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Transverse electron scattering response function of 3He with �-isobar degrees of freedom
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A calculation of the 3He transverse (e,e′) inclusive response function, RT , which includes � degrees of
freedom, is performed using the Lorentz integral transform method. The resulting coupled equations are treated
in impulse approximation, where the NNN and NN� channels are solved separately. As NN and NNN

potentials, we use the Argonne V18 and Urbana IX models, respectively. Electromagnetic currents include the
�-isobar currents, one-body N currents with relativistic corrections, and two-body currents consistent with
the Argonne V18 potential. RT is calculated for the breakup threshold region at momentum transfers near
900 MeV/c. Our results are similar to those of Deltuva et al. in that large �-isobar current contributions are
found. However, we find that these are largely canceled by the relativistic contribution from the one-body N

currents. Finally, a comparison is made between theoretical results and experimental data.
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I. INTRODUCTION

It is well known [1] that subnuclear degrees of freedom
play an important role in nuclear dynamics. In conventional
low-energy nuclear physics, the relevant subnuclear degrees
of freedom are considered to be mesons and nucleon isobars.
Electron scattering affords an excellent tool for studying these
degrees of freedom, which are manifested in the transverse
response through meson exchange (MEC) and isobar (IC)
currents. The consideration of such subnuclear currents has
a long history in the physics of few-nucleon systems. For
two-body systems, a review can be found in [2]. One important
issue in the MEC is their consistency with the nucleon-nucleon
(NN ) potential being used. Such consistent MECs have been
taken into account not only in deuteron electrodisintegration
but also in the electrodisintegration of three-body systems
[3–7]. On the other hand, IC have not received the attention
in three-body systems which they have in the two-nucleon
sector. Nevertheless, there exists a rather complete calcula-
tion by [5,8,9] where N and � degrees of freedom have
been treated on an equivalent level via a coupled channel
calculation with NNN and NN� channels. Also � effects
have been studied [3] in 3He electrodisintegration below the
three-body breakup threshold using the transition-correlation-
operator method [10].

The present work incorporates the dynamics of the �

resonance into the many-body wave function by means of
the impulse approximation (IA) [11]. This method, as in the
transition-correlation-operator and coupled-channel methods,
avoids the static approximation by fully including the kinetic
energy in the � propagator. For electromagnetic deuteron
breakup, it has been shown that the � effects resulting from
an IA calculation are rather similar to those resulting from a
coupled-channel calculation if the energy is sufficiently below
the resonance position of the � [12].

A calculation of RT in our case requires an integration over
continuum states of the coupled NNN + NN� system. As

has been demonstrated previously [13,14], the Lorentz integral
transform (LIT) method is well suited for calculating inclusive
quantities such as response functions. Examples of its use in
calculating electron-scattering response functions of three- and
four-body nuclei employing realistic nuclear forces (two- and
three-body forces) include (1) nonrelativistic calculations of
RL for three-nucleon systems [15], for 4He [16], and inclusion
of relativistic effects in 3H and 3He [17] and (2) calculations
of RT with relativistic and consistent MEC contributions for
three-body nuclei [6,7,18]. There is an LIT calculation [19] of
RT for 4He but with semirealistic NN forces. Here the method
is applied to the coupled NNN + NN� system.

The article is organized as follows. In Sec. II, we describe
the general formalism, including the incorporation of �

degrees of freedom in the LIT formalism. Section III specifies
the input to the dynamical equations developed in Sec. II. This
includes Sec. III A, detailing the potentials used in the NNN

and NN� sectors; Sec. III B, describing the electromagnetic
current operators used; and Sec. III C, outlining calculational
details. Finally, our results are discussed in Sec. IV. There we
compare our results for RT to those from another calculations
and to experimental data.

II. FORMALISM

In the one-photon-exchange approximation, the cross sec-
tion for the process of inclusive electron scattering on a nucleus
is given by

d2σ

d�dω
= σMott

[
Q4

q4
RL(q, ω) +

(
Q2

2q2
+ tan2 θ

2

)
RT (q, ω)

]
,

(1)

where RL and RT are the longitudinal and transverse response
functions, respectively; ω is the electron energy loss; q is
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the magnitude of the electron momentum transfer; θ is the
electron-scattering angle; and Q2 = q2 − ω2.

In the present work, we study the transverse response
function,

RT (q, ω) =
∑

Mi

∑∫
df ( j†t )if · ( jt )f iδ(Ef̄ − Ei − ω),

(2)

with � degrees of freedom within a nonrelativistic approach.
The low-ω region is considered. In (2), the subscripts i and
f label, respectively, an initial state and final state, and the
matrix elements are taken between internal states, center-of-
mass motion being excluded.

As mentioned in Sec. I, we employ the IA in order to take
into account the � resonance. This approximation is used for
both the 3He ground state and the final state. Subsequently, we
outline the various theoretical aspects required to include �

degrees of freedom in a calculation of RT via the LIT method.
We consider the three-nucleon system with N (939) and

�(1232) degrees of freedom, which leads to the following
Hamiltonian:

H = T + δm + V =
3∑

i=1

(Ti + δmi) +
3∑

i<j

Vij , (3)

where Ti is the kinetic energy of particle i with mass mi ,
δmi = mi − mN is its mass difference with nucleon N (939),
and Vij = Vji is the potential between particles i and j .
By omitting the contribution from more than one �-isobar
excitation, we construct the three-particle bound state from an
NNN part and a NN� part, that is,

|�0〉 = ∣∣�N
0

〉 + ∣∣��
0

〉
. (4)

