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The continuum Faddeev equations for the neutron-neutron-alpha (n + n + «) system are formulated for a
general interaction as well as for finite rank forces. In addition, the capture process n +n + o —%He + y is

derived.
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I. INTRODUCTION

In recent years the study of quantum halo systems
experienced increased interest in the nuclear as well as
the atomic few-body community. For a recent review see
Ref. [1]. The nucleus °He is of particular interest since it
constitutes the lightest two-neutron halo nucleus with a “*He
core. Being an effective three-body system, the properties of
the ground state have been explored using either Faddeev
[2—-4] or hyperspherical harmonics (HH) [5—8]. More recently
the ground state has also been calculated with multicluster
methods [9-17] as well as with Green’s function Monte Carlo
(GFMC) [18]. Those multicluster methods include various
techniques such as the microscopic dynamical multiconfigura-
tion three-cluster model [9], the stochastic variational method
[10], the multicluster dynamic model (MDMP and AMDMP),
the hybrid-TV model, a combination of the cluster orbital
shell model (COSM) [15] and the extended cluster model
(ECM) [16], the refined resonating group method [11,14], and
the coupled-rearrangement-channel variational method with
Gaussian basis functions [17]. In addition, the beta decay to
the o + d continuum was studied [19,20]. Of interest is also
the two-neutron capture process “He(2n,y)°He as a possible
route bridging the instability gap at nuclear mass A = 5 [21].

The situation is quite different in the continuum of two
neutrons and an o particle. There is a well established
2% resonance [22], but further resonant structures are still
under debate [7,23-30]. Up to now more indirect approaches
in understanding the resonance structure have been carried
out (e.g., the four-body distorted wave approach) leading to
three-body continuum excitations of two-neutron Borromean
halo nuclei [23,28]. Furthermore, complex scaling in Coulomb
breakup reactions was employed [31]. In addition, an extension
of the HH method on a Lagrange mesh [30] was used to
study three-body continuum states. This is at least a four-
body problem with great uncertainties about the reaction
mechanisms and the interactions entering these much more
complicated systems.

Thus the currently predominant approach to continuum
calculations for the pure n 4+ n 4+ « system is the HH method
[7,8,26-28,32]. A Faddeev approach is, to the best of our
knowledge, still missing. Only for the ®Li nucleus, a Faddeev
treatment of the deuteron-alpha (d-«) system has been em-
ployed [33], which however, did not have to face the challenge
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of three-to-three scattering. This also refers to the pioneering
work by Koike [34,35] on d-« scattering.

The aim of this investigation is to fill that gap. For the
n + n + o system one faces the situation of three free particles
being in the initial channel and leading again to three free
particles in the exit channel. In other words, one has to
deal with three-to-three scattering. Scattering of three free
incoming particles to three free outgoing ones in a Faddeev
approach was initiated in Refs. [36,37] in the context of the
three-body photodisintegration of 3He. This path was also
followed in the same context and in a Faddeev approach
by Meijgaard and Tjon [38]. Into the matrix element for the
photodisintegration enters the three-nucleon to three-nucleon
scattering wave function, which was evaluated in Ref. [38]
and then inserted into the photodisintegration matrix element.
However, evaluating the wave function is a completely
unnecessary complication since this process is initiated by
the three-nucleon bound state. One can directly derive a
Faddeev equation for the three-body breakup amplitude, in
which the driving term contains the action of the current
operator on the 3He ground state. Then the complete final-
state interaction is generated by a Faddeev integral kernel
for the amplitude. This considerably simplifies the technical
part of a calculation since no disconnected processes occur.
This very procedure was pioneered in Refs. [36,37] and
is being applied in state-of-the-art calculations (see, e.g.,
Refs. [39,40]).

The same procedure can trivially be adapted to the capture
process n +n +a —°He + y, as will be displayed in the
present investigation. This capture process is relevant for the
production rate of °He in astrophysical environments [41]
characterized by high neutron and alpha densities (e.g., those
related to supernova shock fronts). In Ref. [21] this three-body
process is approximated by sequential two-body processes,
whereas, in principle, a genuine three-body reaction needs
to be calculated. Furthermore, the nno — nna amplitude is
relevant for determining the next order coefficient [42] in the
virial equation of state in low-density matter [43].

From a technical point of view, the Faddeev approach to the
n 4+ n + o continuum is strongly needed since the currently
predominant approach, namely the HH approach, still faces
open challenges. It is already known that in the breakup
process n +d — n +n + p a strong final-state interactions
(FSI) peak appears for the n — n subsystem. In the Faddeev
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approach using Jacobi momenta this can be mapped out
correctly, whereas when changing to the hyperspherical angle,
the convergence is quite poor for this particular configuration.
In the HH method, the control of the coupling potentials
can be a painful exercise, whereas in the Faddeev approach
using Jacobi variables the dynamics are perfectly well under
control in all details. This same situation must be expected
in n 4+ n 4 o scattering, where the three-body S matrix is
characterized by continuous quantum numbers describing how
the energy is distributed over the relative motion. There are
strong initial-state and final-state interaction peaks, which in
a discrete representation through hyperspherical K quantum
numbers are difficult to map out correctly. As stated earlier,
only a technically reliable approach such as the Faddeev one
will guarantee the validity of the results when searching for
®He resonances.

The article is organized as follows. In Sec. II we derive the
coupled Faddeev equations for the three-to-three scattering
amplitude, followed by a partial wave decomposition in
Sec. III. The Faddeev equations will be solved by iteration
yielding a multiple scattering series. This will be outlined
in Sec. IV. Since most of the Faddeev-type investigations of
the n +n + « system are based on finite rank forces, we
also present in Sec. V a continuum formulation based on
separable forces. Furthermore, we discuss the unitarity relation
for the three-to-three amplitude in Sec. VI. Finally, the capture
process n+n+a —°He+ y will be discussed for the
Faddeev scheme in Sec. VII. Then we summarize in Sec. VIIL.
Technical details about the partial wave decomposition and an
efficient way of treating the three-body singularities are given
in the Appendices.

