeV per
proton, which includes the effect of the Coulomb interaction.
A similar calculation for the neutrons yields −6.51 MeV per
neutron for a total of −4.71 MeV per particle. This result
represents about 60% of the experimental result. This is a
remarkable result because the spectral information and the
location of the bound levels in combination with a considerable
wealth of elastic scattering data are described by the DOM
self-energy. However, also in this case we can point to the
lack of the correct description of high-momentum components
that can resolve this issue. In Ref. [35] it was shown that
the quasihole contribution to the energy per particle is about
35% in 16O, whereas 65% is generated by the continuum
contribution at large negative energies where high-momenta
dominate. This result is noteworthy also because only 10%
of the nucleons are considered to have high momenta as
confirmed by experiment. A similar situation appears to apply
in the case of the DOM analysis of 40Ca. Because the total
number of high-momentum components appears reasonable,
it appears that their appearance at more negative energy
will be able to resolve part of the discrepancy for the total
energy of the ground state. It must also be noted that an
important contribution from three-body forces may have to
be considered. It appears therefore reasonable to expect that
all data that are not yet well reproduced at present can be better
described in a future DOM implementation that incorporates
the contribution of about 10% of high-momentum nucleons
with the correct energy dependence.

IV. SUMMARY AND CONCLUSIONS

The present work aims at extending the DOM approach,
which so far has been mostly applied to describe elastic
nucleon scattering, into the domain below the Fermi energy
by employing additional experimental data to constrain the po-
tentials. By introducing an explicit nonlocal HF-like potential,
it is possible to reinterpret the DOM potential as a nucleon

self-energy when the corresponding nonlocality correction is
implemented to generate the intended normalization of the
DOM potential containing the local but energy-dependent
HF contribution. This procedure has been adopted for DOM
potentials that were previously obtained for 40Ca [18]. The
possibility to interpret the DOM potential below the Fermi
energy as the nucleon self-energy broadens the links with
experimental data substantially. The solution of the Dyson
equation below the Fermi energy with this self-energy then
leads to the nucleon sp propagator and the corresponding one-
body density matrix. A Perey-Buck type nonlocal potential
was chosen to represent the HF potential. Its parameters
were chosen to describe the energies of the valence hole
states and the mean square radius of the charge-density
distribution. The latter feature illustrates the new possibility to
constrain the DOM potential by data that pertain to information
associated with one-body properties of the nuclear ground
state, because the sp propagator provides this access for
any one-body operator. Various quantities that are obtained
from approximate expressions with the usual local form of
the DOM potential are compared with the nonlocal solution.
Spectroscopic factors near the Fermi energy appear to be stable
quantities, but are no longer useful for deeply bound states.
Instead, we advocate the construction of the complete spectral
function in particular when comparison with nucleon knockout
experiments are considered. The nonlocal HF potential also
limits the binding of the lowest s1/2 orbital in agreement with
corresponding experimental information. This orbit tends to
become too deeply bound with the local version of the DOM
potential.

The diagonalization of the one-body density matrix allows
for the study of natural orbits and associated occupation
numbers (eigenvalues). Results are qualitatively similar to
microscopic calculations performed earlier for 16O and drops
of a finite number of 3He atoms. For each orbit that is filled
in a simple mean-field picture, there is a corresponding large
eigenvalue, while all other eigenvalues for this �j combination
are at least an order of magnitude smaller. Independent of
whether one or two such orbits are occupied below the
Fermi energy, like for the d3/2 and s1/2, respectively, there is
little difference between the quasihole (overlap) and natural
orbit wave functions. Although the mean square radius of
the charge distribution agrees with the experimental value,
a comparison with the complete density distribution shows
that too much charge is calculated near the origin. By studying
the momentum content of the spectral function and associ-
ated momentum distribution, we observe that current DOM
potentials generate about 10% high-momentum components
in agreement with experimental observations [33] for light
nuclei. Microscopic calculations of short-range correlations,
however, demonstrate that high-momentum components be-
come increasingly important with decreasing energy away
from the Fermi energy, which is also confirmed by experiment.
This feature must be represented by a change in geometry of
the potential with decreasing energy, which is currently not
present in DOM potentials but can be implemented in future
applications. Since short-range correlations remove charge
from the origin (s1/2 orbits) and place it at larger radii although
not at the surface [59], it is expected that the inclusion of
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high-momentum components in the DOM potentials will allow
a better description of the complete charge distribution. Similar
considerations suggest that these high-momentum compo-
nents will also generate a substantially improved energy per
particle.

Because the DOM generates both scattering wave functions
at positive energy as well as quasihole overlap function, it will
in the future also be possible to describe (e,e′p) cross sections
directly and use these data to constrain the DOM potential
further. At present, the indirect comparison with spectroscopic
factors derived from these data suggests no inconsistency.

Nevertheless, it is important to explore the interior scattering
wave function of the outgoing proton in this process, because
it may be sensitive to the nonlocal features of the potential.
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[34] H. Müther and W. H. Dickhoff, Phys. Rev. C 49, R17 (1994).
[35] H. Müther, A. Polls, and W. H. Dickhoff, Phys. Rev. C 51, 3040

(1995).
[36] J. S. Bell and E. J. Squires, Phys. Rev. Lett. 3, 96 (1959).
[37] F. Villars, Fundamentals in Nuclear Theory (IAEC, Vienna,

1967), Chap 5.
[38] J. P. Blaizot and G. Ripka, Quantum Theory of Finite Systems

(MIT Press, Cambridge, MA, 1986).
[39] C. Barbieri, Phys. Rev. Lett. 103, 202502 (2009).
[40] A. Bohr and B. R. Mottelson, Nuclear Structure (Benjamin,

New York, 1969), Vol. I.
[41] J. W. Negele and K. Yazaki, Phys. Rev. Lett. 47, 71 (1981).
[42] H. de Vries, C. W. de Jager, and C. de Vries, At. Data Nucl.

Data Tables 36, 495 (1987).
[43] S. Frullani and J. Mougey, Adv. Nucl. Phys. 14, 1 (1984).
[44] L. D. Landau, Sov. Phys. JETP 3, 920 (1957).
[45] L. D. Landau, Sov. Phys. JETP 5, 101 (1957).
[46] L. D. Landau, Sov. Phys. JETP 8, 70 (1959).
[47] M. G. E. Brand, G. A. Rijsdijk, F. A. Muller, K. Allaart, and

W. H. Dickhoff, Nucl. Phys. A 531, 253 (1991).
[48] W. H. Dickhoff, Phys. Rev. C 58, 2807 (1998).
[49] G. J. Kramer et al., Phys. Lett. B 227, 199 (1989).
[50] G. J. Kramer, H. P. Blok, and L. Lapikás, Nucl. Phys. A 679,

267 (2001).
[51] L. Lapikás (private communication).
[52] B. A. Brown, S. E. Massen, and P. E. Hodgson, J. Phys. G: Nucl.

Phys. 5, 1655 (1979).
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