The wave function is determined by the Schrödinger equation:

(TN + V̄ NN − E)
∣∣�N

0

〉 = −V NN,N�
∣∣��

0

〉
, (5)

(H� − E)
∣∣��

0

〉 = (δm + T� + V N� − E)
∣∣��

0

〉
= −V N�,NN

∣∣�N
0

〉
, (6)

where V N ′
1N

′
2,N1N2 = ∑3

i<j Vij (N1N2 → N ′
1N

′
2), V̄ NN =

V̄ NN,NN, V N� = V N�,N�, and
∑3

i=1 Ti is denoted by
TN and T� for the NNN and NN� channels, respectively.
One should note that V̄ NN is different from the usual sum
of realistic NN potentials, V NN , because the latter already
contain implicit effects due to the � (e.g., in meson-theoretical
NN potentials realized via part of the σ -meson exchange).

Here we do not search for a direct solution of the coupled
channel problem represented by Eqs. (5) and (6). Instead we
use the IA, where one computes �N

0 and ��
0 separately. More

specifically, one first determines the NNN part by solving

(HN − E)
∣∣�N

0

〉 = 0, (7)

with

HN = TN + V NN + V NNN, (8)

where V NNN = ∑3
i<j<k Vijk is a three-nucleon force. In the

IA, one then uses the solution |�N
0 〉 in order to calculate |��

0 〉
through (6).

Treatment of the continuum in the LIT technique requires
the calculation of a localized Lorentz state |�̃〉. This Lorentz
state |�̃〉 also has NNN and NN� parts written as

|�̃〉 = |�̃N 〉 + |�̃�〉. (9)

These fulfill the coupled equations

(TN + V̄ NN − E0 − σ )|�̃N 〉
= −V NN,N� |�̃�〉 + ONN

∣∣�N
0

〉 + ON�

∣∣��
0

〉
, (10)

(δm + T� + V N� − E0 − σ )|�̃�〉
= −V N�,NN |�̃N 〉 + O�N

∣∣�N
0

〉 + O��

∣∣��
0

〉
, (11)

where E0 is the three-body ground-state energy, the complex
σ = σR + iσI is the argument of the LIT in the trans-
formed space, and the ON1N2 denote the various diagonal
(N1 = N2) and transition (N1 �= N2) electromagnetic current
operators. One first solves for the NNN part using HN of
Eq. (8):

(HN − E0 − σ )|�̃N 〉
= −V NN,N�(H� − E0 − σ )−1

(
O�N

∣∣�N
0

〉 + O��

∣∣��
0

〉)
+ONN

∣∣�N
0

〉 + ON�

∣∣��
0

〉
. (12)

The preceding equation is derived by solving (11) formally
for |�̃�〉, inserting the solution in (10), and dropping the
term V NN,N�(H� − E0 − σ )−1V N�,NN , since, as mentioned,
� effects to the nuclear interaction are already contained in
the realistic HN . With |�̃N 〉 thus obtained, one then calculates
|�̃�〉 in a second step through (11). Given the solutions |�̃N 〉
and |�̃�〉, the LIT is obtained from the norm of the Lorentz
state as

〈�̃|�̃〉 = 〈�̃N |�̃N 〉 + 〈�̃�|�̃�〉. (13)

These two terms correspond to different contributions. It can
be shown that the piece 〈�̃N |�̃N 〉 describes contributions due
to final states with nucleons only. In this case, the � degrees
of freedom only contribute as virtual intermediate states. On
the contrary, the term 〈�̃�|�̃�〉 describes contributions from
final states containing a real �. The contribution to RT from
this term vanishes below the threshold for � production.
Since the present study is for energies below that threshold,
this term will not contribute here to RT . Such a real �

has to decay into a nucleon and a pion eventually, and
thus the contribution 〈�̃�|�̃�〉 corresponds to resonant pion
production.

III. INPUT TO DYNAMICAL EQUATIONS

A. Potentials

In the pure nucleonic sector, we use the Argonne V18
(AV18) NN potential [20] and the Urbana IX (UIX) NNN

potential [21], while for the pure NN� sector, we take
V N� = 0, as in the IA calculation of [12]. The NNN and
NN� sectors are coupled via the V NN,N� and V N�,NN

potentials. We use the same form for this potential as described
in [12], except that here we use the short-range cutoff given
in the AV18 [20] potential. In detail, we take V (NN → N�)
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between particles 1 and 2 to have the form

V12 = aNN ′πτ 1 ·τ 2

{[
V0(mπ ) + 2aNN ′ρ

aNN ′π
V0(mρ)

]
σ 1 ·σ 2

+
[
V2(mπ ) − aNN ′ρ

aNN ′π
V2(mρ)

]
S12

}
, (14)

with

V0(m) = (mr)−1e−mr
(
1 − e−cr2)

, (15)

V2(m) =
[

1 + 3

mr
+ 3

(mr)2

]
e−mr

mr

(
1 − e−cr2)2

, (16)

where σ i (τ i) are regarded as transition operators for spin
(isospin) of particle i, the coupling constants aNN ′π and aNN ′ρ

are taken from [12], c = 2.1 fm−2 is the same value as in the
AV18 potential, and r = |r1 − r2| is proportional to the Jacobi
vector ξ 1 [see Eq. (22)].