II. FADDEEV EQUATIONS FOR THE rnnoa SYSTEM

In developing the formal expression for the transition
amplitude between three free particles interacting with short-
range, strong interactions, we start from the triad of Lippmann-
Schwinger (LS) equations [44,45] acting on a three-particle
initial state given by

o = p,)"Iqu). (2.1)

where |p,)*) is a two-body scattering state and the index
o = 1, 2, 3indicates the three choices of pairs characterized by
the third particle, the spectator. Furthermore, V¥ = > it Vg,
where Vg (B8 = 1, 2, 3) are the pair forces. Three-body forces
can, in principle, be incorporated in a straightforward fashion.
However, we will only concentrate on two-body forces here.
The triad of LS equations,

wit = ol + G vt (2.2)
define the scattering wave uniquely. The channel Green’s
function is given by G, ! = (E +ie — Hy — V,)~!. We use
standard Jacobi momenta p, and q, and their quantum
numbers as basis states.

By suitable multiplication of the three equations in the triad
from the left by Vg one obtains the transition operators Uyg =

(Vg + V,)W", with B # a, y # «, which fulfill the set of
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equations
Uy = Ztﬂ¢0+ztﬂGOUﬂ0s 2.3)
pa pta
where &y = |p)|q) is the free three-particle state.
The three-body breakup operator is given by
Upo = Z v, Wi, (2.4)
Y
Again, from the triad follows
U =Y 1,0+ »_t,GoUyo. 2.5)

14 14

Iterating Eq. (2.3) one obtains the multiple scattering series

Uy = Ztyq)o + ZtVGO Ztﬂq)o
Y Y

B#y
+ Y 1,Go Y 153Gy Y 1Pyt (2.6)
14 B#y a#p

Instead of working with the coupled set of Eq. (2.3) and
the relation of Eq. (2.5) for the three-body breakup operator,
one can generate the multiple scattering series directly by

decomposing Uy as
UOQ = Z Uy s
¥

and choosing U, to obey the coupled set of Faddeev equations

Uy =t,+1,Go Y _ Us.
aty

2.7)

2.8)

Indeed, iterating Eq. (2.8) and inserting the result into Eq. (2.7)
leads exactly to the multiple scattering series from above.
Explicitly, we have a set of three coupled equations

Ui =1 +1GoUz + Us),

U, =t +1,Go(Us + U)),

Us =+ 1GoU; + Uy).

2.9)

We also observe that comparing Eqgs. (2.7) and (2.4) leads to

U, = V,wi". (2.10)

When considering the n +n + o system, we need to
incorporate the identity of the two neutrons. Fixing arbitrarily
the o particle as spectator and labelling it as “1” and the two
neutrons as particles “2” and “3”, the scattering wave function
\l/(()+) must be antisymmetric under the exchange of particles
“2” and “3”. Thus, defining the transposition operator P,3, the

scattering wave function must fulfill P,3 \Ilé+) = —\Il(()+). Using
this in Eq. (2.10) leads to
Us = — Py U,. (2.11)

Thus, for the n +n + o system we only have two coupled
equations

U=t +1Go (1 — Px3) U,
Uy =t +1Go (—PiU, + Uy).

2.12)
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More precisely, one has to apply the driving terms to the free
state @ ,, which is antisymmetric under the exchange of the
two neutrons

Do = (1 — P23)p141)|0mams) |05 3), (2.13)
leading to
Ui®oq =11Poq + 11Go(1 — Pr3)Us Py,
(2.14)
U@y = P00 + 12Go(—=Pa3Us Doy + Ui Po q).
The full breakup operator is given by
U@, = U1 ®Po,q + (1 — Pr3)UzPg 4. (2.15)

For the on-shell breakup amplitude one has to evaluate the
matrix element (®; |Up,a|®Po,q), where in the final-state
momenta as well as spin magnetic quantum numbers are
changed

®f, = (1 — Py3)Ipiq})|0mym})|053). (2.16)
III. PARTIAL WAVE DECOMPOSITION

To solve the coupled equations, Eq. (2.14), two sets of
partial wave basis states are needed

Ipiqron) = Y CGraad, My — )l prisy) jipa)
2
g1 M (1LY,
X — —_——
qir My — [ 27 )
3.1
|pagaca) = Y CljahaJ, t1aMy — )| pa(las) jopta)

M2

1 11
X |q2 )»25 LMy — o 33 L.

The details of a partial wave decomposition of Eq. (2.14) is
well known (see, e.g., Ref. [39]), and we refer to Ref. [46]
for details. Employing the states of Eq. (3.1), the coupled
equations, Eq. (2.14) read

o 5(4 - )
<P1CI10‘/1|U1a = 1—

tw;(P1 P15 Eq)) Co? ™ (01)

( + (=it /dx/dq2q2

X 1o, (P171(q195%), Eg) Go(m1(9193%), q7)
X Z Gy (9192)(2(q195%)q505 | U2

(3.2)
’or 8(q q2) Mmo.m
(P20205|Una = Zq— o (P2 P2: Eqy) D™ (01)
b
8(g5 — §2) - m
— —2 = 1y (P2, Eg,) D™ (6)
7

+ /dedqiqiz ta,(P373(q391%), Egy)

x Go(m3(g391 %), q3)
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X Z Ha o (qqux) ”4(@2611x)‘h°‘1|U1 a

f dx f dq'qy” to,(phs(ghqy'x), Eqy)

n

x Go(ms(g595' %), q3)

Z Iaéaé” (qzqz )C) 776(612‘15//x)f]£,/0‘g,| U2 as

where

Cor(nIZer} (01)

11
=1+ (_)11+51) <5 Esl, m2m3> Z(llsljl, my,, my +ms)

my,

. /4
X (i mi, o+ m3. 0. MY, (61,0 7.

