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Microscopic description of nuclear shape evolution from spherical to octupole-deformed
shapes in relativistic mean-field theory
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Reflection asymmetric relativistic mean-field theory is used to investigate the shape evolution for even-even
Th isotopes. The calculated deformations, matter density distributions, and potential energy surfaces demonstrate
clearly the shape evolution from spherical to octupole deformed. Especially, it is shown that Th isotopes suffer two
types of shape transition when the neutron number increases from N = 126 to N = 156. One is from spherical
to octupole deformed around N = 134, and another is from octupole to quadrupole deformed around N = 150.
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The equilibrium shape of atomic nuclei as well as the
transition between the different shapes has been the subject
of a large number of theoretical and experimental studies
(for a review, see, for example, Ref. [1] and references
therein). Theoretical studies have typically been based on
phenomenological geometric models of nuclear shapes and po-
tentials [2], or algebraic models of nuclear structure [3], which
have gained remarkable success in describing the phenomena
of shape evolution and shape phase transition (SE/SPT)
[4–6]. However, to provide greater detail, it is necessary to
perform microscopic investigation of SE/SPT. In Ref. [7], the
microscopic relativistic mean-field (RMF) theory is applied
to Sm isotopes and the SE/SPT from spherical to axially
deformed shapes is demonstrated clearly. In Ref. [8], a series
of isotopes suggested as exhibiting critical-point symmetries
are investigated by the microscopic approach. In combination
with generator coordinate method (GCM), RMF theory has
presented an excellent description of the general features of
the transitions between spherical and axially deformed nuclei,
the singular properties of excitation spectra, and the transition
rates at the critical point of SPT [9]. In Ref. [10], the triaxial
RMF theory is developed. In combination with GCM, the
triaxial RMF theory has provided the deformation parameters
to solve the five-dimensional collective Hamiltonian, which
has presented a good description of the quantum phase
transition between spherical and axially deformed shapes,
as well as between spherical and triaxially deformed shapes
[11–13]. Similar checks are performed for nuclear SE/SPT by
using nonrelativistic microscopic approaches, including the
self-consistent Skyrme-Hartree-Fock + BCS approximation,
the Hartree-Fock-Bogoliubov approximation based on Gogny
interaction, etc. The details can be found in the recent literature
[14–17].

All these studies only relate to the phase transition
between spherical and quadrupole shapes. However, in the
Ra-Th region, it was observed that the nuclei 224Ra and
224Th, which have a very low-lying negative-parity band,
soon merge with the positive-parity one for J > 5, which
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implies that the octupole deformation should not be ignored
in discussing the behavior of the phase transition [18,19].
In Refs. [20,21], the Bohr Hamiltonian with the collective
coordinates involving quadrupole and octupole deformations
has been introduced to describe the SE/SPT for Ra and
Th isotopes, and 224Ra and 224Th are suggested to be the
point of SPT from spherical to octupole-deformed shapes.
Recently, an axial-symmetric reflection asymmetric relativistic
mean-field (RAS-RMF) theory [22] has been developed. Its ap-
plication to the shape evolution for Sm isotopes is presented in
Ref. [23], where the shape/phase transition from U(5) to SU(3)
symmetry is marked clearly with the possible octupole degree
of freedom included. In this article, we examine the shape
evolution from spherical to octupole-deformed shapes, and
finally to quadrupole-deformed shapes, for Th isotopes by the
microscopic approach.

The details of RAS-RMF theory can be found in Ref. [22].
To avoid repetition, in this brief report we do not repeat the
related formalism. It is only noted that for axial-symmetric
reflection-asymmetric systems, the RMF equations are solved
by expanding the Dirac spinor in terms of the eigenfunctions of
the two-center harmonic-oscillator (TCHO) potential [22]. For
the nuclei studied in this article, the full N = 17 TCHO shells
are taken into account and the convergence of the numerical
calculations on the binding energy and the deformation has
been checked (and has been found to be very good). The pairing
correlations are considered by a constant gap approximation
(BCS) with the pairing gap taken as 11.2 MeV/A1/2 for even-
number nucleons.