B. Electromagnetic currents

In Eqs. (10) and (11), the driving terms are the transverse
electromagnetic currents acting on the ground state. The
term ONN represents the purely nucleonic one- and two-
body currents. For these, the same one-body and two-body
currents as employed in [18] are used. There the one-body
currents included relativistic corrections to order M−3, and
the two-body currents were consistent π - and ρ-MEC currents
constructed using the method of Arenhövel and Schwamb [22].
The other terms, ON�, O�N , and O��, are transition and
diagonal one-body �-isobar currents. The currents involving
the � resonance are given in Fig. 1. For one-body �-isobar
currents, we use the forms

j�N =
3∑

k=1

eiq·r′
k

i
(
σk

�N × q
)

2m�

G�N
M1 τ�N

zk , (17)

j�� =
3∑

k=1

eiq·r′
k

[
2p′

k + κq
2m�

G�
E0 + i(σk

� × q)

2m�

G�
M1

]

× 1 + τ�
zk

2
, (18)

where r′
k = rk − Rcm and p′

k = pk − PcmAk/A are the relative
coordinate and momentum operators of the kth particle, while
Rcm and Pcm are the center-of-mass coordinate and initial total
momentum variable of the system. With the assumption that
Pcm is directed along q, the term κ in (18) has the value
κ = 1 + 2PcmAk/(Aq). However, since here we are dealing
with transverse currents, this term does not contribute. The
form factors for the preceding currents are the same as in [5,9]

(a) (b)

FIG. 1. Operators involving the � resonance in the (a) NNN and
(b) NN� channels.

and take the form

G�N
M1 (Q2) = m�

mN

4.59(
1 + Q2

/
�2

�N1

)2(
1 + Q2

/
�2

�N2

)1/2 ,

G�
E0(Q2) = G

p

E(Q2), (19)

G�
M1(Q2) = m�

3mN

(4.35/2.0)(
1 + Q2

/
�2

�N1

)2 ,

with ��N1 = 840 MeV and ��N2 = 1200 MeV. As in
our previous NNN calculations [6,7,18], we use the
approximations

G�N
M1 (Q2) ≈ µ̄�N

p

(
Q2

av

)
G

p

E(Q2), µ̄�N
p

(
Q2

av

) = G�N
M1

(
Q2

av

)
G

p

E

(
Q2

av

) ,

G�
M1(Q2) ≈ µ̄�

p

(
Q2

av

)
G

p

E(Q2), µ̄�
p

(
Q2

av

) = G�
M1

(
Q2

av

)
G

p

E

(
Q2

av

) .

C. Calculational details

In order to solve Eqs. (7), (11), and (12) for the ground
state and Lorentz vectors, we expand the bound and Lorentz
states on a complete antisymmetric basis. The reason for
antisymmetrizing NN� states is that they couple to purely
antisymmetric nucleonic states through symmetric operators.
Thus the excitation of an antisymmetric NNN state to a
NN� state occurs via an operator symmetric with respect
to nucleons. Such an operator is a sum of operators which
replace a nucleon with a �, which therefore leads to an
antisymmetric NN� state. For the NNN part, we take
the same correlated hyperspherical basis as in our previous
three-body calculations, without considering � degrees of
freedom (see, e.g., [14]). For the part with one � excitation,
we use the following hyperspherical basis:

|ϕk〉 = 1 + P√
3

1 − (12)√
2(1 + B2)

× |{hNK(Ll)L ⊗ [(s1s2)Ss3]S}JMJ , [(t1t2)T t3]T MT 〉,
(20)

where N is the order of the hyperradial function, K is
the hyperspherical angular momentum, and L and l are the
orbital angular momentum of the pair and of the spectator,
respectively, coupled to the total orbital angular momentum
L. Individual spin (isospin) quantum numbers of the three
particles are denoted by si (ti), i = 1, 2, 3, while the pair
spin (isospin) is denoted by S (T ), the total spin (isospin)
is denoted by S (T ), and MT stands for the projection of
the total isospin. Quantum numbers J and MJ denote the
total angular momentum and its projection, and (· · · ⊗ · · ·)JMJ

denotes (LS)J coupling. The index k denotes collectively
{N,K,L, l,L, S,S,J ,MJ , T , T ,MT } and B. We define
the quantity B to be 0 if the pair of the three-particle sys-
tem contains one �, and therefore (s1, s2, s3) = (t1, t2, t3) =
(1/2, 3/2, 1/2), and to be 1 if the pair contains no �, and
therefore (s1, s2, s3) = (t1, t2, t3) = (1/2, 1/2, 3/2). Note that
if particles 1 and 2 are nucleons, we always assume that
L + S + T = odd so that the NN pair is already antisymmet-
ric. The spatial basis functions in coordinate representation

054003-3



YUAN, EFROS, LEIDEMANN, AND TOMUSIAK PHYSICAL REVIEW C 82, 054003 (2010)

are products of hyperradial functions and hyperspherical
harmonics:

〈ξ 1ξ 2|hNK(Ll)LML〉 = RN (ρ)YLl
KLML

(x, x1, ϕ1, x2, ϕ2). (21)

The coordinates ρ and x are defined in terms of the Jacobi
vectors,

ξ 1 =
√

A1A2

A1 + A2
(r2 − r1),

(22)

ξ 2 =
√

(A1 + A2)A3

A1 + A2 + A3

(
r3 − A1r1 + A2r2

A1 + A2

)
,

as ρ = (ξ 2
1 + ξ 2

2 )1/2, x = (ξ 2
2 − ξ 2

1 )/ρ. The coordinates xi ≡
cos θi and ϕi are spherical coordinates of the unit vectors in
the directions of ξ 1 and ξ 2, respectively. We use the notation
Ai ≡ mi/mN . Note that particle permutations entering the
antisymmetrization operator interchange not only particle
position vectors ri but also their mass numbers Ai . One
has ρ2 = ξ 2

1 + ξ 2
2 = A1r

2
1 + A2r

2
2 + A3r

2
3 − AR2, where R is

the center-of-mass position. Thus ρ remains invariant under
particle permutations.