(3.3)
with A; =24, + 1.
D™ (6)) = Dy "™ 0p,0,,)
=041 ) (B3 . M — )
"
’ ]‘ ./ * A
X lzifz, M — ms3, ms3 Yzw—m(m)
w(atn = - Y} (42)
2572 W= ma, Mo ) By ppr—p—my \92)>
(3.4)
and
D" (61) = D" (6),6,,)

=8y1 D (BBJ uM = )

n

L, 5
x (lﬁzjz,lt—mz,nh) Yy, (P2)

1 2
x (A’zglé, M’ — p—ms, ’"3) Vim—ioms (42)-

(3.5)
The “shifted” momenta r; are given as
= Jo2q? + g + 2aq]g5x,
= \/q’2 + B%q; +2Bq;q5x,
m3 = \/q + %47 + 2Bgq;x,
(3.6)

4 = \/@2q? + g + 2aq5q] x,

s = \/ B a5 + a5 + 2Basqy x,

e = \/ 9 + B 4} + 2Bgsq."x,
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where
p= "¢
o= —, = s
2 a
m+m 3.7)
_ 2m + my B_ m
J/_2(m—i—ma)’ T om 4 mg

Here m is the neutron mass and m,, the mass of the *He nucleus.

We refer to Appendix A for some details of the deriva-
tion and the expressions of the purely geometric quantities
Gu0;(9195%), Huye (g1 %), and Iaéaéw(qéqé”x). Furthermore,
to, (P} P15 E4,) is the two-neutron ¢ matrix and 1o, (py p2, Eg,)
the one for the neutron-« pair.

Due to the free Green’s functions G and the x integration
over it, one encounters the well-known logarithmic singular-
ities of any three-body problem. These singularities can be
reliably treated [39,47]. However, the method suggested in
Refs. [48,49] appears to be beneficial here since not only
kernels contain logarithmic singularities, but also the driving
terms. We illustrate this new method with an example in
Appendix B.

IV. MULTIPLE SCATTERING SERIES

A well-established way to solve a coupled set of Faddeev
equations is to generate the multiple scattering series. For the
3N system it is laid out in Ref. [39]. Schematically Eq. (3.2)
has the form

U=U% 1+ KU, 4.1)
which, when iterated, yield
U=U0+U0 40U+, 4.2)
with
U™ =kU"", n=12,.... (4.3)

The first few terms of this series are depicted in Fig. 1. The
driving terms of Eq. (3.2), sketched in the upper row of Fig. 1
are necessarily disconnected since a two-body ¢ matrix cannot
act on three particles.

+£+%+%+---
@JFEJF...

FIG. 1. Diagrammatic representation of the first few terms of the
multiple scattering series for the neutron-neutron-o system. Here the
alpha particle (1) is indicated by the thicker line.
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Let us consider the terms of second order in the two-body
¢ matrix (indicated in the second row of Fig. 1)

(pigiai U},
= (1 + (=11 / dx / dasqy 1o (P mi(q]asx). Egp)

x Go(mi(9193%), 41 D Gujay(915%)

o

5( ) o
x [M 1oy (T2(q1 650 P2, Eqy) D" (61)
2

5(6]/ - 672) !~ ~ N, m
— = @ @b, Ey) D6
2

=1+ (—1)li+si)/dx Z[ta; (pim1(q1g2%), Ey)

x Go(1(q192%), 41)G ;e (9192%) 1o (12(q192X) P2, Ey,)
% DM'; mz(el) — 1y (Plﬂl(qqux) qu) Go(m(qlqzx) 41)

X Gy (91420t (02(q1G2%) P2, Eg,) Dzzz’m} @]
“4.4)

The only singular function under the x integral is the free
Green’s function, which leads in the g — ¢, and ¢ — §»
planes of external momenta to the well-known logarithmic
singularities. The same is true for

1
(Phg5e51 U3
= fdx /dq{qizta;(Péﬂs(CIé%X), Ey) Go(ms(9,91%), 43)

S(q{ q )

X Z Ha a’ (42511 tc( (7T4(612611X)P1, qu)

% sz+m3(9 )—/dx /dqénqé//Z taz(pzns(qéqénx) Eq2)

x Go(ms(q5a3'%), 45) D Lusay (@593 %)

oy

[8«/” —q) o
X —_—

T2ty (T6(a3q5 ) P2, Egy) D™ (01)

2

8(q/// _ ’q"z)
— ——— tuy(6(q295 X) P2, Eg,) sz BCh)

2
= / dx 15 (py73(q21%), Egy) Go(mw3(q291%), q5)

X D oo (@301%) 1o (a(@5019) 1, Egy) Co? ™ (01)

o)
_ / dx |1y (Pys(@sa2). Eyp) Golrs(@sgan). )

X Y Lay (52%) tay (T6(q5q2) P2, Eqy) D™ (61)

o
%
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— 1oy (P575(q2G2%), Egy) Go(5(q2G2%), q5)

@
"

X Y loyay (@532%) tay (T6(q3G2%) Pa. Egy) D17 (61)
%
(4.5)

/N 2)
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Indeed, the free Green’s functions G, lead in the only
remaining x integral to logarithmic singularities.

To safely apply the kernel to the previous amplitude that
amplitude has to be a smooth function. This is only the case
for the next higher order, being of third order in ¢, sketched in
the third row of Fig. 1. The third-order term reads

(PLaia|UL) = (14 (—1)it) f dx f dq5q3 ta;(Pim1(q1q3%). Eq)Go(m1(q]5%). 41) Y Gayes(q1g5%)

@

x / dy 1(m2(q1950)73(9501 ), E)Go(3(a501Y): 45) Y Hogat (@31 V)ie (a1 )1, Egy) Cop ™ (61)

”
o

- /dy l‘aé(”Z(Qi‘]ﬁx)JTs(‘Zé%y), Eqé) GO(”S(qéqu)a qﬁ) Z Iaéaé’/(qéqu) l‘a;”(ﬂ6(CIéqz)’)P2, qu) D(Z%'m%el)

"
@

— oy (m2(q192)75(92G2Y), Egy) Go(ms(q5G2y), qé)z Loy (@332 tay (T6(q3G2) P2. Eg,) D23 (61)

Correspondingly one obtains

5!