The binding energies coming from the RAS-RMF calcula-
tions with the newly improved effective interactions NL3 [24]
(hereafter noted as NL3*) and PK1 [25] are respectively
exhibited in Figs. 1(a) and 1(b) for Th isotopes, in compar-
ison with the usual reflection symmetric RMF (RS-RMF)
calculations and the available data [26,27]. From Fig. 1(a),
it is seen that the binding energies from the RAS-RMF
calculations are consistent with those from the RS-RMF
calculations and comparable with the experimental data [26],
especially for the neutron-rich side. The largest deviation
between experimental and calculated data appears in 216Th,
which is less than 0.046 MeV. For 230−238Th, the binding
energies from the RAS-RMF calculations agree with the data
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FIG. 1. (Color online) Binding energy per nucleon, E/A, for
Th isotopes as functions of mass number A obtained from the RAS-
RMF calculations (open circles) and the RS-RMF calculations (open
boxes) in comparison with the data (solid circles).

better than those from the RS-RMF calculations. For 226,228Th,
the RAS-RMF calculations increase the deviations between
theory and experiment, which may originate from the binding
energies underestimated in the usual RMF calculations. For
210−224Th, the RAS-RMF calculations agree with the RS-RMF
calculations, which implies that the effect of octupole in these
nuclei is negligible for the ground state. Similar conclusions
are obtained with PK1 in the RAS-RMF calculations, as shown
in Fig. 1(b). Compared with NL3, PK1 increases the binding
of nucleons and improves the calculated data for 230−238Th,
which are comparable to those from RAS. However, the RMF
calculations with PK1 increase the binding energies for all the
Th isotopes, which enlarges the deviations between theory and
experiment for the nuclei with mass number below A = 224,
whereas RAS increases the binding energies only for the nuclei
holding octupole deformation as seen in Fig. 2(b). From this
point, the agreement with experiment for binding energies
should be due to the RAS approach.

In Figs. 2(a), 2(b), and 2(c), we display quadrupole
deformation β2, octupole deformation β3, and hexadecupole
deformation β4 as the functions of mass number A for
Th isotopes, respectively. From Fig. 2(a), we can see that the
tendency for the change of shape with mass number is correctly
reproduced in the RAS-RMF calculations and also in the
RS-RMF calculations except for 226Th. For 226Th, the RS-RMF
calculations fail to reproduce the experimental data [27],
while the RAS-RMF calculations present a consistent result
with experiment, which originates from the consideration of
octupole degree of freedom. For the nuclei with mass number
below A = 226, the axial-quadrupole deformation β2 obtained
in the RAS-RMF calculations is fully consistent with that
obtained in the RS-RMF calculations.

FIG. 2. (Color online) Quadrupole deformation β2, octupole
deformation β3, and hexadecupole deformation β4 for Th isotopes
as functions of mass number A obtained from the RAS-RMF
calculations and the RS-RMF calculations in comparison with the
available data.

Similar to the case of quadrupole deformation, the octupole
deformation from the RAS-RMF calculations with NL3* and
PK1 is consistent. For the nuclei with mass number below
A = 226, the octupole deformation is nearly zero. This is the
reason why the binding energies and quadrupole deformation
for these isotopes are almost the same with the RAS- or
RS-RMF calculations. There exists obvious octupole deforma-
tion for nuclei from A = 226 to A = 238. Starting from A =
232, the octupole deformation decreases with the increasing
of mass number, until A = 246, at which point the calculated
octupole deformation is nearly zero again.

From Fig. 2(c), we find that the deformation β4 obtained in
the RAS-RMF calculations is similar to that obtained in the
RS-RMF calculations for Th isotopes with the exception of
226Th. 226Th shows a clear hexadecupole deformation in the
RAS-RMF calculations, which is different from that of the
RS-RMF calculations.

These indicate, for deformations (β2, β4), the effect of the
interactions, NL3* versus PK1, is comparable to that due to
RS versus RAS in Th isotopes except for 226Th. Therefore, it
is difficult to judge whether the improvement in the data is due
to the interactions or to the RAS approach. But, if the octupole
deformation is observed, the effect of RAS can be checked.
The conclusion derived from the binding energies can be tested
from the deformation.

It is interesting to examine the shape evolution from spher-
ical to octupole-deformed shapes, and finally to quadrupole-
deformed shapes, by the microscopic theory.