The operator [1 − (12)]/[2(1 + B2)]1/2 makes the (12) pair
explicitly antisymmetric. Note that it gives unity if the pair
contains no � but rather is an antisymmetric NN pair. Finally,
the operator (1 + P )/

√
3, where P ≡ (123) + (132), makes

the three-particle states with antisymmetric (12) pair totally
antisymmetric. It turns out to be convenient to keep both B = 0
and B = 1 in (20) (thereby resulting in an overcomplete basis)
and to finally select out numerically the linearly independent
states. This enables one to select out those states which give
negligible contributions to the results. Application of the
operator (1 + P )/

√
3 in (20) results in the more practical form

|ϕk〉 =
∑

B ′S ′T ′

1 − (12)√
2(1 + B

′2)

× |{FjL ⊗ [(s ′
1s

′
2)S ′s ′

3]S}JMJ , [(t ′1t
′
2)T ′t ′3]T MT 〉,

(23)

where j denotes collectively {B ′S ′T ′, BSST T NK(Ll)} and

|FjLML〉 = 1√
3

(
δB ′,BδS ′,SδT ′,T |hNK(Ll)LML〉

+ gc
B ′S ′T ′,BSST T

∣∣hc
NK(Ll)LML

〉
+ gd

B ′S ′T ′,BSST T
∣∣hd

NK(Ll)LML

〉)
, (24)

with (Ll)L coupling for the total orbital angular momentum
L and its projection ML. As mentioned earlier, components
with B ′ = 1 in Eq. (23) represent configurations NN� in
which particles 1 and 2 are nucleons. Those components with
B ′ = 0 represent N�N configurations in which particle 1 is a
nucleon and particle 2 is a �. More details of the spin-isospin
factors gc and gd , and the spatial functions hc and hd , are
given in Appendix A. Techniques employed in calculating the
kinetic energy and the NN → N� or N� → NN potential
are given in Appendixes B and C, respectively.

As in [6], all currents are expressed in terms of multipole
expansions. Explicit expressions for the multipoles of the
one-body current (containing relativistic corrections) are given

in [18]. The multipoles for the π - and ρ-MEC are found
in [6], with modifications because of the implementation of
consistent MECs for the AV18 potential listed in [7]. Finally,
the multipoles required here for the one-body currents relating
to the � are listed in Appendix D. With these multipoles, one
can then decompose the LIT of the response function according
to its multipole content as

R̃T (σ ) = 4π

2J0 + 1

∑
λ=el,mag

∑
J j

(2J + 1)(R̃T )jλ

J , (25)

where

(R̃T )jλ

J = 〈
�̃

jλ

JM

∣∣�̃jλ

JM

〉 = 〈
�̃

Njλ

JM

∣∣�̃Njλ

JM

〉+ 〈
�̃

�jλ

JM

∣∣�̃�jλ

JM

〉
. (26)

Here J0 is the initial state total angular momentum and J
and M are the final state total angular momentum and its
projection. The |�̃jλ

J 〉 are the solutions of (11) and (12), where
the following replacement is made on the right-hand side (rhs)
of these equations:

O|�0〉 → ∣∣qjλ

JM
〉 = [

T λ
j ⊗ |�0(J0)〉]JM. (27)

In Eq. (26), M is arbitrary. In Eq. (27), above �0 is either �N
0

or ��
0 , while O represents the various electromagnetic current

operators on the rhs of (10) and (11). By projecting the rhs of
(27) on the basis states (23), one obtains〈{Fj ′L′ ⊗ [(s ′

1s
′
2)S ′s ′

3]S ′}J ′M′
∣∣qjλ

JM
〉

= δJ ′,J δM′,M

〈{Fj ′L′ ⊗ [(s ′
1s

′
2)S ′s ′

3]S ′}J ′
∥∥T λ

j

∥∥�0(J0)
〉

Ĵ ′ .

(28)

We use the Lanczos method to calculate the response function,
as described in [23]. The response function is thus calculated
using〈

�̃
Njλ

JM
∣∣�̃Njλ

JM
〉 = − 1

σI

Im
〈
Q

jλ

JM
∣∣ 1

E0 + σ − HN

∣∣Qjλ

JM
〉

= −
∑
m,n

1

σI

Im
〈
Q

jλ

JM
∣∣φm

〉〈φm|

× 1

E0 + σ − HN

|φn〉
〈
φn

∣∣Qjλ

JM
〉
, (29)

where Q corresponds to the rhs of (12) and |φn〉 is the set of
orthogonal Lanczos vectors. As starting vector |φ0〉, we choose
the rhs of (12) at one particular value of σ . The expression
〈φm|(E0 + σ − HN )−1|φn〉 can be calculated using Eq. (71)
of [23]. A difference from previous LIT applications appears
in the potential term on the rhs of the LIT equation, namely,
the N� transition potential V NN,N� in (12). The contribution
of this term to 〈φn|Qjλ

JM〉 is given by

−
∑

l′k′lkm

〈φn|ϕl′ 〉N−1
l′k′ 〈ϕk′ |V NN,N�|ϕl〉

×N−1
lk 〈ϕk|φm〉〈φm|(H� − E0 − σ )−1

∣∣qjλ

JM
〉
, (30)

with∣∣qjλ

JM
〉 = [

T λ
�N,j ⊗ ∣∣�N

0 (J0)
〉]
JM + [

T λ
��,j ⊗ ∣∣��

0 (J0)
〉]
JM
(31)
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and the norm matrix N = (〈ϕk|ϕl〉). Also, the second term in
Eq. (26), 〈�̃�jλ

JM |�̃�jλ

JM 〉, can be calculated in a similar way with
the Lanczos method.