7
5]
1
L)

(4.6)

(Pagses|Usy = / dx / dq197 10, (Py73(95q1 %), Eq))Go(3(9541%), 43) Hayer (4391 (1 + (= 1))
o

x / dy | 1y (1a(054,71(q1429), Eq)Go(r1(@1023), 1) D ot (d142) 1y (72(q1423) P2, Eqy) Diy ™ (1)

@

— 1y (Ta(0541 071 (4132, Eqp) Go(1(a1d23), 1) Y Geor(@132Y) 1y (02(q1323) 2, Egy) Dly ™ (61)

L)

- / dx / g (y') 1oy (Ps705(q5q5 %), Egy) Go(s(g33 %), 45) D Ty (d345 %)

.
5]

x / dy toy (6(q5q3 X)73(q5' 019): Eq) Go(3(qy' q13), 45) Y Haye (95 q1¥) to (T4(g5 1)1 Eg)
o

x Cy ™ (6)) — / dy | 1y (T6(g55 X753 023), Eqgy) Go(ms(@3' 023 450 D Ly (@5 42)

" ma,ms3

X 1,7(6(q3 q2Y) 2, Eqy) D i

L5]

n

All three-fold integrals in Eqs. (4.6) and (4.7) are of the
same type: two angular integrations, where each one leads to
logarithmic singularities in the corresponding momenta, one
of which is external and the other the intermediate integration

(01) — toy (6(q

}71,2,7713(91)

//
o)

X D Lo (@' 0y) 1, (16(a5'32Y) P2, Eq) D,
%

mr

L)

!

505 X)705(q5'G2¥), Eqp) Go(7ts(q5'2y). q5')

4.7)

variable. It is not difficult to see that the intermediate
momentum integration over products of logarithms leads to
smooth functions in the external momenta. Therefore the
third-order amplitudes in 7 can serve as driving terms for the
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application of the kernels, and thus leading to all higher-order
amplitudes

it U = 1+ 150 [ ax [ agiaf

X 1o, (P 1(q195%), E¢)Go(m1(q195%). q1)

X 3 Guja(q1g5%) (ma(qia5x)g5051 U3y "
@)

(Praeh| UL = / dx / dqiq? 1 (ses(@hai ). Eqp)

X Go(m3(q391%), 43) Y _ Hapa,(31%)

,
a

x (ma(q3qi0)q e U — / dx / dgy'qy”

X 1y (py7s(q5q5' %), Eq;) Go(ms(q395'%). 43)
—1

XY Luay (g595'x) (6(g3g5 Va3 o) U .

”
5]

(4.8)

withn =3,4,....

The  resulting  series

Solstpiaie|Uy,  and
Z;’;(péqéaéle("; can safely be summed via Padé
summation. For the corresponding three-nucleon amplitudes

the previous considerations were made in Ref. [38].

V. FINITE RANK FORCES

So far, Faddeev-type studies of light nuclei treating the
discrete structures were based on finite rank forces [33].
Therefore, it appears useful to also formulate the nna system
in the continuum in this fashion. For the sake of a simple
notation we choose a rank-1 separable ¢ matrix,

ta(pp's Eq) = ho(P)To(@)ha(p).
Then Eq. (3.2) takes the form

(5.1)

5!

(P1q1211U14
S(q/ - QI) ’ mo+m
= ‘q—z ha; (P)Ta; (Eqhai (p1) C? ™ (61)
1
+(1 + (= 1+ f dx / dg395 Y he(P})
@

X To; (Eg o (11(q195%))Go(1(q195%), 41)
X Gaiaé(qiqu) <n2(qiqéx)qéaé|U2,a
= ha’] (p/l)za’l (Cli),

where the new unknown single variable amplitude is

(5.2)

8(q; — q1)
Zo(q)) = —5—

To; (Eq)ho (p1) Co? ™" (61)
qi :
+ (14 (D) f dx f dg345 Yy Ty (Eq)
@

X hot (1(q195%)Go(1(q195%). q1)

x Gujay(195%) (m2(q195X)9505|Un .- (5.3)
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Similarly, the second equation, Eq. (3.2), becomes

(péqéa;|U2,a
B(q/ - Q2) / mo,m
= 2q—2 hay(P)Ta (Eq,)het (p2) D™ Or)
2
+) / dx / dq1q? hay(P))Tuy(Eqhes (73(g341 %))
o

x Go(3(4591%). 43) Huo) (9391 %)
SCACTRCAIIEDY f dx / dqy'qy”
o

X heoy (P3)Tay (Eg))hos, (15(q2q5 %)) Go(5(9395 %), q5)
o n " mn

X Iaéa;’(‘]éqéﬁx) <7T6(61242 x) q, &y |U2,a
= haé(p/Z)Voté(qé),

with

(5.4)

(95 — q2)

’ § my,m
Vo, (q3) = 7 Ty (Bl (p2) Dy (61)

q;
+ / dx/ dq1q7" T (Eghay (13(q241))
o

x Go(m3(4591%): 43) Huar (q3q1%)
x (14(q5q10)q1 e [ Una = ) f dx / dqy'qy”
ay’

o /I

X Toy (Eg)hay (15(q595 ) Go(5(q595 ), 43)

X Loy (4595 %) (06(q5q5 X)q; @y Uz . (5.5)

Then we insert the functions Z and V under the integrals
8(q) — q1)

Zot’ (6]1) =
1 qlz

Ty (qDha (P)Cy ™ (61)

+ (14 (= 1D)iTsn) f dx f dgbqy

X Y Tu (Eghay (11(q]45%))Go(m1(q1g5%), q1)
o)
X Go (165X (12(q195X)) Vs (5) (5.6)

and

(g5 — 92)

/ § ma,m;3
Vaé(‘]Z) = P Taé(CIZ)ha;(pZ) Da;’ *(01)

q;
+) / dx/ g1 Ta(Eqphe (13(q241%))

X Go(13(9291%). 43) Hoya (9391 X)he (14(g541 X))

X Zo(qy) — Z/dx/dqé”qé”z 7o, (Egy)
%4

r

X ey (5(q595 X)) Go(5(9295 ' X)s 43) ey (G295 %)

X hay (6(q595 X)) Vay (g5))- (5.7)
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These two equations, Eqgs. (5.6) and (5.7), form a set of coupled
one-dimensional integral equations. The low-order iterations
exhibit the same features as discussed in detail in the previous
section. Thus, we write

Zo(a) = 29D + 2P @) + 25 @) + 2 @D + -+,
(5.8)

and

Ve (65) = V(@) + Vi (@) + Vo (@) + V, (g + -
(5.9)
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From Egs. (5.6) and (5.7) we can read off the different orders.
For the lowest order we obtain