To clarify the shape evolution, the matter density distri-
butions of the ground states of Th isotopes versus z and
y on the x = 0 plane are plotted in Fig. 3. It is clearly
shown that 216−220Th are spherical, and 222Th is near spherical
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FIG. 3. (Color online) Matter density distributions of the ground
states of Th isotopes versus z and y on the x = 0 plane, which were
obtained from the RAS-RMF calculations with NL3*.

with a little quadrupole deformation, 226−232Th are well-
deformed nuclei with clear octupole shape, whereas 224Th is
a transitional nucleus from spherical to well-formed octupole
shape. Starting from 232Th, with increasing neutron number,
the octupole deformation gradually decreases, the shape of
Th isotopes develops toward the axial-symmetric reflection
symmetry. As shown in Fig. 3, a pear-shape matter density
distribution gradually evolves into a symmetrical ellipse
shape. Particularly for 242−246Th, the reflection-asymmetric
deformation almost disappears, the matter density distribution
emerges itself from the axial-symmetric reflection symmetric
shape, while 240Th is a transitional nucleus from the re-
flection asymmetric deformation to the reflection symmetric
deformation.

Furthermore, the contour plots of the total potential energies
as functions of β2 and β3 for Th are shown in Fig. 4, where to
save space only half of isotopes in 216−246Th are plotted. Such
contour plots have up-down symmetry in the (β2, β3) plane
because of the equivalence between the states with positive
and negative β3.

It is shown in Fig. 4 that the ground state of 218Th is typically
spherical, and that of 230Th is typically octupole deformed with
substantial quadrupole and octupole deformations, while in
between the isotopes 222−226Th mark a transition process from
a sphere to an octupole-deformed shape. In detail, for 218Th,
with N = 128 close to the magic number 126, the ground state
is clearly spherical. For 222Th, although its ground state is still
near spherical (β2, β3) ∼ (0.07, 0.00), an octupole minimum
(β2, β3) ∼ (0.15, 0.10) is developed, which is about 0.99 MeV
higher than the ground state. For 226Th, the global minimum
moves to (β2, β3) ∼ (0.19, 0.14), which has substantial
quadrupole and octupole deformations and is only 1.84 MeV
deeper than the nearly spherical minimum at (β2, β3) ∼
(0.05, 0). For 230Th, the potential energy surface (PES)

FIG. 4. (Color online) The potential energy surfaces of
Th isotopes versus the quadrupole deformation parameter β2 and
the octupole deformation parameter β3 obtained from the RAS-RMF
calculations with NL3*.

around the octupolar global minimum becomes stiffer with a
higher barrier against the nearly spherical minimum and the
corresponding quadrupole-only state. Therefore, both 222Th
and 226Th (also 224Th not presented in Fig. 4) present an
example of shape coexistence of near spherical and octupole
deformation and also mark a shape transition from the spher-
ical case (216,218Th) to the octupole-deformed case (230Th).

The ground states of Th isotopes will again become
reflection symmetric with β3 ∼ 0 with the increase of the
neutron number N , as can be seen from Fig. 2. From 230Th
to 238Th, the global minima in PES are all octupole deformed,
while the barrier from the octupole-deformed minima to
the corresponding quadrupole-deformed states becomes lower
with the neutron number N . For 242,246Th, the ground states
become well quadrupole deformed with β3 ∼ 0, which is
localized in the β2 direction, but in the β3 direction the potential
surface is soft over a sizable interval. The shape evolution
from a well-formed octupole shape to quadrupole deformed
(with octupole softness) is thus presented in Th isotopes from
A = 230 to A = 246.

Similar PESs have also been obtained with other parameter
sets such as PK1 [25]. We also note that these results presented
in Fig. 4 are consistent with the conclusions from Figs. 2 and 3,
where only the information of deformations and matter density
distributions for ground states are given.

In summary, a newly developed RAS-RMF theory is used to
investigate the SE/SPT for even-even Th isotopes. It is shown
that the RAS-RMF theory represents a satisfactory description
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of the ground-state properties of atomic nuclei, including the
binding energies and deformations. The RAS-RMF presents
data on deformations, matter density distributions, and poten-
tial energy surfaces versus quadrupole deformation parameter
β2 and octupole deformation parameter β3, which show clearly
the shape evolution from spherical to octupole deformed, and
finally to quadrupole deformed. Particularly, it is shown that
Th isotopes suffer two types of shape transition when the
neutron number increases from N = 126 to N = 156, namely,
from spherical to octupole deformed around N = 134 and
from octupole to quadrupole deformed around N = 150.
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