Because, in this article, we are working at low energies near
the 3He breakup threshold, only the lowest multipole transi-
tions contribute. We found sufficient accuracy by restricting
the maximum value of J to 5/2. The LIT is computed with
σI = 5 MeV. The LIT inversion [24] is made with our standard
inversion method [14,25]. As discussed in [6], we subtract
from the LIT of the M1 transition the elastic contribution and
invert the remaining inelastic piece separately from the other
multipole contributions.

IV. RESULTS

In the present work, we have used the LIT method to
calculate �-IC effects on the transverse electron scattering
response function RT (q, ω) for q ≈ 900 MeV/c and ω up to
20 MeV above the breakup threshold. This is an application
of the LIT method to include � degrees of freedom in
the calculation of inclusive (e,e′) response functions. The
importance of � effects at these kinematics has previously
been shown by [5]. As NN and NNN interactions, we used
the AV18 and the UIX potentials, respectively. Following the
IA calculation of [12], we do not consider a diagonal N�

interaction, that is, VN� = 0. For the 3He ground state, our
interaction model leads to a � probability of 1.14%, which
compares to 1.44% obtained by [5], who used a CDBonn + �

coupled channel potential model [26]. In addition to the �-ICs
jN�, j�N , and j��, the purely nucleonic currents include the
nonrelativistic one-body current with relativistic corrections
up to order M−3 [18] and an MEC consistent with the AV18
potential [7]. Concerning the relativistic corrections, we leave
out the ω-dependent relativistic piece in the present work as its
contribution is negligible in the threshold region we consider.
For the neutron magnetic and the proton form factors, we take
the dipole fit, while the neutron electric form factor is taken
from [27].

Figure 2 displays our RT results for several calculational
options. The dominant transition multipolarity contributing at
these near-threshold energies is M1. One sees that relativistic
effects reduce the M1 transition strength considerably. If, in
addition, MECs are also taken into account, then the M1
contribution drops markedly, leading to a rather different
low-energy behavior of RT . Inclusion of �-IC restores some
of this lost strength and demonstrates, as anticipated, that the
� effect is quite large.

Now we turn to a comparison of our results with those
of [5]. For the comparison, one should keep in mind that there
are differences between the two calculations. Thus, in [5],
(1) relativistic currents have not been considered; (2) the
Coulomb force is neglected in the final state interaction; (3)
their nucleonic potential model, the CDBonn [28], is different
from ours and does not reproduce the 3He binding energy; and
(4) the full coupled channel calculation, CDBonn + � [26],
is a more consistent treatment of � degrees of freedom than
the IA but leads to a slight underestimation of the 3He binding
energy. There is another point which makes the comparison a
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FIG. 2. (Color online) Theoretical results for RT of 3He as a
function of internal excitation energy ωint at q = 862 and 927 MeV/c

with various current operators: nonrelativistic nucleon one-body
(dotted lines), with additional relativistic corrections (dashed lines),
plus additional MEC (dash-dotted lines) and further addition of �-IC
(solid lines).

bit more difficult, namely, the RT of [5] is not calculated for a
constant momentum transfer; in fact, q is slightly decreasing
with growing energy. Therefore, in Fig. 3, we prefer to display
the results for each q in two panels. One sees that despite the
various differences mentioned earlier, the � effects in both
calculations are very similar. However, one also notes that
relativistic corrections lead to an opposite effect which is of
the same size at q = 862 MeV/c but somewhat weaker at
q = 927 MeV/c. By comparison of results for RT at about q =
500 MeV/c from [7] against those of [5], one finds again an
at least partial cancellation of relativistic and � contributions
close to the breakup threshold. The stronger increase of RT

in the calculation of [5] at higher energies, seen in Fig. 3,
partly originates from the nonconstant momentum transfers
used in [5], as mentioned earlier (see also the discussion of
Fig. 4).
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FIG. 3. (Color online) RT of 3He. Lower panels (q = 862
MeV/c, left; q = 927 MeV/c, right) show the theoretical result
from the present work with nonrelativistic nucleon one-body current
and MEC (dotted line) and additional �-IC (dash-dotted lines)
and further addition of relativistic corrections for nucleon one-body
current (solid lines). Upper panels (q at threshold as in lower panels,
but slightly varying with ωint; see text) show the theoretical results
from Deltuva et al. [5] with nonrelativistic nucleon one-body current
and MEC (dotted lines) and additional � contributions (dash-dotted
lines).
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FIG. 4. (Color online) RT of 3He for same kinematics and the
same dash-dotted and solid curves as in Fig. 2; in addition, the
result with all current contributions at q = 850 MeV/c (dash-double-
dotted curve). Experimental data with slightly varying q values
from [29].