4 _6( i — ) m m
ZL?)(Q1)= 9 qu ra;(ql)ho,;(pl)cmf+ @), (5.10)
1
and
8(qh — q2)
Viﬁ_))(qé) = —q2q2 12 Ty (q2) hey(p2) D™ (01)
2
8g5—q) e
— = (@) hay (2D (60). (5.11)
2

The second order is given by

2, (@) = (1+ (=11 / dx / 9545 ) o (Eqp) hay (m1(q1920)) Go(r1(9105%); 41 Gajes (4195%) hes (m2(4195%)) Vi (@)

@

= i) [ [ dabaf 3 () huym(aiaso) Gutm@ian). a) Y Guras(aiasn) hurataiaso)
o) o)

y [amg ~ )

2

5 7oy (q2) he (P2) Do (01) — — a2

7oy (§2) hey(P2) D;";””(el)}

= (L + (=D0) 1(q)) / dx | ha(11(g1420)) Gomi(@122). 41) Y Guget(@12%) Mot (T2 2)) Ty (2) By (p2)

@

X DZZZ’W(GI) — hy (1(q1G2x)) Go(1(q1G2X). q7) Z G, (q1G2%) hey (12(q1G2%)) Tay(§2) By (P2) D:Zz’ms(Ql)
@)

= (1+ (D) gD ) [m;(cm hay(p2) D™ 61) / dx hq;(m1(41q2%)) Go(1(q142%), ;) Guajay(q192%)

)

X Ty (12(q1922)) —Tay G2) hy (52) Dzzz’m3(91)/dx he; (71(q1G2%)) Go(1(q1G2%), q1) Gaiaé(Qin2x)haé(nZ(quZ-x))} ,

and

(5.12)

Vi (ay) = / dx f 49,47 T (@) 1ot (3(4591)) Go(r3(@541), 42) D Hogot (4341%) hay (1a(d541) Z,(a})

- / dx / day' @y ©a(q5) hay(5(q305'%)) Go(ms(q
r 2 / i i / i /o )
= [ dx | dq,q, fag(qz) hag(773(512‘11)5))G0(7T3(512‘11x)7 q) Z Hey, (‘12‘]1x)ha; (14(q29,%))
o

x Co? ™™ (61) — / dx f dqy' 4y ey (q}) hay(ms(q

X |: 2q2 Tay(q2) hay (P2) Daﬂ 3(0,) —
2

8(qy —

2

/ 0
50550, 35 Y Loay (@305 %) oy (6(q395' %)) V.2 (q5)
%

(g1 —q1)
— To; (q1)ha; (P1)
q
205 Go(5(93245' ), 43) D _ Lesay (935'%) gy (76(9305'%))
«

62) ~ ~ N2, m
T (§2) hoy(P2) Dy’ 3(91)i|

= / dx T4(q5) hay(3(03q1%)) Go(3(9591%): 43) Y Haper (4591%) ha (T4(q51)) Tag (q1) B (1) Cy ™ (0)

;
o
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o)

- f dx | Ta,(q3) hay(75(g5G2%)) Go(ﬂs(qéw),qé)zla;ag'(%qzﬂ hay (6(@3G2X)) Tay(q2) hay (p2) D™ (01)

///
L5)

— To5(q3) Doy (715(93G2%)) Go(75(92G2%), 45)1asay(43G2%) hay (16(92G2%)) Tay(§2) hay (P2) DZ?""“ 1)

2

= 10)(@5) Y T (q1) ha; (P1) SC / dx hey(3(g391%)) Go(73(9391X), 43) Heye (95G1%) he (T4(g5%))

/
a

— T (@)Y |:Ta2”’(q2) hay(p2) D™ (01) / dx he,(15(g592%)) Go(5(g592%), 43) Laay (592X) hay (76(q3q2x))
%

— Ta,(42) hay(P2) foj‘m(@ﬂ / dx hey(15(q532%)) Go(1ws(q232%), 45) Ia;ag'(61£672X)hagf(ﬂé(qﬁézx))} . (5.13)

As for general forces, the x integration leads to logarithmic singularities in the external momenta. The next order, however, gives
smooth functions

2@} = (1 + (=D 4,(a) / dx f dq345 e (71(a193%)) Go(m1(912%), 41) ) Gajer(195%) ey (m2(4105)) Vy (q3)

/

5
= (1+ (=D 14(g)) / dqsq5 / dx he (11(q1¢5%)) Go(r1(@1a3%), 41) D, Gayot,(4145%) ey (T2(q165)) Tay(h)
@

< | > Tar(q1) hag (p1) Co'f’f+m3(91)/dy he, (3(q5q1Y)) Go(3(q391Y): 43) Hoye (9391Y) her (14(q3¥))

"
i

- [Tazm(qz) hay (p2) D™ (61) f dy hey(15(q392Y)) Go(ws(q392Y): 43) 1ayey (43G2Y) by (T6(932Y))
oy

— To,(42) hay (P2) D:?’m}(@l) / dy hay(m5(93G2)) Go(5(9232Y). 43) Loy (@3G2Y) haé”(”6(‘1é‘72y))i| . (514

and

V(a3 / dx / 49147 Tay(93) hay (13(9501)) Go(3(4241%), 43) D) Hag (9591%) hay (1a(0541)) 24, ()
)

- / dx / 495 43" Tuy(95) hay(t5(q33' %)) Go(s(@hg5' %), 45) ) L (a595'%) hay (s )) V' (@5))
o

Ty (43) ] dqiqy’ / dx o (73(951%)) Go(3(@5q1%), 43) ) Haye (@501%) o (Ta(g5qi )1+ (=1)1%1) 7(g7)

/
9

X Z [Tag(Qz) hay(p2) D;'Zfz’m‘*(&)/dy ha (11(q192Y)) Go(m1(q192Y), 41) Gujay(9192Y) oy (2(q192Y))

— Ty(§2) hay(P2) DZ?””}(&)/dy he (11(132Y)) Go(m1(q1G2Y): 41) Gajey(91G2Y) hag(ﬂz(q{ézy))]

s / daa)" / dx hoy(es(ahal' ) Gors(@hay'©), a) S Ty (@has') o Grolgiall o)
aé”

X | Tag (@83 T (g1) By (POCLT™(61) f dy hay (1345 13) Go(m3(@3' q17). 43") Huyat, (@3 417) ha (a(qs' )

’
a

— @)Y |:Taz””(q2) hyyr(p2) D™ (01) / dy hoy(m5(q5'423)) Go(5(a5'92), 43') Loy (45'2Y)

7
@
L5)
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X hy (6(q3' q2¥)) — Tay(G2) hyy (p2) D" (6) / dy hey (595" G2y)) Go(rws(qy ' G2). 3')

@

X oo (@3 G2y (m6(q3 Goy ))}

As shown in the previous section, there appear three-fold
integrals. Two of them are over angles, leading to logarithmic
singularities, which are then eliminated by the third interme-
diate momentum integral.

Thus we end up starting withn = 3

2y () = (1+ (=1 / dx / dq3q7 i (q1)
X he (1(q193%)) Go(71(4195%). 41)
X D Gojay(d743%) hay (12(g105) V'~ (a3)
@

= (14 (=D"1) 74.(q}) / dgsqy
« f dx hy (g} ) Golmi (g} as). 4))
X D Goor(q105%) hay (r2(q1q3%) V' ~"(h).

(5.16)

Correspondingly,

V' = [ ax [ daia? nah hemiaiaio

x Go(3(¢391%). 43) Y _ Huye (4341%)

o
X h (a(q3q10) Zy ()
- f dx / day' 93" 1u(3) hay (es(q345')

x Go(ms(4395' %), 45) D Toay (345 %)

X hay (6(q345'x)) Vo™ (g3
= 14(q) f dqiq7’ f dx he,(73(g591 %))

x Go(m3(q341%), 45) D Hage (4591%)

)
g ra(asa o) 2570~ st [ dag'as”
x [ dx hugtrsasas o) Gotrstasay . a3
X Y Lo (@33'%) hay (ms(aay' ) Vi (@3,
%4

(5.17)

(5.15)

Again, the singular integrals can be rewritten according to the
method given in Appendix B.

VI. UNITARITY RELATIONS

The scattering states \IJ(()H depend on the initial-state
quantum numbers

B _ g, 0
\IJO = qul‘ll,mzmz’ (61)
like the initial state
— &0
Dy, = CDP]qhmzm}. (6.2)

Using the full Green’s operator, G = (E + i€ — H)™', to the
full Hamiltonian, \Pé%hmzm} obeys the equation

(+) &0 0
lyplfh,mzms - q)Pllllsmzm,% + GV(DD]QI,mzm,%' (63)
A second scattering state is defined by
=) N} * 0
Piqi.mams T T piqy,mams3 +G Vq)l)l%mzmz‘ (6'4)
Both are related to each other as
=) — gy x 0
lIJPl‘]lamZmB - \ijlmqmzmz + (G G)Vq)plm,mzm,%
—_ v . _ 0
= ‘llplq],mz,n} + 2mis(E H)VdDPIqlqmzmS. (6.5)
The S matrix is defined as
mhm’,mymy _ (=) +)
Sp/]q,l'plql - <\I]P,]q/]*m/2m,/3 |‘I]P1q1»’”2m3>' (6.6)
Inserting Eq. (6.5) leads to
mhymy,mynty _ +) +) _ . r
LV T TR ( p'lq’l,m/zmg| P1Q1,mzm3) 2mis(E E)
0 (+)
x <q)p’lq’1,m’2m’3 Vl\yplqmlzm,z)' (6.7)
Now, we have due to general considerations
+) +) &0 0
Wp’lq;,m;mg' P]Ql,m2m3> - <q)p/lq'|,m’2mg |¢P1Q1,mzm3)' (6.8)
Consequently,
mymy,mamy 0 0
Spiaiovar = (Ppiamyms| Py mams)
i r_ 0 +)
27i8(E" = EXN Py gy |V Wiy mams)
_ 0 0
= {Pp;qp myms | Ppraymams )
. / 0 00| 4,0
—27i8(E' — E)(¢>p,l « ,m;mgiU |y o )

(6.9)

For the last equation we used the definition of the transition
operator U,
Since the scattering states in the definition of S belong to
the same Hamiltonian one has to have
mym’,mymy amhm’y,mym; S(E/ _ E),

o =S5 1
P1q;.P14q1 Splql,plql (6 0)
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where E = p A 23&11. (setting the o particle as spectator), and
correspondmgly as a similar expression for E’. The unitar-
ity relation simply follows from the completeness relation
spanned by the scattering states
(wh
Piq;.mym}
m,mz /

(l].l( ) i\p(Jr) >’

plq]m7mz P1qi,mam3

| (+) )

Pi1qi,mam3

S,

piqy.mymy

\I/(+)

P d).mym;

d'ip/l/d'i

6.11)

or in terms of the S-matrix elements

Sl

piq),mym} P1qi,mams3

3 43 g oim2"m3" mhymy my" " m3" ,;mom
—E/d 1d’q) S ,,/2,352’ G

P1"q1”,p1q; Pi P11 (612)

miym

This can be rewritten in terms of the matrix elements of U%.
Using the completeness relation

> / &Pl a] | O i) (Porgr gy | = 1. (6.13)
mymy
and
8( —E )(CDO "q," mym ”|U00|q)plql m2m3>
(cbg, "q" ,mym} 6(H E )U00|q)p q m2m3> (614)
leads to
B(E £ )[ ( P11 mats |U00|®P1‘11 mvmz)*
(‘bgrlq/] myms p qi, m””%)
42 Z /dS //d3 //S(E//_E)
mymy
(q)g(q’ mymy IJOO’cI)p]ql m2m3)*
(cbpfq/l mymy UOO|CDP1C11 mvlﬂz)] =0. (6.15)

More interesting is the partial wave decomposed version
for the on-shell matrix element

ror 00, J;

(P13 [U% | prqron) = Uy (py P08 s 8aan, - (6.16)

The dependence on pj, p; is sufficient since on-shell g; =

— Pi - /_ P_iz
2M(E — T, qy =/ 2M(E )-

As shown in Appendix C, the matrix element U 00. J‘ ( pip1)
obeys the unitarity relation

00,
i Ualaj*(Pl, py) —i Ua o (pl, P1)

120 3 [ = BB Gl PO p =0
af

6.17)
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The corresponding relation for the partial-wave projected S-
matrix element is

> f S(E" = EYS(E" — E') ;7 (P1P)) Sy o, (P P1)

8(p1 — py) (g1 — q1)
= daja 2 2
P q;
Note that not only discrete quantum numbers span the columns
and rows of the S matrix, but also the continuous quantum
numbers p| pi, which describe how the energy is continuously
distributed among the two relative motions.