Finally, in Fig. 4, we compare the results of our calculation
with experimental data [29]. Again, as in the calculation of [5],
the momentum transfer is only quasiconstant. Therefore, in the
left panel, we show RT including all current contributions for
the two extreme q values, that is, q = 862 and 850 MeV/c,
and in addition, for q = 862 MeV/c, the result where only
�-IC are left out. The lower q corresponds to the data at
about ωint = 20 MeV, while the higher q corresponds to the
threshold energy. In the right panel of the figure, we only show
the results for q = 927 MeV/c that correspond to the data close
to threshold. The �-IC contribution is seen to be essential for
obtaining a good agreement between theory and experiment
below 10 MeV. However, at higher energies, the increase be-
cause of �-IC is not sufficient to describe the data, even if one
considers the slight shift of q with higher energies represented
by the dotted curve. The present case is rather similar to
deuteron electrodisintegration at higher momentum transfer,
where at low excitation energy, the leading M1 transition
also has a minimum. For the deuteron case, it is known (see,
e.g., [30]) that various theoretical ingredients, for example, the
potential model dependence, can lead to rather large variations
of the theoretical result. Thus our present study cannot give
a final answer concerning the comparison of theory and
experiment.

We summarize our work as follows. We have illustrated how
� degrees of freedom are integrated into the LIT formalism
for a calculation of the inelastic inclusive transverse (e,e′)
response function RT of 3He. The resulting coupled equations
for the Lorentz states of the NNN and NN� channels
contain, as opposed to the corresponding coupled Schrödinger
equation, source terms with electromagnetic operators acting
on the nuclear ground state. The � degrees of freedom
are present in three different forms: (1) in the potentials
V N ′

1N
′
2,N1N2 , (2) in the � propagator, and (3) in the current

operators jN ′
1N1 . The coupled channel equation is solved in

impulse approximation, where the NNN and NN� channels
are treated separately. First, the NNN part is solved using a
realistic nuclear interaction with NN and NNN potentials.
The result thus obtained is then used for the solution of
the NN� channel. The former gives a contribution to the
electrodisintegration of a purely nucleonic final state, whereas
the latter leads to a contribution to the pion production channel.
In the present work, we have studied � effects in RT of 3He
close to the breakup threshold at a momentum transfer of
about 900 MeV/c. The response function is affected by sizable
MEC contributions and, as in a previous full coupled-channel
calculation [5], we find a considerable increase of RT because
of � degrees of freedom. Unlike the calculation of [5], we here
take into account relativistic corrections to the nonrelativistic
one-body current operator. At the kinematics considered
here, these relativistic corrections nearly cancel the �-IC
contribution. This cancellation in fact leads to good agreement
of our theoretical RT with experimental data at very low
energy transfer, while the experimental RT is underestimated
at somewhat higher energies.
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APPENDIX A: DETAILS OF gc, hc, gd, hd

The spin-isospin factors are

gc
B ′S ′T ′,BSST T =

⎧⎪⎨
⎪⎩

1√
2
fB ′S ′T ′,BSST T if B ′ = 1 and B = 0,

−(−)S+T fB ′S ′T ′,BSST T |s1↔s2,t1↔t2 if B ′ = 0 and B = 0,

0 otherwise,

(A1)

gd
B ′S ′T ′,BSST T =

⎧⎪⎨
⎪⎩

−(−1)S
′+T ′ 1√

2
fB ′S ′T ′,BSST T |s ′

1↔s ′
2,t

′
1↔t ′2 if B ′ = 1 and B = 0,

−(−)S
′+T ′√

2fB ′S ′T ′,BSST T |s ′
1↔s ′

2,t
′
1↔t ′2 if B ′ = 0 and B = 1,

0 otherwise,

(A2)

fB ′S ′T ′,BSST T = (−)S+T Ŝ ′ŜT̂ ′T̂
{

s ′
1 s ′

2 S ′

s ′
3 S S

}{
t ′1 t ′2 T ′

t ′3 T T

}
δs ′

1s3δs ′
2s1δs ′

3s2 . (A3)
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The spatial functions in coordinate representation are〈
ξ 1ξ 2|hc

NK(Ll)LML

〉
= (−)L〈ξ ′

1(ξ 1, ξ 2)ξ ′
2(ξ 1, ξ 2)|hNK(Ll)LML〉, (A4)〈

ξ 1ξ 2|hd
NK(Ll)LML

〉
= 〈ξ ′

1(−ξ 1, ξ 2)ξ ′
2(−ξ 1, ξ 2)|hNK(Ll)LML〉, (A5)

where ξ ′
1(ξ 1, ξ 2) and ξ ′

2(ξ 1, ξ 2) are connected to ξ 1 and ξ 2
through the cycle operator (123) by 〈r′

1r′
2r′

3s
′
1s

′
2s

′
3t

′
1t

′
2t

′
3| =

〈r2r3r1s2s3s1t2t3t1|, and using (22), we have

ξ ′
1(ξ 1, ξ 2) = −

√
A3A1

(A2 + A3)(A1 + A2)
ξ 1

+
√

A2(A1 + A2 + A3)

(A2 + A3)(A1 + A2)
ξ 2,

(A6)

ξ ′
2(ξ 1, ξ 2) = −

√
(A1 + A2 + A3)A2

(A2 + A3)(A1 + A2)
ξ 1

−
√

A1A3

(A2 + A3)(A1 + A2)
ξ 2.