(6.18)

VII. CAPTURE PROCESS 2 +n + o — ®He

The matrix element for the capture process is simply
related to the time-reversed photodisintegration process of °He
into three free particles. It is well known [40] how to treat
photodisintegration of *He in the Faddeev scheme. In essen-
tially the same manner one can formulate photodisintegration
of ®He based on an effective three-particle picture. Let O be
the photon absorption operator and |Wey,) the ®*He ground
state. The breakup amplitude into nna can then be written as
an infinite series of processes

(@0,41Uo| Wsne)
= (Do, O Wspte) + Y (0.4l Vi GoO|Wopse)

+ ) (P04l ViGoV;GoO W) +

ij

(7.1)

Here V; are the pair forces among the nn and na particles
and Gy is the free propagator. This infinite series in terms of
pair forces represents FSI. The first term is the direct breakup
process generated by O. Let us define

(@0.410Wepte) + Y (Po.al Ui | Worre)

i

<CD0,a|U0|“I}°He) =

(7.2)

where Uy; comprises all terms with V; to the very left

Uoi|Wepe) = ViGoO[Wsope) +V; Z GoVj Go O[Wspe) +
J
(7.3)
Clearly this can be summed up as

Uoi|Wsnte) = Vi Go OWene) + Vi Go Y _ Upj | Wepse).
J

(7.4)

Separating the terms Up;|Wsye) to the left and introducing
the ¢ matrices #; leads to three coupled Faddeev equations
(i =123)

Uoi|Wente) = ;G0 O Wope) + 1:Go Y _ Upj|Worse).
J#i

(7.5)

The photon absorption operator O has to be symmetric
under the exchange of the two neutrons, which we number as
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particles 2 and 3. Thus using the antisymmetry of |Wsy,) with
respect to the two neutrons, one finds

Pr3Upn|Wspe) = —Uos | Wone)- (7.6)
This leads to the two coupled equations
Uo1|Wsge) = 11GoO|Wepe) +11Go(1 — PrzUp2)|Wope), an

U2 |Wspe) = 12GoO|Wspe) + 12Go(Uot — Pa3Up) | W) »

corresponding to Eq. (2.12) from Sec. II.
The complete breakup amplitude is given by

(@0,aUo|Wspe) = (Po,q| O Weone) + (Po .ol Uot | Wope)
+ (D@0 |(1 = Pr3)Upp |Wepe)- (7.8)

Using adequate pair forces and photon absorption operators
(single-particle currents, two-body currents, and possibly
beyond) these coupled equations can be solved by standard
techniques [40].

VIII. SUMMARY

The structure inherent in the continuum states of the
n+n+ o system has so far only been explored in the
framework of the HH approach [7,8,26-28,32]. There are
strong initial-state and final-state interaction peaks, not only in
the nn subsystem but also in the n — o subsystem. This poses a
still unsolved challenge for the expansion into the discrete set
of K harmonics as already known forthen +d — n+n+ p
system. This is pointed out by the authors of Ref. [7], who
note that even for a maximum K,,x = 20 in their calculation,
the result is not completely converged.

A corresponding investigation in the Faddeev approach is
still missing. The aim of this article is to lay the formal ground
to do so.

In the Faddeev approach all the structures in the relative
motions of the three particles are mapped out correctly, thus
leading to a reliable path to the three-to-three scattering
S matrix, which contains the information of the resonance
structure of the °He system.

We derived two coupled Faddeev equations for the three-
to-three scattering amplitudes. In a partial wave decomposed
representation they form a system of two-dimensional coupled
equations for each fixed total angular momentum. The multiple
scattering series being arranged in powers in the two-body ¢
matrices is the natural starting point for the solution of this
coupled system of integral equations. The term linear in the
t matrices is disconnected. The next term, second order in ¢,
has well established logarithmic singularities in the external
momenta. Only the term of third order in 7 is a smooth function
of the external momenta and thus can serve as a driving term
for the consecutive application of the Faddeev kernels. This
provides all higher-order terms that can then be summed up
by Padé.

Since up to now nearly all Faddeev-based investigations of
the discrete structure of the n + n + o system are based on
finite rank forces, we also derived the continuum equations
using these types of forces. The unitarity relations are
especially interesting since the rows and columns of the §

PHYSICAL REVIEW C 82, 054002 (2010)

matrix are not only numbered by discrete quantum numbers,
but also by continuously varying on-shell momenta.

Finally, we provided Faddeev equations for the n +n + o
capture process to the ®°He ground state. We pointed out that it
is not necessary here to first evaluate the three-to-three wave
function as was done in Ref. [38], and that one directly can
use a Faddeev form for the entire breakup amplitude with no
disconnected terms as is done in modern calculations [39,40],
and as it was pioneered in Refs. [36,37].

This capture process is relevant for the production rate
of ®He in astrophysical environments [41] characterized
by high neutron and alpha densities (e.g., those related to
supernova shock fronts). In Ref. [21] this three-body process
is approximated by sequential two-body processes, whereas, in
principle, a genuine three-body reaction needs to be calculated.
Very recently it was pointed out [41] that currently employed
two-step mechanisms over intermediate resonances in the
three-to-three scattering of the n +n 4+ « system are most
likely insufficient since the time delays for those intermediate
steps are comparable to the duration of the entire process. This
strongly supports the need for the approach we present in this
article.
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APPENDIX A: PARTIAL WAVE DECOMPOSITION IN THE
nnoa SYSTEM

Partial wave decomposition of three-body wave functions
have often been documented, see, for instance, Ref. [39], and
focus on the nna system [46]. Thus we are here relatively
brief.