APPENDIX B: KINETIC ENERGY CALCULATIONAL
DETAILS

For a basis of antisymmetric states, the kinetic energy can
be written as

T = 3

2mN

A1 + A2

A1 + A2 + A3
π2

1, (B1)

where π1 = −i∂/∂ξ 1 is the Jacobi momentum conjugate to ξ 1.
Noting that for calculating the matrix elements of π2

1 between
the basis states (23), one may drop (1 − (12))/[2(1 + B ′′2)]1/2,
we get

〈ϕk′ |T |ϕk〉 = 3

2mN

δL′,LδS ′,SδJ ′,J δMJ ′ ,MJ δT ′,T δMT ′ ,MT

×
∑

B ′′S ′′T ′′

A
′′
1 + A

′′
2

A
′′
1 + A

′′
2 + A

′′
3

×〈FB ′′S ′′T ′′,B ′S ′ST ′T N ′K ′(L′l′)LML

× ∣∣π2
1

∣∣FB ′′S ′′T ′′,BSST T NK(Ll)LML〉. (B2)

For the calculation of the spatial matrix elements, we use the
technique as described in [31] to get

〈Fj ′L′ML′ |π2
1|FjLML〉

= δL′,LδML′ ,ML8π2

2L + 1

∫
dτint

{∑
M′′

[
∂

∂ξ1
Fj ′LM′′

]

×
[

∂

∂ξ1
FjLM′′

]
+ ξ−2

1

∑
M′′,µ=±

lµFj ′LM′′ lµFjLM′′

}
,

(B3)

where dτint = ξ 2
1 ξ 2

2 dξ1dξ2dt, t = ξ̂ 1 ·ξ̂ 2. The underlines
mean that the space points take the value

ξ1x = 0, ξ1y = 0, ξ1z = ξ1, ξ2x = ξ2

√
1 − t2,

(B4)
ξ2y = 0, ξ2z = ξ2t ;

the orbital angular momentum is given by l = ξ 1 × π1; and

l±1FjLM = − ξ1√
2

[(∂/∂ξ1x) ± i(∂/∂ξ1y)]FjLM, (B5)

with the derivatives taken at the space point of (B4).

APPENDIX C: CALCULATIONAL DETAILS FOR
V (N N → N�) POTENTIAL

In calculating matrix elements of the transition potentials
between antisymmetric basis states, one may omit the factor
[1 − (12)]/

√
2(1 + B ′2) from Eq. (23) using the substitutions

1 − (12)√
2(1 + B

′2)
V N�,NN → 3 ·

√
2V12(NN → N�),

V NN,N� 1 − (12)√
2(1 + B2)

→ 3 ·
√

2V12(N� → NN ).

Each basis state in (23) is the sum of several terms of the form

1 − (12)√
2(1 + B

′2)
|{FjL ⊗ [(s ′

1s
′
2)S ′s ′

3]S}JMJ , [(t ′1t
′
2)T ′t ′3]T MT 〉,

and this is also true for the basis of the NNN part, but
with B = B ′ = 1, (s1, s2, s3) = (t1, t2, t3) = (1/2, 1/2, 1/2),
and [1 − (12)]/[2(1 + B ′2)]1/2 = 1. Therefore, for the matrix
elements of the operator V12, we need

〈{Fj ′L′ ⊗ [(s ′
1s

′
2)S ′s ′

3]S ′}J ′MJ ′

× |V0(mB)σ 1 ·σ 2|{FjL ⊗ [(s1s2)Ss3]S}JMJ 〉
= −δL′,LδS ′,Sδs ′

3,s3δS ′,SδJ ′,J δMJ ′ ,MJ

1

L̂
〈Fj ′L||V0(mB)||FjL〉

×(−1)1+S ′+s1+s ′
2

{
s ′

1 s1 1

s2 s ′
2 S ′

}
〈s ′

1||σ1||s1〉〈s ′
2||σ2||s2〉.

(C1)

In the spatial matrix elements entering here, we note that
the NNN component and the NN� component of the wave
function are given in terms of the Jacobi vectors of the same
form (22), but with different mass numbers. To perform the
integration, one needs to express one set of the Jacobi vectors
in terms of the other via

ξ 1(ξ 1, ξ 2) =
√

A′
2A

′
1(A1 + A2)

(A′
1 + A′

2)A1A2
ξ 1,

ξ 2(ξ 1, ξ 2) = (A′
1A2 − A′

2A1)√
A′(A′

1 + A′
2)A1A2(A1 + A2)

ξ 1

+
√

(A′
1 + A′

2)A′
3A

A′(A1 + A2)A3
ξ 2, (C2)
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where A′ = A′
1 + A′

2 + A′
3, A = A1 + A2 + A3. The inte-

gration is done as

〈Fj ′L||V0(mB)||FjL〉
= 8π2(2L + 1)−1/2

∫
dτint

∑
M

Fj ′LM(ξ 1, ξ 2)

×V0(mB)FjLM(ξ 1, ξ 2). (C3)

In addition, we need [using N (2)
M = 4(π/5)1/2Y2M (n)]

〈{Fj ′L′ ⊗ [(s ′
1s

′
2)S ′s ′

3]S ′}J ′MJ ′

× |V2(mB)S12|{FjL ⊗ [(s1s2)Ss3]S}JMJ 〉

= δJ ′,J δMJ ′ ,MJ (−1)L+S ′+J ′
3/2

{L′ L 2

S S ′ J ′

}
〈Fj ′L′ |

× |V2(mB)N (2)||FjL〉〈[(s ′
1s

′
2)S ′s ′

3]S ′||�(2)||[(s1s2)Ss3]S〉,
(C4)

〈Fj ′L′ ||V2(mB)N (2)||FjL〉
= 16π2(2L′ + 1)−1/2

∫
dτint

∑
M

CL′M
LM20Fj ′L′M(ξ 1, ξ 2)

× V2(mB)FjLM(ξ 1, ξ 2),
(C5)

〈[(s ′
1s

′
2)S ′s ′

3]S ′||�(2)||[(s1s2)Ss3]S〉

= δs ′
3,s3 (−1)S

′+s ′
3+S√

30/3Ŝ ′ŜŜ ′Ŝ
{S ′ S 2

S S ′ s ′
3

}⎧⎨
⎩

s ′
1 s1 1

s ′
2 s2 1

S ′ S 2

⎫⎬
⎭

×〈s ′
1||σ1||s1〉〈s ′

2||σ2||s2〉.