The projection of the free state, Eq. (2.13), onto the partial
wave basis states of Eq. (3.1) is given by

<Piq;‘x;|¢p|q|m2m3>
= (L+ DY G M =
"

11
x (1181 ji, b — my — m3, my + m3) <§ Esi’ mzm3>

5(py — p1) 8(qy —q1)
X 2 2

5 . Y ey (P Y5 pp—(G)
1 i

(A1)
This leads to

no_n_1n

(P1q) o) 11| P, qymayms )

= [ anipProipiad [+
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x Z(; W M= )

v

11
x (s) ji's mw—mo —ms,mz+ms)(22sl,mzm3>
s(py — p1) 8(g] —q1)
2 2 2
P q;
8(q{ —q1) R
= ST (1. Eg) CUE (i),

= 2
1

l?ﬂmzm(ﬁl)Y*/{Mwﬂ(@l)}
(A2)

and gives the driving term of Eq. (3.2) together with the
amplitude C given in Eq. (3.3).

In case of the second driving term in Eq. (2.14), it is
adequate to rewrite the free state |®p q,m,m;) in terms of
the Jacobi momenta of the type 2 (where the neutron is the
spectator)

p>=—-Bp1—vqi, Q@ =p1—aq, (A3)
with
1 5 My
o = -, = .
2
m—+ my (Ad)
_ 2m + my
YT am+my)
andof +y = 1.
Then
|<Dp1q1m2m3> |p2q2)|0)1|m2 2|m3 |O(%%)l)
— [P2@2)10)1m2)3lm3)2|0(33)1),  (AS)
where
P> =8p1 —vqi, Q@ =-p1—aq. (A6)

The partial wave projected state in system ‘“2” is given by

(péqéaé|¢PIQ1mzmz>

3(py — p2) &( )
_ pz - P2 ‘b q2 Z( 12J/ uM' — )
)25 qZ

1, R
x (lézjzl, w—ms, ms) Yoy (P2)

1 , * 4
X ()\/2514, M — p—my, m2> Y)»’ZM’fufmz(qz)

_ 8y — ) gy — §o)
P2 i

%Z< 250" M~ )

1. A
X (l;zjé, w—my, mz) Yoy (P2)

1 / * A
X <)‘/2§I£9 M' - —ms, m3> Yoy (@2), (AT)
and the second driving term becomes

(P£61£05§|f2|¢p1q1mzm3)
_ gy — )
a3

8(qy — G2) . ma.m
_ 2~_2 to,(P3 P20 Egy) D 2"3(05,0,),

2

lag(P/zPZ, qu’) D(T;Jm(epzeqz)

(A8)
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with D and D given in Egs. (3.4) and (3.5). For the kernel
pieces we refer to Ref. [46].

APPENDIX B: AVOIDING LOGARITHMIC
SINGULARITIES IN THE INTEGRALS

We illustrate the new manner to rewrite the Faddeev kernel
such that only a single pole singularity appears in an example
(for more details see Refs. [48,49]) Consider the first kernel in
Eq. (3.2), of which the first piece can be rewritten as

wn (P — mi(q,q),
/dx/dqéqézzv/dp/]/plz (p] p/l/2(QI612x))
’ 1
@

Xty (P11 Eq)) Go(p. 41)Gu s (q195%)
/d / /2 8(p2 ”2(q{qu))
2
1)

///

(P29,05|U2q-

(B1)
The two § functions are then changed according to

s(pf

8(x — xo) O(1 — [xo)),

,3)/ 2

o q;
B By

x © (tiz + ;pf - 7615 :

(B2)

_WI(Q{QEX)) = 20[6]/16]/
142

/ o ’ K ﬁ "
3(py — ma(q195%)) =8 (Pz - \/7/%2 + alﬁz -

with

o — p’l’z _ azq;Z _ qéz (B3)
20q1q;

Inserting this into Eq. (B1) leads to

/ dx / dqzéiézz f dpip)® 5

x O(1 — |x0|) ta’l(p/]p/]/9 qu)GO(P/l/’ 6]1) Gy az(qIQZx)

p ) B , By
x /dpépzzb‘ (Pz_\/l/‘h + Pt - ar

B » By ,
><®(J/q1 + = p1 ——6132 (Pha505|Us 4

X — Xg)

1
= / dayg; ) / dpi i 1w (PP Eq) Go(pi. 47)
1 o

, n, B L, By,
xGa;a;(qlqéxo)</yqlz+;pf——qf 4305 | Uz
n_ 2
xo(1- | =20 =9
Zthlq2
B By
®<Vq1 + Pf-;qz (B4)
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The two © functions define the domain D for the integrations
over p{ and gj. Thus we end up with

1 1
wq / dpipy ta(PiPYs Eg)) P
1 1
1 E + lE — 7 —_ M
pi+ag,
x [ 4055 3 Guges @ dx0)
‘[7/1,_0“1“ Oté
B By
x <\/ vaP + o pf =70 | Uaa: (BY)

The singularity in Go(pY, ¢;) is now a single pole in p{
for a given ¢;. This type of singularity does not pose any
numerical problem and can be implemented with standard
techniques [50]. Note that for g; > +/2M E there is no pole
and one might as well keep the original form.

APPENDIX C: PARTIAL WAVE DECOMPOSED
TRANSITION AMPLITUDE

The definition of the partial wave decomposed transition
amplitude is

(@p; g | U Ppyqumams)
= Z/dﬁlﬁlzd‘fl‘ilz(q%’]q’lm;mg|I71/q~1/071/)
ay
X (p1' G @ |U | pLgidn ) (Pri &1 | Ppyqumams)- - (C1)

This inserted into Eq. (6.15) yields
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which, using the completeness relation,

Z/dSP d3 //S(EH E)(@”| ~//~// //> <Q)”| ~///~/// ~]///>
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leads to
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Then using Egs. (A1) and (6.16), the orthogonality of the
spherical harmonics and of the Clebsch-Gordan coefficients,
one can project onto the on s-shell unitarity relation of
Eq. (6.17).
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