APPENDIX D: T l
j m MILTIPOLES OF ONE-BODY

CURRENTS RELATING �

For the magnetic multipoles, one has

T
j

jm =
∑

i

[
T

j,spin
jm (i) + T

j,conv
jm (i)

]
. (D1)

We have

T
j,spin
�N,jm(i) = 1

m�

q

2
µ�N

p τzi

{√
j

2j + 1
jj+1(qr ′

i )

× [Yj+1(r̂′
i) ⊗ σi]jm −

√
j + 1

2j + 1
jj−1(qr ′

i )

× [Yj−1(r̂′
i) ⊗ σi]jm

}
, (D2)

T
j,spin
��,jm(i) = 1

m�

q

2
µ̄�

p

(
1

2
+ 1

2
τzi

) {√
j

2j + 1
jj+1(qr ′

i )

× [Yj+1(r̂′
i) ⊗ σi]jm −

√
j + 1

2j + 1
jj−1(qr ′

i )

× [Yj−1(r̂′
i) ⊗ σi]jm

}
, (D3)

T
j,conv
��,jm(i) = 1

m�

(
1

2
+ 1

2
τzi

)
jj (qr ′

i )[Yj (r̂′
i) ⊗ ∂ ′

i ]jm. (D4)

The quantity ∂ ′
µ is defined by the relationship −i∂ ′

µ = p′
µ, and

∂ ′(3)
µ =

[
(A1 + A2)A3

A

]1/2
∂

∂ξ2,µ

.

For the electric multipoles,

T l
jm =

∑
i

[
T

l,spin
jm (i) + T

l,conv
jm (i)

]
, (D5)

where l = j ± 1. One obtains

T
j±1,spin
�N,jm (i) = − 1

m�

q

2
µ�N

p τzi

√
j + (1 ∓ 1)/2

2j + 1
jj (qr ′

i )

× [Yj (r̂′
i) ⊗ σi]jm, (D6)

T
j±1,spin
��,jm (i) = − 1

m�

q

2
µ̄�

p

(
1

2
+ 1

2
τzi

) √
j + (1 ∓ 1)/2

2j + 1

× jj (qr ′
i )[Yj (r̂′

i) ⊗ σi]jm, (D7)

T
j±1,conv
��,jm (i) = ± 1

m�

(
1

2
+ 1

2
τzi

) {
jj±1(qr ′

i )

× [Yj±1(r̂′
i) ⊗ ∂ ′

i ]jm − κ
q

2

√
j + (1 ± 1)/2

2j + 1

× jj (qr ′
i )Yjm(r̂′

i)

}
. (D8)

For the combined r and spin space operator, we only need
the reduced matrix element for the calculation of the response
function, as seen in (28). The reduced matrix element is given
by

〈{Fj ′L′ ⊗ [(s ′
1s

′
2)S ′s ′

3]S ′}J ′ |
× |(Ol ⊗ Os)j‖{FjL ⊗ [(s1s2)Ss3]S}J 〉

= Ĵ ′Ĵ ĵ

⎧⎨
⎩

L′ L l

S ′ S s

J ′ J j

⎫⎬
⎭ 〈Fj ′L′ ||Ol||FjL〉〈[(s ′

1s
′
2)S ′s ′

3]S ′|

× |Os ||[(s1s2)Ss3]S〉, (D9)

where

〈Fj ′L′ ||Ol||FjL〉 = 8π2(2L′ + 1)−1/2
∫

dτint

∑
Mm

C
L′(M+m)
LMlm

×Fj ′L′M(ξ 1, ξ 2)OlFjLM(ξ 1, ξ 2),

and Ol is a function of relative coordinate and momentum:

r3 − Rcm =
[

(A1 + A2)

AA3

]1/2

ξ 2,

i

(
p3 − A3

A
Pcm

)
=

[
(A1 + A2)A3

A

]1/2
∂

∂ξ 2
.
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(1987).
[13] V. D. Efros, W. Leidemann, and G. Orlandini, Phys. Lett. B 338,

130 (1994).
[14] V. D. Efros, W. Leidemann, G. Orlandini, and N. Barnea,

J. Phys. G 34, R459 (2007).

[15] V. D. Efros, W. Leidemann, G. Orlandini, and E. L. Tomusiak,
Phys. Rev. C 69, 044001 (2004).

[16] S. Bacca, N. Barnea, W. Leidemann, and G. Orlandini, Phys.
Rev. Lett. 102, 162501 (2009); Phys. Rev. C 80, 064001 (2009).

[17] V. D. Efros, W. Leidemann, G. Orlandini, and E. L. Tomusiak,
Phys. Rev. C 72, 011002(R) (2005).

[18] V. D. Efros, W. Leidemann, G. Orlandini, and E. L. Tomusiak,
Phys. Rev. C 81, 034001 (2010).

[19] S. Bacca, H. Arenhövel, N. Barnea, W. Leidemann, and
G. Orlandini, Phys. Rev. C 76, 014003 (2007).

[20] R. B. Wiringa, V. G. J. Stoks, and R. Schiavilla, Phys. Rev. C
51, 38 (1995).

[21] B. S. Pudliner, V. R. Pandharipande, J. Carlson, S. C. Pieper,
and R. B. Wiringa, Phys. Rev. C 56, 1720 (1997).
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